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Abstract

In these notes we review basic number theory and group theory, culminating in applications to cryp-
tography and quadratic reciprocity. A good introduction to group theory is [La2]; for congruences and
quadratic reciprocity see [Da1, IR]. The guiding principle behind much of this chapter (indeed, much of
number theory) is the search for efficient algorithms. Just being able to write down an expression does not
mean we can evaluate it in a reasonable amount of time. Thus, while it is often easy to prove a solution
exists, doing the computations (as written) are sometimes impractical.
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1 Cryptography

Cryptography is the science of encoding information so that only certain specified people can decode it. We
describe some common systems. To prove many of the properties of these crypto-systems will lead us to
some of the basic concepts and theorems of algebra and group theory.

Consider the following two password systems: in the first, one chooses two large primes (say 200 digits
each,p andq). Let N = pq, and display the 400 digit numberN for everyone to see; the password is any
divisor ofN . For the second, choose a random 5000 digit number. Which is more secure? While it is harder
to correctly guess 5000 digits than 200, there is a danger in the second system: the computer needs to store
the password. In the first, there is no code-book to steal. The computer doesn’t need to knowp or q: it only
needs to know how to divide, and it will know the password when it hears it!

There are so many primes that it is not practical to try all 200 digit prime numbers. The Prime Number
Theorem (Theorem??) states that there are approximatelyx

log x
primes smaller thanx; for x = 10200, this

leads to an impractically large number of numbers to check. What we have is a process which is easy in one
direction (multiplyingp andq), but hard in the reverse (knowingN , right now there is no "fast" algorithm to
find p andq).

It is trivial to write an algorithm which is guaranteed to factorN : simply testN by all numbers (or all
primes) at most

√
N . While this will surely work, this algorithm is so inefficient that it is practically useless.

Exercise 1.1.There are approximately1080 elementary objects in the universe (photons, quarks, et cetera).
Assume each such object is a powerful supercomputer, capable of checking1020 numbers a second. How
many years would it take to check all numbers (or all primes) less than

√
10400? What if each object in the

universe was a universe in itself, with1080 supercomputers: how many years would it take now?

One of the most famous cryptography examples is RSA (see [RSA]). Consider two people, say Alice and
Bob, who want to communicate in secret. Instead of sending words, they can send numbers that represent
words. We can represent the lettera by 01, b by 02, and so on (and we can have numbers represent capital
letters, spaces, punctuation marks, and so on). For example, we write 030120 for the word "cat". It is
sufficient to find a secure way for Alice to transmit numbers to Bob. Let us say a message is a numberM of
a fixed number of digits.

Bob chooses two large primesp andq, and two numbersd ande such that(p− 1)(q − 1) dividesed− 1;
we explain these choices later. Bob then makes publicly available the following information:N = pq ande,
but keeps secretp, q andd. It turns out that this allows Alice to send messages to Bob that only Bob can easily
decipher. If Alice wants to send the numberM to Bob, Alice first calculatesM e, and then sends Bob the
remainder after dividing byN ; call this numberX. Bob then calculatesXd, whose remainder upon dividing
by N is the original messageM ! The proof of this uses modulo (or clock) arithmetic and basic group theory,
which we describe below. Afterwards, we return and prove the claim.

Exercise 1.2.Letp = 101, q = 97. Letd = 2807 ande = 23. Show that this method successfully sends "hi"
(0809) to Bob. Note that(0809)23 is a sixty-six digit number!

Exercise 1.3.Use a quadratic polynomialax2 + bx + c to design a security system satisfying the following
constraints:

1. the password is the triple(a, b, c);

2. there are 10 people: any three of them can provide(a, b, c), but no two of them can.

Generalize the construction: consider a polynomial of degreeN such that some people "know more" than
others (for example, one person can figure out the password with anyone else, another person just needs two
people, and so on).
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2 Efficient Algorithms

For computational purposes, often having an algorithm to compute a quantity is not enough; we need an
algorithm which will computequickly. For example, in Exercise 1.2 we needed to compute a sixty-six digit
number! Below we study three standard problems, and show how to either rearrange the operations more
efficiently, or give a more efficient algorithm than the obvious candidate.

2.1 Exponentiation

Considerxn. The obvious way to evaluate involvesn − 1 multiplications. By writingn in base two, we can
evaluatexn in at most2 log2 n steps.

We are used to writing numbers in base 10, say

x = am10m + am−110m−1 + · · ·+ a1101 + a0, ai ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}. (1)

Base two is similar, except each digit is now either 0 or 1. Letk be the largest integer such that2k ≤ x. Then

x = bk2
k + bk−12

k−1 + · · ·+ b12 + b0, bi ∈ {0, 1}. (2)

It costsk multiplications to evaluatex2i
, i ≤ k. How? Considery0 = x20

, y1 = y0 · y0 = x20 · x20
= x21

,
y2 = y1 · y1 = x22

, . . . , yk = yk−1 · yk−1 = x2k
. Then

xn = xbk2k+bk−12k−1+···+b12+b0

= xbk2k · xbk−12k−1 · · ·xb12 · xb0

=
(
x2k

)bk

·
(
x2k−1

)bk−1

· · ·
(
x2

)b1 ·
(
x1

)b0

= ybk
k · ybk−1

k−1 · · · y
b1
1 · yb0

0 . (3)

As eachbi ∈ {0, 1}, we have at mostk + 1 multiplications above (ifbi = 1 we have the termyi in the
product, ifbi = 0 we don’t). Thus, it costsk multiplications to evaluate thex2i

(i ≤ k), and at most anotherk
multiplications to finish calculatingxn. As k ≤ log2 n, we see thatxn can be determined in at most2 log2 n
steps. Note, however, that we do need more storage space for this method, as we need to store the values
yi = x2i

, i ≤ log2 n.

Exercise 2.1.Show that it is possible to calculatexn storing only two numbers at any given time (and knowing
the base two expansion).

Exercise 2.2.Instead of expandingn in base two, expandn in base three. How many calculations are needed
to evaluatexn this way? Why is it preferable to expand in base two rather than any other base?

Exercise 2.3.A better measure of computational complexity is not to treat all multiplications and additions
equally, but rather to count the number of digit operations. For example, in271× 31 there are 6 multiplica-
tions. We then must add 2 three-digit numbers, which involves at most 4 additions (if we need to carry). How
many digit operations are required to computexn?

2.2 Polynomial Evaluation (Horner’s Algorithm)

Let f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0. The obvious way to evaluatef(x) is to calculatexn and
multiply by an (n multiplications), calculatexn−1 and multiply byan−1 (n − 1 multiplications) and add, et
cetera. There aren additions and

∑n
k=0 k multiplications, for a total ofn + n(n+1)

2
operations. Thus, the

standard method leads to aboutn2

2
computations.
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Exercise 2.4.Prove that
∑n

k=0 k = n(n+1)
2

. Hint: proceed by induction (see Appendix??). In general,∑n
k=0 kd = pd+1(n), wherepd+1 is a polynomial of degreed + 1 with leading term nd

d+1
.

Exercise 2.5.How many operations are required if we use our results on exponentiation?

Consider the following grouping to evaluatef(x) (Horner’s Algorithm):

(((anx + an−1)x + an−2) x + · · ·+ a1) x + a0. (4)

For example,
7x4 + 4x3 − 3x2 − 11x + 2 = (((7x + 4)x− 3) x− 11) x + 2. (5)

Evaluating the long way takes14 steps; Horner’s Algorithm takes8 steps.

Exercise 2.6.Prove Horner’s Algorithm takes at most2n steps to evaluateanx
n + · · ·+ a0.

2.3 Euclidean Algorithm

Definition 2.7 (Greatest Common Divisor). Let m, n ∈ N. The greatest common divisor ofm and n,
denoted bygcd(m, n) or (m,n), is the largest integer which divides bothm andn.

Definition 2.8 (Relatively Prime, Coprime). If for integersm andn, gcd(m, n) = 1, we saym andn are
relatively prime (or coprime).

The Euclidean Algorithm is an efficient way to determine the greatest common divisor ofx andy. Without
loss of generality, assume1 < x < y. The obvious way to determinegcd(x, y) is to dividex andy by all
positive integers up tox. This takes at most2x steps; we show a more efficient way, taking at most about
2 log2 x steps.

Let [z] denote thegreatest integerless than or equal toz. We write

y =
[y

x

]
· x + r1, 0 ≤ r1 < x. (6)

Exercise 2.9.Prove thatr1 ∈ {0, 1, . . . , x− 1}.

Exercise 2.10.Provegcd(x, y) = gcd(r1, x).

We proceed in this manner untilrk equals zero or one. As each execution results inri < ri−1, we proceed
at mostx times (although later we prove we need to apply these steps at most about2 log2 x times).

x =

[
x

r1

]
· r1 + r2, 0 ≤ r2 < r1

r1 =

[
r1

r2

]
· r2 + r3, 0 ≤ r3 < r2

r2 =

[
r2

r3

]
· r3 + r4, 0 ≤ r4 < r3

...

rk−2 =

[
rk−2

rk−1

]
· rk−1 + rk, 0 ≤ rk < rk−1. (7)

Exercise 2.11.Prove that ifrk = 0, thengcd(x, y) = rk−1, while if rk = 1, thengcd(x, y) = 1.
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We now analyze how largek can be. The key observation is the following:

Lemma 2.12. Consider three adjacent remainders in the expansion:ri−1, ri andri+1 (wherey = r−1 and
x = r0). Thengcd(ri, ri−1) = gcd(ri+1, ri), andri+1 < ri−1

2
.

Proof. We have the following relation:

ri−1 =

[
ri−1

ri

]
· ri + ri+1, 0 ≤ ri+1 < ri. (8)

If ri ≤ ri−1

2
, then asri+1 < ri, we immediately conclude thatri+1 < ri−1

2
. If ri > ri−1

2
, then we note that

ri+1 = ri−1 −
[
ri−1

ri

]
· ri. (9)

Our assumptions onri−1 andri imply that
[

ri−1

ri

]
= 1. Thusri+1 < ri−1

2
.

We count how often we apply these steps. Going from(x, y) = (r0, r−1) to (r1, r0) costs one application.
Every two applications leads to the first entry in the last pair being at most half of the second entry of the
first pair. Thus, ifk is the largest integer such that2k ≤ x, we see we apply Euclid’s Algorithm at most
1 + 2k ≤ 1 + 2 log2 x times. Each application requires one integer division, where the remainder is the input
for the next step. We have proven

Lemma 2.13.Euclid’s Algorithm requires at most1 + 2 log2 x divisions to find the greatest common divisor
of x andy.

Euclid’s Algorithm provides more information thangcd(x, y). Let us assume thatri = gcd(x, y). Thus,
the last equation before Euclid’s Algorithm terminated was

ri−2 =

[
ri−2

ri−1

]
· ri−1 + ri, 0 ≤ ri < ri−1. (10)

Therefore, we can find integersai−1 andbi−2 such that

ri = ai−1ri−1 + bi−2ri−2. (11)

We have writtenri as a linear combination ofri−2 andri−1. Looking at the second to last application of
Euclid’s algorithm, we find that there are integersa′i−2 andb′i−3 such that

ri−1 = a′i−2ri−2 + b′i−3ri−3. (12)

Substituting forri−1 in the expansion ofri yields that there are integersai−2 andbi−3 such that

ri = ai−2ri−2 + bi−3ri−3. (13)

Continuing by induction, and recallingri = gcd(x, y) yields

Lemma 2.14.There exist integersa andb such thatgcd(x, y) = ax+by. Moreover, Euclid’s Algorithm gives
a constructiveprocedure to finda andb.

Thus, not only does Euclid’s algorithm showa andb exists, it gives an efficient way to find them.

Exercise 2.15.Find a andb such thata · 244 + b · 313 = gcd(244, 313).
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Exercise 2.16.Add details to complete an alternate, non-constructive proof of the existence ofa andb with
ax + by = gcd(x, y):

1. Letd be the smallest positive value attained byax + by as we varya, b ∈ Z. Such ad exists. Say
d = αx + βy.

2. Showgcd(x, y)|d.

3. Lete = Ax + By > 0. Thend|e. Therefore, for any choice ofA, B ∈ Z, d|(Ax + By).

4. Consider(a, b) = (1, 0) or (0, 1), yieldingd|x and d|y. Therefored ≤ gcd(x, y). As we’ve shown
gcd(x, y)|d, this completes the proof.

Note this is a non-constructive proof. By minimizingax + by, we obtaingcd(x, y), but we have no idea how
many steps are required. Prove that a solution will be found either among pairs(a, b) with a ∈ {1, . . . , y−1}
and−b ∈ {1, . . . , x− 1}, or−a ∈ {1, . . . , y − 1} andb ∈ {1, . . . , x− 1}.

Exercise 2.17.How many steps are required to find the greatest common divisor ofx1, . . . , xN?

2.4 Exercises

We give some examples and exercises on efficient algorithms / efficient ways to arrange computations. The
first assumes some familiarity with calculus, the second with basic combinatorics.

Newton’s method: Newton’s Method is an algorithm to approximate solutions tof(x) = 0 for f a
differentiable function onR. Start withx0 such thatf(x0) is small (we callx0 the initial guess). Draw the
tangent line to the graph off atx0, which is given by the equation

y − f(x0) = f ′(x0) · (x− x0). (14)

Let x1 be thex-intercept of the tangent line;x1 is the next guess for the root. Simple algebra gives

x1 = x0 −
f(x0)

f ′(x0)
. (15)

We now iterate, and apply the above procedure tox1, obtaining

x2 = x1 −
f(x1)

f ′(x1)
. (16)

If we let g(x) = x− f(x)
f ′(x)

, we notice we have the sequence

x0, g(x0), g(g(x0)), . . . (17)

This sequence will, we hope, converge to the root, at least forx0 close enough to the root and forf good. How
closex0 has to be is a delicate matter. If there are several roots tof , which root the sequence converges to
depends crucially on the initial valuex0 and the functionf . In fact its behavior is what is known technically
aschaotic. Informally, we can say that we have chaos when tiny changes in the initial value give us very
palpable changes in the output (see [Dav]).

Exercise 2.18.Let f(x) = x2 − α, for someα > 0. Show Newton’s method converges to
√

α, and discuss
the rate of convergence (ie, ifxn is accurate tom digits, approximately how accurate isxn+1? (For example,
look atα = 3 andx0 = 2.) Similarly, investigaten

√
α.
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Exercise 2.19.Modify Newton’s Method to find maxima / minima of functions.

Exercise 2.20.Let f(x) be a degreen polynomial with complex coefficients. By the Fundamental Theorem
of Algebra, there aren (not necessarily distinct) roots. Assume there arem distinct roots. Assignm colors,
one to each root. Given a pointx ∈ C, we colorx with the color of the root thatx approaches under
Newton’s method. Write a computer program to color such sets for some simple polynomials, for example for
xn − 1 = 0 for n = 2, 3 or 4.

Combinatorics and Partitions: Assume we have 10 identical cookies and 5 distinct people. How many
different ways can we divide the cookies among the people, such that all 10 cookies are distributed? Since
the cookies are identical, we cannot tell which cookies a person receives; we can only tell how many. We
could enumerate all possibilities (there are 5 ways to have one person receive 10 cookies, 20 ways to have one
person receive 9 and another receive 1, and so on). While in principle we can solve the problem, in practice
this computation becomes intractable, especially as the number of cookies and people increase.

The number of ways to divide the cookies is
(
10+5−1

5−1

)
, where

(
n
r

)
= n!

r!(n−r)!
(the number of ways to choose

r objects fromn objects when order does not matter). In general, if there areC cookies andP people,

Lemma 2.21.The number of distinct ways to divideC identical cookies amongP different people is
(

C+P−1
P−1

)
.

Proof. ConsiderC + P − 1 cookies in a line, and number them1 to C + P − 1. ChooseP − 1 cookies.
There are

(
C+P−1

P−1

)
ways to do this. This divides the cookies intoP sets: all the cookies up to the first chosen

(which gives the number of cookies the first person receives), all the cookies between the first chosen and the
second chosen (which gives the number of cookies the second person receives), and so on. This dividesC
cookies amongP people. Note different sets ofP −1 cookies correspond to different partitions ofC cookies
amongP people, and every such partition can be associated to choosingP − 1 cookies as above.

Remark 2.22. In the above proof, we do not carewhich cookies a person receives. We introduced the
numbers for convenience: now cookies 1 throughi1 (say) are given to person 1, cookiesi1 + 1 throughi2
(say) are given to person 2, and so on.

For example, if we have 10 cookies and 5 people, say we choose cookies 3,4,7, and 13 of the 10+5-1
cookies: ⊙ ⊙ ⊗ ⊗ ⊙ ⊙ ⊗ ⊙ ⊙ ⊙ ⊙ ⊙ ⊗ ⊙
This corresponds to person 1 receiving 2 cookies, person 2 receiving 0, person 3 receiving 2, person 4
receiving 5, and person 5 receiving 1.

The above is an example of a partition problem: we are solvingx1 + x2 + x3 + x4 + x5 = 10, wherexi is
the number of cookies personi receives. We may interpret Lemma 2.21 as the number of ways to divide an
integerN into k non-negative integers is

(
N+k−1

k−1

)
.

Exercise 2.23.Show
N∑

n=0

(
n + k − 1

k − 1

)
=

(
N + 1 + k − 1

k − 1

)
. (18)

One can interpret the above as dividingN cookies amongk people, where we do not assume all cookies are
distributed.

Later (see Chapter??) we describe other partition problems, such as representing a number as a sum of
primes or integer powers. For example, the famous Goldbach problem says any even number greater than 2
is the sum of two primes (known to be true for integers up to6 · 1016 [Ol]). While to date this problem has
resisted solution, we have good heuristics which predict that, not only does a solution exist, but how many
solutions there are. Computer searches have verified these predictions for largeN of size1010.
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Exercise 2.24 (Crude prediction).By the Prime Number Theorem, there areN
log N

primes less thanN . If we
assume all numbersn ≤ N are prime with the same likelihood (a crude assumption), predict how many ways
there are to writeN as a sum of two primes.

Exercise 2.25.In partition problems, often there are requirements such as everyone receives at least one
cookie. How many ways are there to writeN as a sum ofk non-negative integers? How many solutions of
x1 + x2 + x3 = 2004 are there if eachxi is an integer andx1 ≥ 5, x2 ≥ 7, andx3 ≥ 1000?

3 Clock Arithmetic: Arithmetic Modulo n

Let Z denote the set of integers, and forn ∈ N defineZ/nZ = {0, 1, 2, . . . , n − 1}. We often readZ/nZ as
the integers modulon.

Definition 3.1 (Congruence).x ≡ y mod n meansx − y is an integer multiple ofn. Equivalently,x andy
have the same remainder when divided byn.

When there is no danger of confusion, we often drop the suffix modn, writing insteadx ≡ y.

Lemma 3.2 (Basic Properties of congruences).For a fixedn ∈ N anda, a′, b, b′ integers we have

1. a ≡ b mod n if and only ifb ≡ a mod n.

2. a ≡ b mod n andb ≡ c mod n impliesa ≡ c mod n.

3. a ≡ a′ mod n and b ≡ b′ mod n, thenab ≡ a′b′ mod n. In particular a ≡ a′ mod n impliesab ≡
a′b mod n for all b.

Exercise 3.3.Prove the above relations. Ifab ≡ cb mod m, musta ≡ c mod m?

For x, y ∈ Z/nZ, we definex + y to be the unique numberz ∈ Z/nZ such thatn|(x + y − z). In other
words,z is the unique number inZ/nZ such thatx+y ≡ z mod n. One can show thatZ/nZ is a finite group
under addition; in fact, it is a finite ring. (See §4.1 for the definition of a group).

Exercise 3.4 (Arithmetic Modulon). Define multiplication ofx, y ∈ Z/nZ byx · y is the uniquez ∈ Z/nZ
such thatxy ≡ z mod n. We often writexy for x · y. Prove that this multiplication is well defined, and that
an elementx has a multiplicative inverse if and only if(x, n) = 1. Conclude that if every non-zero element
of Z/nZ has a multiplicative inverse, thenn must be prime.Hint: use the Euclidean Algorithm to find the
inverses.

Arithmetic modulon is often called clock arithmetic. Ifn = 12, we haveZ/12Z. If it is 10 o’clock now,
in 5 hours it is 3 o’clock, because10 + 5 = 15 ≡ 3 mod 12.

Definition 3.5 (Least Common Multiple). Let m,n ∈ N . The least common multiple ofm andn, denoted
by lcm(m, n), is the smallest positive integer divisible by bothm andn.

Exercise 3.6.If a ≡ b mod n anda ≡ b mod m, thena ≡ b mod lcm(m,n).

Let us solve inZ the equation2x + 1 = 2y. The left hand side is odd, the right hand side is even. Thus,
there are no integer solutions. What we did is really arithmetic mod2 or arithmetic inZ/2Z.

Consider nowx2 + y2 + z2 = 8n + 7. This never has a solution. Let us study this equation modulo8.
The right hand side is7 modulo8. What are the squares modulo8? 12 ≡ 1, 22 ≡ 4, 32 ≡ 1, 42 ≡ 0, and then
the pattern repeats (as modulo8, k and(8 − k) have the same square). We see there is no way to add three
squares and get7. Thus, there are no solutions tox2 + y2 + z2 = 8n + 7.
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Remark 3.7 (Advanced: Hasse Principle).In general, when searching for integer solutions one often tries
to solve the equation modulo different primes. If there is no solution for some prime, then there are no integer
solutions. Unfortunately, the converse is not true. For example, Selmer showed3x3 + 4y3 + 5z3 = 0 is
solvable modulop for all p, but there are no rational solutions. We discuss this in more detail in Chapter??).

Exercise 3.8 (Divisibility Rules). Prove a number is divisible by 3 (or 9) if and only if the sum of its digits
are divisible by 3 (or 9). Prove a number is divisible by 11 if and only if the alternating sum of its digits is
divisible by 11 (for example, 341 yields 3-4+1). Find a rule for divisibility by 7.

Exercise 3.9 (Chinese Remainder Theorem).Letm, n be relatively prime positive integers. Prove that for
any a, b ∈ Z there exists a uniquex mod mn such thatx ≡ a mod m and x ≡ b mod n. Generalize to
m1, . . . ,mk anda1, . . . , ak.

4 Group Theory

We introduce enough group theory to prove our assertions about RSA. For more details, see [Art, La2].

4.1 Definition

Definition 4.1 (Group). A setG equipped with a mapG×G → G denote by(x, y) 7→ xy is a group if

1. (Identity)∃e ∈ G s.t.∀g ∈ G : eg = ge = g.

2. (Associativity)∀x, y, z ∈ G : (xy)z = x(yz).

3. (Inverse)∀x ∈ G, ∃y ∈ G s.t.xy = yx = e.

4. (Closure)∀x, y ∈ G: xy ∈ G.

We have written the group multiplicatively,(x, y) 7→ xy; if we wrote(x, y) 7→ x + y, we say the group is
written additively. We callG a finite group if the setG is finite. If ∀x, y ∈ G, xy = yx, we say the group is
abelianor commutative.

Exercise 4.2.ShowZ/nZ is an (additive) group.

Exercise 4.3.Consider the group ofN ×N matrices with real entries and non-zero determinant. Prove this
is a group under matrix multiplication, and show this group is not commutative ifN > 1. Is it a group under
matrix addition?

Exercise 4.4.Let (Z/pZ)∗ = {1, 2, . . . , p − 1} wherea · b is defined to beab mod p. Prove this is a
(multiplicative) group ifp is prime. More generally, let(Z/mZ)∗ be the subset ofZ/mZ of numbers relatively
prime tom. Show(Z/mZ)∗ is a (multiplicative) group.

Exercise 4.5 (Euler’sφ-function (or totient function) ). Letφ(n) denote the number of elements in(Z/nZ)∗.
Prove that forp prime, φ(p) = p − 1 and φ(pk) = pk − pk−1. If p and q are distinct primes, prove
φ(pjqk) = φ(pj)φ(qk). If n and m are relatively prime, prove thatφ(nm) = φ(n)φ(m). Noteφ(n) is
the size of the group(Z/nZ)∗.

Definition 4.6 (Subgroup). A subsetH of G is a subgroup ifH is also a group.

Our definitions imply any groupG has at least two subgroups, itself and the empty setφ.

Exercise 4.7.Prove the following equivalent definition: A subsetH of G is a subgroup if for allx, y ∈ H,
xy−1 ∈ H.

Exercise 4.8.LetG be an additive subgroup ofZ. Prove there exists ann ∈ N such that every element ofG
is an integral multiple ofn.
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4.2 Lagrange’s theorem

We prove some basic properties offinite groups (groups with finitely many elements).

Definition 4.9 (order). If G is a finite group, the number of elements ofG is the order ofG and is denoted
by |G|. If x ∈ G, the order ofx in G, ord(x), is the least positive powerm such thatxm = e, wheree ∈ G is
the identity of the group.

Exercise 4.10.Prove that, in a finite group, every element has finite order.Hint: use the pigeon-hole principle
(see §??).

Theorem 4.11 (Lagrange).Let H be a subgroup of a finite groupG. Then|H| divides|G|. In particular,
takingH to be the subgroup generated byx ∈ G, ord(x) | ord(G).

We first prove two useful lemmas.

Theorem 4.12 (Cayley).LetH be a subgroup ofG, and leth ∈ H. ThenhH = H.

Proof. It suffices to showhH ⊂ H andH ⊂ hH. By closure,hH ⊂ H. For the other direction, leth′ ∈ H.
Thenhh−1h′ = h′; ash−1h′ ∈ H, everyh′ ∈ H is also inhH.

Lemma 4.13. Let H be a subgroup of a groupG. Then for allgi, gj ∈ G eithergiH = gjH or the two sets
are disjoint.

Proof. AssumegiH ∩ gjH is non-empty; we must show they are equal. Letx = gih1 = gjh2 be in the
intersection. Multiplying on the right byh−1

1 ∈ H (which exists becauseH is a subgroup) givesgi = gjh2h
−1
1 .

SogiH = gjh2h
−1
1 H. As h2h

−1
1 H = H, we obtaingiH = gjH.

Definition 4.14 (Coset).We call a subsetgH of G a coset(actually, a left coset) ofH. In general,gH is not
a subgroup.

We now prove Lagrange’s Theorem.

Proof of Lagrange’s theorem.We claim
G =

⋃
g∈G

gH (19)

Why is there equality? Asg ∈ G andH ⊂ G, eachgH ⊂ G, hence their union is contained inG. Further, as
e ∈ H, giveng ∈ G, g ∈ gH. Thus,G is a subset of the right side, proving equality.

By Cayley’s theorem, two cosets are either identical or disjoint. By choosing a subset of the cosets, we
show the union in (19) equals a union of disjoint cosets. There are only finitely many elements inG. As we
go through allg in G, if the cosetgH equals one of the cosets already chosen, we do not include it; if it is
new, we do. Continuing this process, we obtain

G =
k⋃

i=1

giH (20)

for some finitek and all cosets are disjoint. IfH = {e}, k is the number of elements ofG; in general,
however,k will be smaller. Each setgiH has |H| elements, and no two cosets share an element. Thus,
|G| = k|H|, proving|H| divides|G|.
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4.3 Fermat’s Little Theorem

Corollary 4.15 (Fermat’s Little Theorem). For any primep, if gcd(a, p) = 1, thenap−1 ≡ 1 mod p.

Proof. As |(Z/pZ)∗| = p− 1, the result follows from Lagrange’s Theorem.

Exercise 4.16.One can reformulate Fermat’s Little Theorem as the statement that ifp is prime, for alla we
havep|ap − a. Give a proof for this formulation that does not use group theory.

Exercise 4.17.Prove that if for somea, an−1 6≡ 1 mod n thenn is composite.

Thus, Fermat’s Little Theorem is a fast way to show certain numbers are composite (remember exponen-
tiation is fast!). Unfortunately, it is not the case thatan−1 ≡ 1 mod n impliesn is prime. Such composite
numbers are called Carmichael numbers (the first few are 561, 1105, and 1729). More generally, one has

Theorem 4.18 (Euler). If gcd(a, n) = 1, thenaφ(n) ≡ 1 mod n.

Proof. Let (a, n) = 1. By definition,φ(n) = |(Z/nZ)∗|. By Lagrange’s Theorem the order ofa ∈ (Z/nZ)∗

dividesφ(n), or aφ(n) ≡ 1 mod n.

Remark 4.19. For our applications to RSA, we only need the case whenn is the product of two primes.
In this case, consider the set{1, . . . , pq}. There arepq numbers,q are multiples ofp, p are multiples ofq,
and one is a multiple of bothp andq. Thus, the number of numbers in{1, . . . , pg} relatively prime topq is
pq − p− q + 1 (why?). Note this equalsφ(p)φ(q) = (p− 1)(q − 1).

Exercise 4.20.Korselt [Kor] proved that a composite numbern is a Carmichael number if and only ifn is
square-free and if a primep|n, then(p − 1)|(n − 1). Prove that if these two conditions are met, thenn is a
Carmichael number.

Research Project 4.21 (Carmichael Numbers).It is known (see [AGP]) that there are infinitely many
Carmichael numbers. One can investigate the spacings between adjacent Carmichael numbers. For example,
choose a largeX, and look at all Carmichael numbers in[X, 2X], sayc1, . . . , cn+1. The average spacing
between these numbers is about2X−X

n
(they are spread out over an interval of sizeX, and there aren

differences:c2 − c1, . . . , cn+1 − cn. How are these differences distributed?
Often, it is more natural to rescale differences and spacings so that the average spacing is 1 (see §??).

The advantage of such a renormalization is the results are often scale invariant (ie, unitless quantities).

4.4 Structure of (Z/pZ)∗

The multiplicative group(Z/p/Z)∗ for p prime has a rich structure which will simplify many presentations
later.

Theorem 4.22.For p prime,(Z/pZ)∗ is cyclic of orderp − 1. Thus, there is an elementg ∈ (Z/pZ)∗ such
that

(Z/pZ)∗ = {1, 2, . . . , p− 2, p− 1} = {g1, g2, . . . , gp−2, gp−1}. (21)

We sayg is agenerator of the group. For eachx there is a unique integerk ∈ {1, . . . , p − 1} such that
x ≡ gk mod p. We sayk is theindex of x relative tog. For eachx ∈ (Z/pZ)∗, theorder of x is the smallest
positive integern such thatxn ≡ 1 mod p. For example, ifp = 7 we have

{1, 2, 3, 4, 5, 6} = {36, 32, 31, 34, 35, 33}, (22)

which implies3 is a generator (and the index of 4 relative to 3 is 4, because4 ≡ 34 mod 7). Note5 is also a
generator of this group, so the generator need not be unique.
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Sketch of the proof.We constantly use the fact that(Z/pZ)∗ is a commutative group:xy = yx. Let x, y ∈
(Z/pZ)∗ with ordersm andn for the exercises below. The proof follows from the following:

Exercise 4.23.Assumem = m1m2, with m1, m2 relatively prime. Showxm1 has orderm2.

Exercise 4.24.Let ` be the least common multiple ofm andn (the smallest number divisible by bothm and
n). Prove there is an elementz of order`. Hint: use the previous exercise to reduce to the case whenm and
n are relatively prime by changingx. Look at appropriate powers ofxy, using(xy)r ≡ xryr mod p.

Exercise 4.25.By Lagrange’s Theorem, the order of anyx dividesp − 1 (the size of the group). From this
fact and the previous exercises, show there is somed such that the order of every element dividesd ≤ p− 1,
andthere is an element of orderd and no elements of larger order.

The proof is completed by showingd = p− 1. The previous exercises imply that every element satisfies
the equationxd − 1 ≡ 0 mod p. As every element in the group satisfies this, and there arep− 1 elements in
the group, we have a degreed polynomial withp− 1 roots. We claim this can only occur ifd = p− 1.

Exercise 4.26.Prove the above claim.Hint: show any polynomial (that is not identically zero) of degreed
has at mostd roots modulop by long division. Namely, ifa is a root off(x) ≡ 0 mod p, then the remainder
of f(x)

x−a
must be zero. We then havef(x) = (x− a)g(z), with g(x) of smaller degree thanf(x).

Therefore,d = p− 1 and there is some elementg of orderp− 1; thus,g’s powers generate the group.

Exercise 4.27.For p > 2, k > 1, what is the structure of(Z/pkZ)∗? If all the prime divisors ofm are greater
than 2, what is the structure of(Z/mZ)∗? For more on the structure of these groups, see any undergraduate
algebra textbook (for example, [Art, La2]).

5 RSA Revisited

We have developed sufficient machinery to prove why RSA works. Remember Bob chose two primesp andq,
and numbersd (for decrypt) ande (for encrypt) such thatde ≡ 1 mod φ(pq). He made publicN = pq ande
(and kept secret the two primes andd). Alice wants to send Bob a numberM (smaller thanN ). She encrypts
the message by sendingX ≡ M e mod N . Bob then decrypts the message by calculatingXd mod N , which
we claimed equalsM .

As X ≡ M e mod N , there is an integern such thatX = M e + nN . Thus,Xd = (M e + nN)d, and
the last term is clearly of the form(M e)d + n′N for somen′. We need only show(M e)d ≡ M mod N . As
ed ≡ 1 mod φ(N), there is anm such thated = 1 + mφ(N). Therefore

(M e)d = M ed = M1+mφ(N) = M ·Mmφ(N) = M · (Mφ(N))m. (23)

By Euler’s Theorem (Theorem 4.18),Mφ(N) ≡ 1 mod N , which completes the proof.
Why is RSA secure? Assume a third person (say Charlie) intercepts the encrypted messageX. He knows

X,N ande, and wants to recoverM . Knowingd such thatde ≡ 1 mod φ(N) makes decrypting the message
trivial: one need only computeXd mod N . Thus, Charlie is trying to solve the equationed ≡ 1 mod φ(N);
fortunately for Alice and Bob this equation has two unknowns,d andφ(N)! Right now, there is no known
fast way to determineφ(N). Charlie can of course factorN ; once he has the factors, he knowsφ(N) and can
find d; however, the fastest factorization algorithms make 400 digit numbers unaccessible (for now).

This should be compared to primality testing, which was only recently shown to be fast ([AgKaSa]).
Previous deterministic algorithms to test whether or not a number is prime were known to be fast only if
certain (expected) conjectures are true. It was an immense achievement showing that there is a deterministic,
efficient algorithm. The paper is very accessible, and worth the read.
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Remark 5.1. Our simple example involved computing a sixty-six digit number, and this was for a smallN
(N = 9797). Using binary expansions to exponentiate, as we need only transmit our message moduloN , we
never need to compute anything larger than the product of two four digit numbers.

Remark 5.2. See [Bon] for a summary of attempts to break RSA. Certain products of two primes are denoted
RSA challenge numbers, and the public is invited to factor them. With the advent of parallel processing,
many numbers have succumbed to factorization. See http://www.rsasecurity.com/rsalabs/node.asp?id=2092
for more details.

Exercise 5.3 (Security Concerns).In the system described, there is no way for Bob to verify that the message
came from Alice! Design a system where Alice makes some information public (and keeps some secret) so
that Bob can verify that Alice sent the message.

Exercise 5.4.Determiningφ(N) is equivalent to factoringN ; there is no computational shortcut to factoring.
Clearly, if one knowsN , one knowsφ(N). If one knowsφ(N) andN , one can recover the primesp andq.
Show that ifK = N + 1 − φ(N), then the two prime factors ofN are (K ±

√
K2 − 4N)/2, and these

numbers are in fact integers.

6 Eisenstein’s Proof of Quadratic Reciprocity

We conclude this introduction to basic number theory and group theory by giving a proof of quadratic reci-
procity (we follow the beautiful exposition in [LP] of Eisenstein’s proof). In §2.4, we described Newton’s
Method to find square-roots of real numbers. Now, we turn our attention to a finite group analogue: for a
primep, givena 6= 0, when isx2 ≡ a mod p solvable? For example, ifp = 5, then(Z/pZ)∗ = {1, 2, 3, 4}.
Squaring these numbers gives{1, 4, 4, 1} = {1, 4}. Thus, there are two solutions ifa ∈ {1, 4} and no
solutions ifa ∈ {2, 3}. The problem of whether or not a given number is a square is solvable: we can sim-
ply enumerate the group(Z/pZ)∗, square each element, and see ifa is a square. This takes aboutp steps;
quadratic reciprocity will take aboutlog p steps. For applications, see §??.

6.1 Legendre Symbol

We introduce notation. From now on,p andq will always be distinct odd primes.

Definition 6.1 (Legendre Symbol
( ·

p

)
). The Legendre Symbol

(
a
p

)
is

(
a

p

)
=

{ 1 if a is a non-zero square modp
0 if a ≡ 0 mod p

−1 otherwise
(24)

The Legendre symbol is a function onFp = Z/pZ. We can extend the Legendre symbol to all integers. We
only need to knowa mod p, and we define

(
a
p

)
=

(
a mod p

p

)
.

Notea is a square modp if there exists anx ∈ {0, 1, . . . , p− 1} such thata ≡ x2 mod p.

Definition 6.2 (Quadratic Residue / Non-residue).For a 6≡ 0, if x2 ≡ a mod p is solvable (not solvable)
we saya is a quadratic residue (non-residue).

Exercise 6.3.Show the Legendre symbol is multiplicative:
(

ab
p

)
=

(
a
p

)(
b
p

)
.
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Exercise 6.4 (Euler’s Criterion).
(

a
p

)
= a

p−1
2 mod p for oddp. Hint: if (a, p) = 1, a

p−1
2 squared isap−1 ≡ 1,

soa
p−1
2 ≡ ±1 mod p.

Exercise 6.5.Show
(−1

p

)
= (−1)

p−1
2 and

(
2
p

)
= (−1)

p2−1
8 .

Lemma 6.6. For p an odd prime, half of the non-zero numbers in(Z/pZ)∗ are non-zero squares, half are not.

Proof. As p is odd, p−1
2
∈ N. Consider the numbers12, 22, . . . , (p−1

2
)2. Assume two numbersa andb are

equivalent modp. Thena2 ≡ b2 mod p, so (a − b)(a + b) ≡ 0 mod p. Thus, eithera ≡ b mod p or
a ≡ −b mod p (in other words,a ≡ p− b). For1 ≤ a, b ≤ p−1

2
, we cannot havea ≡ p− b mod p, implying

the p−1
2

values above are distinct. As(p − r)2 ≡ r2 mod p, the above list is all of the non-zero squares mod
p. Thus, half the non-zero numbers are non-zero squares, half are non-squares.

Remark 6.7. By Theorem 4.22,(Z/pZ)∗ is a cyclic group with generatorg. Using the group structure,
one can prove the above lemma directly: once one shows there is at least one non-residue, theg2k are the
quadratic residues and theg2k+1 are the non-residues.

Exercise 6.8.Show for anya 6≡ 0 mod p that

p−1∑
t=0

(
t

p

)
=

p−1∑
t=0

(
at + b

p

)
= 0. (25)

Initially the Legendre symbol is defined only when the bottom is prime. We now extend the definition.

Let n = p1 · p2 · · · pt be the product oft distinct odd primes. Then
(

a
n

)
=

(
a
p1

) (
a
p2

)
· · ·

(
a
pt

)
; this is the

Jacobi symbol, and has many of the same properties as the Legendre symbol. We will study only the Legendre
symbol (see [IR] for more on the Jacobi symbol). Note the Jacobi symbol doesnot say that ifa is a square (a
quadratic residue) modn, thena is a square modpi for each prime divisor.

The main result (which allows us to calculate the Legendre symbol quickly and efficiently) is the cele-
brated Law of Quadratic Reciprocity:

Theorem 6.9 ((Generalized) Law of Quadratic Reciprocity).For m, n odd and relatively prime,
(

m
n

) (
n
m

)
=

(−1)
m−1

2
n−1

2 .

Gauss gave eight proofs of this deep result (whenm andn are prime). If eitherp or q are equivalent to
1 mod 4, then one has

(
q
p

)
=

(
p
q

)
, ie, p is a square root moduloq if and only if q is a square root modulop.

We content ourselves with proving the case withm,n prime.

Exercise 6.10.Using the (Generalized) Law of Quadratic Reciprocity, Exercise 6.5 and the Euclidean al-
gorithm, show one can determine ifa is a square modulom in logarithmic time (ie, the number of steps
is a universal multiple oflog m). This incredible efficiency is just one of many important properties of the
Legendre and Jacobi symbols.

6.2 Preliminaries

Our goal is to prove

Theorem 6.11 (Quadratic Reciprocity).Letp andq be distinct odd primes. Then(
q

p

) (
p

q

)
= (−1)

p−1
2

q−1
2 . (26)
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As p andq are distinct, odd primes, both
(

q
p

)
and

(
p
q

)
are±1. The difficulty is figuring out which signs

are correct, and how the two signs are related. We use Euler’s Criterion (Exercise 6.4).

The idea behind Eisenstein’s proof is as follows:
(

q
p

) (
p
q

)
is −1 to a power. Further, we only need to

determine the power modulo2. Eisenstein shows many expressions are equivalent, modulo2, to this power.
Eventually, we arrive at an expression which is trivial to calculate modulo 2.

As p andq are distinct primes, the Euclidean algorithm implies thatq is invertible modulop, andp is
invertible moduloq.

6.3 First Stage

Consider all even multiples ofq by anya ≤ p− 1: {2q, 4q, 6q, . . . , (p− 1)q}. Denote a generic multiple by
aq. Recall[x] is the greatest integer less than or equal tox. By integer division,

aq =

[
aq

p

]
p + ra, 0 ≤ ra < p− 1. (27)

Thus,ra is the least non-negative number equivalent toaq mod p.
The numbers(−1)rara are equivalent to even numbers in{0, . . . , p − 1}. If ra is even this is clear; ifra

is odd, then(−1)rara ≡ p− ra mod p, and asp andra are odd, this is even.

Lemma 6.12. If (−1)rara ≡ (−1)rbrb, thena = b.

Proof. We quickly get±ra ≡ rb mod p. If the plus sign holds, thenra ≡ rb mod p impliesqa ≡ qb mod p.
As q is invertible modp, we geta ≡ b mod p, which yieldsa = b (asa andb are even integers between0 and
p− 1).

If the minus sign holds, thenra + rb ≡ 0 mod p, or qa + qb ≡ 0 mod p. Multiplying by q−1 mod p now
givesa + b ≡ 0 mod p. As a andb are even integers between0 andp − 1, 0 < a + b ≤ 2(p − 1). The only
integer strictly between0 and2p which is equivalent to0 mod p is p; however,p is odd anda + b is even.
Thus, the minus sign cannot hold, and the elements are all distinct.

Lemma 6.13. (
q

p

)
= (−1)

∑
a evenra . (28)

Proof. For each evena, qa ≡ ra mod p. Thus, modp:∏
a even

qa ≡
∏

a even

ra

q
p−1
2

∏
a even

a ≡
∏

a even

ra(
q

p

) ∏
a even

a ≡
∏

a even

ra, (29)

where the above follows from the fact that we havep−1
2

choices for an evena (to get q
p−1
2 ) and Euler’s

Criterion. Asa ranges over all even numbers from0 to p−1, so too do the distinct numbers(−1)rara mod p.
Thus, modp, ∏

a even

a ≡
∏

a even

(−1)rara∏
a even

a = (−1)
∑

a evenra
∏

a even

ra. (30)
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Combining gives (
q

p

)
(−1)

∑
a evenra

∏
a even

ra ≡
∏

a even

ra. (31)

As eachra is invertible modp, so is the product. Thus,(
q

p

)
(−1)

∑
a evenra ≡ 1 modp. (32)

As
(

q
p

)
= ±1, the lemma follows by multiplying both sides by

(
q
p

)
.

Therefore, it is sufficient to determine
∑

a evenra mod 2. We make one last simplification. By integer
division, we have ∑

a even

qa =
∑

a even

([
qa

p

]
p + ra

)
=

∑
a even

[
qa

p

]
p +

∑
a even

ra. (33)

As we are summing over evena, the left hand side above is even. Thus, the right hand side is even, so∑
a even

[
qa

p

]
p ≡

∑
a even

ra mod2

p
∑

a even

[
qa

p

]
≡

∑
a even

ra mod2

∑
a even

[
qa

p

]
≡

∑
a even

ra mod2, (34)

where the last line follows from the fact thatp is odd, so mod2, dropping the factor ofp from the left hand side

doesn’t change the parity. We have reduced the proof of quadratic reciprocity to calculating
∑

a even

[
qa
p

]
.

6.4 Second Stage

Consider the rectangle with vertices atA = (0, 0), B = (p, 0), C = (p, q) andD = (0, q). The upward
sloping diagonal is given by the equationy = q

p
x. As p andq are distinct odd primes, there are no pairs of

integers(x, y) on the lineAC.

We now interpret
∑

a even

[
qa
p

]
. Consider the vertical line withx-coordinatea. Then

[
qa
p

]
gives the num-

ber of pairs(x, y) with x-coordinate equal toa andy-coordinate an integer at most
[

qa
p

]
. Thus,

∑
a even

[
qa
p

]
is the number of integer pairs (in the rectangleABCD) with evenx-coordinate that are below the lineAC.

We add some non-integer points:E = (p
2
, 0), F = (p

2
, q

2
), G = (0, q

2
) andH = (p

2
, q). We prove

Lemma 6.14. The number of integer pairs under the lineAC (inside the rectangle) with evenx-coordinate
is congruent mod2 to the number of integer pairs under the lineAF .

Let a > p
2

be an even integer. The integer pairs on the linex = a are(a, 0), (a, 1), . . . , (a, q). There are
q + 1 pairs. Asq is odd, there are an even number of integer pairs on the linex = a. As there are no integer
pairs on the lineAC, for a fixeda > p

2
, mod2 there are the same number of integer pairsaboveAC as there

arebelowAC.
Further, the number of integer pairsaboveAC is equivalent mod2 to the number of integer pairs below

AF on the linex = p− a. To see this, consider the map which takes(x, y) to (p− x, q − y). As a > p
2

and

16



is even,p − a < p
2

and is odd. Further, every odda < p
2

is hit (givenaodd < p
2
, start with the even number

p− aodd > p
2
).

Let #FCHeven be the number of integer pairs(x, y) in triangleFCH with x even.
Let #EBCH be the number of integer pairs in the rectangleEBCH; #EBCH ≡ 0 mod 2 (we’ve

shown each vertical line has an even number of pairs).
Let #AFEeven be the number of integer pairs(x, y) in the triangleAFE with x even, and let#AFE be

the number of integer pairs in the triangleAFE.

We need to calculate
∑

a even

[
qa
p

]
mod 2:

∑
a even

[
qa

p

]
= #AFEeven + #EBCH −#FCH

≡ #AFEeven + #EBCH + #FCH

= #AFEeven + #FCH + #EBCH

= #AFE + #EBCH

= #AFE. (35)

Therefore,µ =
∑

a even

[
qa
p

]
≡ #AFE mod 2, and we have(

q

p

)
= (−1)µ. (36)

Reversing the rolls ofp andq, we see that (
p

q

)
= (−1)ν , (37)

whereν ≡ #AFG mod 2, with #AFG equal to the number of integer pairs in the triangleAFG.
Now, µ + ν = #AFE + #AFG, which is the number of integer pairs in the rectangleAEFG. There

are p−1
2

choices forx and q−1
2

choices fory, giving p−1
2

q−1
2

pairs of integers in the rectangleAEFG. Thus,(
q

p

) (
p

q

)
= (−1)µ+ν

= (−1)#AFE+#AFG

= (−1)
p−1
2

q−1
2 , (38)

which completes the proof of Quadratic Reciprocity.2
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