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Abstract

In these notes we review basic number theory and group theory, culminating in applications to cryp-
tography and quadratic reciprocity. A good introduction to group theory is [La2]; for congruences and
guadratic reciprocity see [Dal, IR]. The guiding principle behind much of this chapter (indeed, much of
number theory) is the search for efficient algorithms. Just being able to write down an expression does not
mean we can evaluate it in a reasonable amount of time. Thus, while it is often easy to prove a solution
exists, doing the computations (as written) are sometimes impractical.
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1 Cryptography

Cryptography is the science of encoding information so that only certain specified people can decode it. We
describe some common systems. To prove many of the properties of these crypto-systems will lead us to
some of the basic concepts and theorems of algebra and group theory.

Consider the following two password systems: in the first, one chooses two large primes (say 200 digits
each,p andg). Let N = pq, and display the 400 digit numbé¥ for everyone to see; the password is any
divisor of V. For the second, choose a random 5000 digit number. Which is more secure? While it is harder
to correctly guess 5000 digits than 200, there is a danger in the second system: the computer needs to stot
the password. In the first, there is no code-book to steal. The computer doesn’t need o dmgawt only
needs to know how to divide, and it will know the password when it hears it!

There are so many primes that it is not practical to try all 200 digit prime numbers. The Prime Number
Theorem (Theorem??) states that there are approximat%%'; primes smaller tham; for x = 102, this
leads to an impractically large number of numbers to check. What we have is a process which is easy in one
direction (multiplyingp andg), but hard in the reverse (knowing, right now there is no "fast" algorithm to
find p andq).

It is trivial to write an algorithm which is guaranteed to factér simply test/NV by all numbers (or all
primes) at most/N. While this will surely work, this algorithm is so inefficient that it is practically useless.

Exercise 1.1.There are approximately0®® elementary objects in the universe (photons, quarks, et cetera).
Assume each such object is a powerful supercomputer, capable of ché6Kingumbers a second. How
many years would it take to check all numbers (or all primes) less t/iE3°? What if each object in the
universe was a universe in itself, with®® supercomputers: how many years would it take now?

One of the most famous cryptography examples is RSA (see [RSA]). Consider two people, say Alice and
Bob, who want to communicate in secret. Instead of sending words, they can send numbers that represen
words. We can represent the letteby 01, b by 02, and so on (and we can have numbers represent capital
letters, spaces, punctuation marks, and so on). For example, we write 030120 for the word "cat". It is
sufficient to find a secure way for Alice to transmit numbers to Bob. Let us say a message is a Mimiber
a fixed number of digits.

Bob chooses two large primgsandg, and two numberg ande such thaip — 1)(¢ — 1) dividesed — 1;
we explain these choices later. Bob then makes publicly available the following informatienpq ande,
but keeps secret ¢ andd. It turns out that this allows Alice to send messages to Bob that only Bob can easily
decipher. If Alice wants to send the numher to Bob, Alice first calculated/¢, and then sends Bob the
remainder after dividing byv; call this numberX. Bob then calculateX ¢, whose remainder upon dividing
by N is the original messag®/! The proof of this uses modulo (or clock) arithmetic and basic group theory,
which we describe below. Afterwards, we return and prove the claim.

Exercise 1.2.Letp = 101, ¢ = 97. Letd = 2807 ande = 23. Show that this method successfully sends "hi"
(0809) to Bob. Note that0809)% is a sixty-six digit number!

Exercise 1.3.Use a quadratic polynomialz? + bz + ¢ to design a security system satisfying the following
constraints:

1. the password is the triple, b, ¢);
2. there are 10 people: any three of them can providé, ¢), but no two of them can.

Generalize the construction: consider a polynomial of degvesuch that some people "know more" than
others (for example, one person can figure out the password with anyone else, another person just needs twi
people, and so on).



2 Efficient Algorithms

For computational purposes, often having an algorithm to compute a quantity is not enough; we need an
algorithm which will computequickly. For example, in Exercise 1.2 we needed to compute a sixty-six digit
number! Below we study three standard problems, and show how to either rearrange the operations more
efficiently, or give a more efficient algorithm than the obvious candidate.

2.1 Exponentiation

Considerz™. The obvious way to evaluate involves— 1 multiplications. By writingn in base two, we can
evaluater™ in at most2 log, n steps.
We are used to writing numbers in base 10, say

T = apl10™ + Q10"+ -+ 10" +ag, a; €{1,2,3,4,5,6,7,8,9}. (1)
Base two is similar, except each digit is now either 0 or 1.4 e the largest integer such ti?4t< x. Then

r = b2 4 b 2" 0124 by, b € {0,1}. (2)

It costsk multiplications to evaluate?, i < k. How? Consider, = 2%, y1 = yo - yo = 22 - 22 = 22,

Y2 =Y1 Y1 = $22, e Y = yk’l-yk’1 = ka. Then

xn — xbk2k+bk,12k_1+---+b12+b0
— xbkzk . Ibk—12k71 . l,b12 . l,bo
b 1\ bk—1
k k—1 b b
_ (;ﬁ) .<x2 > (@) ()
. bk bkfl b1 b()
= Yy "Yp—1 Y1 Yo - (3)

As eachb;, € {0,1}, we have at mosk + 1 multiplications above (ih; = 1 we have the terny, in the
product, ifb; = 0 we don’t). Thus, it costs multiplications to evaluate the?*’ (i < k), and at most anothér
multiplications to finish calculating™. As k£ < log, n, we see that™ can be determined in at mdsiog, n

steps. Note, however, that we do need more storage space for this method, as we need to store the value
yi = 2%, < logy n.

Exercise 2.1.Show that it is possible to calculaté storing only two nhumbers at any given time (and knowing
the base two expansion).

Exercise 2.2.Instead of expanding in base two, expand in base three. How many calculations are needed
to evaluater™ this way? Why is it preferable to expand in base two rather than any other base?

Exercise 2.3.A better measure of computational complexity is not to treat all multiplications and additions
equally, but rather to count the number of digit operations. For examplg7inx 31 there are 6 multiplica-

tions. We then must add 2 three-digit numbers, which involves at most 4 additions (if we need to carry). How
many digit operations are required to compufe?

2.2 Polynomial Evaluation (Horner’s Algorithm)

Let f(x) = apa™ + a,_12" ' + -+ + a1x + ag. The obvious way to evaluatg(z) is to calculater™ and
multiply by a,, (n multiplications), calculate™ ! and multiply bya,,_; (n — 1 multiplications) and add, et

cetera. There are additions andy_;_, & multiplications, for a total of. + n(ntl) operations. Thus, the

2
standard method leads to abé?tcomputations.



Exercise 2.4.Prove thaty;_ k = ") Hint: proceed by induction (see Appendi®). In general,

> h_o k* = pat1(n), wherep,,, is a polynomial of degreé + 1 with leading term%l.

Exercise 2.5.How many operations are required if we use our results on exponentiation?

Consider the following grouping to evaluatér) (Horner’s Algorithm):
(((apx 4+ ap_1)r + an_2)x+ -+ ay) x + ao. (4)

For example,
7ot +40® — 322 — e+ 2= ((To +4)z —3)z — 1)z + 2. 5)

Evaluating the long way takds steps; Horner’s Algorithm takessteps.

Exercise 2.6.Prove Horner’s Algorithm takes at moat steps to evaluate,z” + - - - + ao.

2.3 Euclidean Algorithm

Definition 2.7 (Greatest Common Divisor).Let m,n € N. The greatest common divisor of and n,
denoted bycd(m,n) or (m,n), is the largest integer which divides bathandn.

Definition 2.8 (Relatively Prime, Coprime). If for integersm andn, ged(m,n) = 1, we saym andn are
relatively prime (or coprime).

The Euclidean Algorithm is an efficient way to determine the greatest common divisanofy. Without
loss of generality, assunie< z < y. The obvious way to determingd(x, y) is to dividez andy by all
positive integers up te. This takes at mostz steps; we show a more efficient way, taking at most about
2log, = steps.

Let [z] denote theyreatest integerless than or equal te. We write

y = [%}-x—i—rl, 0<r <ux. (6)

Exercise 2.9.Prove thatr; € {0,1,...,2 — 1}.
Exercise 2.10.Proveged(z, y) = ged(ry, x).

We proceed in this manner untjl equals zero or one. As each execution resulis i r;_;, we proceed
at mostr times (although later we prove we need to apply these steps at mostdbgui times).

]
r = — |4y, 0<ry<ry
71 ]
]
rn = 7“_ “T9 + T3, 0§T3<T2
L2 ]
o]
2= | r3 1y, 01y <oy
L3
-Tk—2
Th_o9 = _7’ Tl +1E, 0< 1y < TRy (7)
| Tk—1

Exercise 2.11.Prove that ifr;, = 0, thenged(z,y) = r¢—1, While ifr, = 1, thenged(z, y) = 1.
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We now analyze how largecan be. The key observation is the following:

Lemma 2.12. Consider three adjacent remainders in the expansign;, r; andr;; (wherey = r_; and

x = rg). Thenged(r;, r;i_1) = ged(rig1, i), andryy < ”;1-

Proof. We have the following relation:

Ti—1
i1 — |: ; :| ‘Tt i1, Ogri+1 <7T;. (8)
i

Ti

If r; < =51, then as;; < r;, we immediately conclude that,, < =*. If r; > =1, then we note that

2

Tiv1 = Ti—1 — {72‘—1} < Ty (9)

T

Ti

]

Our assumptions or}_; andr; imply that [’“T;l} = 1. Thusr;y; < =5+,
We count how often we apply these steps. Going ftety) = (ro,7_1) to (1, 79) costs one application.

Every two applications leads to the first entry in the last pair being at most half of the second entry of the

first pair. Thus, ifk is the largest integer such th2Zlt < x, we see we apply Euclid’s Algorithm at most

1+ 2k <1+ 2log, x times. Each application requires one integer division, where the remainder is the input

for the next step. We have proven

Lemma 2.13. Euclid’s Algorithm requires at most+ 2 log,, = divisions to find the greatest common divisor
of x andy.

Euclid’s Algorithm provides more information thapd(x,y). Let us assume that = ged(z,y). Thus,
the last equation before Euclid’s Algorithm terminated was

Ti—
Ti—g = |: 2:| i1, 0<r; <rilq. (10)
Ti-1

Therefore, we can find integeds_; andb;_» such that
TP = ai_1Ti—1 + bi_aTi_o. (11)

We have writtenr; as a linear combination of,_, andr;_;. Looking at the second to last application of
Euclid’s algorithm, we find that there are integefs, andd_, such that

Ticl = Q_oTi—o 4+ bi_qTi_3. (12)
Substituting for-;_; in the expansion of; yields that there are integets , andb;_3 such that
Ti = ;2T + bi_37i_3. (13)
Continuing by induction, and recalling = ged(z, y) yields

Lemma 2.14. There exist integers andb such thaiged(z, y) = ax+ by. Moreover, Euclid’s Algorithm gives
a constructiveprocedure to findi andb.

Thus, not only does Euclid’s algorithm shavandb exists, it gives an efficient way to find them.

Exercise 2.15.Find ¢ andb such thata - 244 + b - 313 = ged (244, 313).
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Exercise 2.16.Add details to complete an alternate, non-constructive proof of the existeacanaolfb with
ax + by = ged(z, y):

1. Letd be the smallest positive value attained dy+ by as we varya,b € Z. Such ad exists. Say
d = ax + By.

2. Showged(z, y)|d.
3. Lete = Az + By > 0. Thend|e. Therefore, for any choice of, B € Z, d|(Ax + By).

4. Consider(a,b) = (1,0) or (0,1), yieldingd|z and d|y. Therefored < gecd(z,y). As we've shown
ged(zx, y)|d, this completes the proof.

Note this is a non-constructive proof. By minimizing+ by, we obtainged(z, y), but we have no idea how
many steps are required. Prove that a solution will be found either among (afrswitha € {1,...,y—1}
and—be{l,...,x—1},or—ac{l,...,y—1}andbe {1,...,x — 1}.

Exercise 2.17.How many steps are required to find the greatest common divisar, of. , x5 ?

2.4 Exercises

We give some examples and exercises on efficient algorithms / efficient ways to arrange computations. The
first assumes some familiarity with calculus, the second with basic combinatorics.

Newton’s method: Newton’s Method is an algorithm to approximate solutionsfta) = 0 for f a
differentiable function oR. Start withz, such thatf(zq) is small (we callz, the initial guess). Draw the
tangent line to the graph gfatz,, which is given by the equation

y — f(xo) = f'(x0) - (x — x0). (14)

Let x; be thex-intercept of the tangent line; is the next guess for the root. Simple algebra gives

(o)
T = Xg— . 15
LT ) )
We now iterate, and apply the above procedure,tambtaining
f(z1)
Ty = X1 — . 16
2 ' ) (16)
Ifwe let g(z) =z — ]f,((?), we notice we have the sequence
Zo, g([EO), g(g(xo)), (17)

This sequence will, we hope, converge to the root, at least,folose enough to the root and féigood. How
closex, has to be is a delicate matter. If there are several roofs which root the sequence converges to
depends crucially on the initial valug and the functiory. In fact its behavior is what is known technically
aschaotic. Informally, we can say that we have chaos when tiny changes in the initial value give us very
palpable changes in the output (see [Dav]).

Exercise 2.18.Let f(z) = 2* — a, for somea > 0. Show Newton’s method convergesta, and discuss
the rate of convergence (ie,af, is accurate tan digits, approximately how accurate:is ,,? (For example,
look atar = 3 andxy = 2.) Similarly, investigate/a.

6



Exercise 2.19.Modify Newton’s Method to find maxima / minima of functions.

Exercise 2.20.Let f(z) be a degree: polynomial with complex coefficients. By the Fundamental Theorem

of Algebra, there are: (not necessarily distinct) roots. Assume thereqardistinct roots. Assigmn colors,

one to each root. Given a point € C, we colorz with the color of the root that: approaches under
Newton’s method. Write a computer program to color such sets for some simple polynomials, for example for
" —1=0forn=2,3o0r4.

Combinatorics and Partitions: Assume we have 10 identical cookies and 5 distinct people. How many
different ways can we divide the cookies among the people, such that all 10 cookies are distributed? Since
the cookies are identical, we cannot tell which cookies a person receives; we can only tell how many. We
could enumerate all possibilities (there are 5 ways to have one person receive 10 cookies, 20 ways to have on
person receive 9 and another receive 1, and so on). While in principle we can solve the problem, in practice
this computation becomes intractable, especially as the number of cookies and people increase.

The number of ways to divide the cookieg15"° '), where(") = #lr), (the number of ways to choose
r objects fromn objects when order does not matter). In general, if ther€areokies and® people,

Lemma 2.21.The number of distinct ways to divideidentical cookies among different people i C;’_Dl’l) .

Proof. ConsiderC' + P — 1 cookies in a line, and number theimto C' + P — 1. ChooseP — 1 cookies.

There are(C;f’l’l) ways to do this. This divides the cookies intosets: all the cookies up to the first chosen
(which gives the number of cookies the first person receives), all the cookies between the first chosen and the
second chosen (which gives the number of cookies the second person receives), and so on. ThiS divides
cookies among people. Note different sets &f — 1 cookies correspond to different partitions@icookies
amongP people, and every such partition can be associated to chofsing cookies as above. ]

Remark 2.22. In the above proof, we do not carhich cookies a person receives. We introduced the
numbers for convenience: now cookies 1 througfsay) are given to person 1, cookigs+ 1 throughi,
(say) are given to person 2, and so on.

For example, if we have 10 cookies and 5 people, say we choose cookies 3,4,7, and 13 of the 10+5-1

T DORRO0OR0O00OR0

This corresponds to person 1 receiving 2 cookies, person 2 receiving 0, person 3 receiving 2, person 4
receiving 5, and person 5 receiving 1.

The above is an example of a partition problem: we are solving z, + 23 + x4 + x5 = 10, wherex; is
the number of cookies persameceives. We may interpret Lemma 2.21 as the number of ways to divide an

integer V' into k non-negative integers {8, ).

N ot k—1 N+1l+k—1
Z( k—1 )Z( k1 ) (18)

n=0

Exercise 2.23.Show

One can interpret the above as dividingcookies among people, where we do not assume all cookies are
distributed.

Later (see Chaptée??) we describe other partition problems, such as representing a number as a sum of
primes or integer powers. For example, the famous Goldbach problem says any even number greater than
is the sum of two primes (known to be true for integers up td0'¢ [Ol]). While to date this problem has
resisted solution, we have good heuristics which predict that, not only does a solution exist, but how many
solutions there are. Computer searches have verified these predictions fav lafgize 101°.
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Exercise 2.24 (Crude prediction).By the Prime Number Theorem, there %l%géﬁ primes less thawv. If we
assume all numbers < N are prime with the same likelihood (a crude assumption), predict how many ways
there are to write/V as a sum of two primes.

Exercise 2.25.In partition problems, often there are requirements such as everyone receives at least one
cookie. How many ways are there to writeas a sum of: non-negative integers? How many solutions of
1 + 9 + x3 = 2004 are there if eaclr; is an integer andc; > 5, x5, > 7, andxz > 1000?

3 Clock Arithmetic: Arithmetic Modulo n

Let Z denote the set of integers, and foe N defineZ/nZ = {0,1,2,...,n — 1}. We often read’/nZ as
theintegers modulon.

Definition 3.1 (Congruence).x = y mod n meansr — y is an integer multiple ofi. Equivalentlyx andy
have the same remainder when dividedhby

When there is no danger of confusion, we often drop the suffix maediting insteadr = y.
Lemma 3.2 (Basic Properties of congruenceskor a fixedn € N anda, d’, b, b’ integers we have

1. a = bmod nifand only ifb = a mod n.

2. a = bmod n andb = ¢ mod n impliesa = ¢ mod n.

3. a = a modn andb = ¥ mod n, thenab = o't/ mod n. In particular a = o’ mod n impliesab =
a’b mod n for all b.

Exercise 3.3.Prove the above relations. & = cb mod m, musta = ¢ mod m?

Forz,y € Z/nZ, we definer + y to be the unique numbere Z/nZ such that|(z + y — z). In other
words, z is the unique number ifi/nZ such that: +y = z mod n. One can show th& /nZ is a finite group
under addition; in fact, it is a finite ring. (See 84.1 for the definition of a group).

Exercise 3.4 (Arithmetic Modulo ). Define multiplication ofc, y € Z/nZ by x - y is the unique: € Z/nZ
such thatry = z mod n. We often writery for x - y. Prove that this multiplication is well defined, and that
an element: has a multiplicative inverse if and only(if:, ») = 1. Conclude that if every non-zero element
of Z/nZ has a multiplicative inverse, themmust be primeHint: use the Euclidean Algorithm to find the
inverses.

Arithmetic modulon is often called clock arithmetic. § = 12, we haveZ/12Z. If it is 10 o’clock now,
in 5 hours it is 3 o’clock, becaus® + 5 = 15 = 3 mod 12.

Definition 3.5 (Least Common Multiple). Letm,n € N. The least common multiple of andn, denoted
by lcm(m, n), is the smallest positive integer divisible by batrandn.

Exercise 3.6.1f a = b mod n anda = b mod m, thena = b mod lcm(m, n).

Let us solve irZ the equatior2x + 1 = 2y. The left hand side is odd, the right hand side is even. Thus,
there are no integer solutions. What we did is really arithmetic thadarithmetic inZ/27Z.

Consider nowr? + y2 + 22 = 8n + 7. This never has a solution. Let us study this equation mogulo
The right hand side i modulo8. What are the squares modwd 12 = 1,22 = 4,3* = 1, 4% = 0, and then
the pattern repeats (as mod@lok and(8 — k) have the same square). We see there is no way to add three
squares and gé&t Thus, there are no solutions6 + y> + 2% = 8n + 7.
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Remark 3.7 (Advanced: Hasse Principle)In general, when searching for integer solutions one often tries

to solve the equation modulo different primes. If there is no solution for some prime, then there are no integer
solutions. Unfortunately, the converse is not true. For example, Selmer sisawed 4y® + 52° = 0 is
solvable modulg for all p, but there are no rational solutions. We discuss this in more detail in Ch&®er

Exercise 3.8 (Divisibility Rules). Prove a number is divisible by 3 (or 9) if and only if the sum of its digits
are divisible by 3 (or 9). Prove a number is divisible by 11 if and only if the alternating sum of its digits is
divisible by 11 (for example, 341 yields 3-4+1). Find a rule for divisibility by 7.

Exercise 3.9 (Chinese Remainder Theorem)letm, n be relatively prime positive integers. Prove that for
anya,b € Z there exists a unigue mod mn such thatr = a mod m andz = b mod n. Generalize to
mi,...,mandaq,...,a.

4 Group Theory

We introduce enough group theory to prove our assertions about RSA. For more details, see [Art, La2].

4.1 Definition

Definition 4.1 (Group). A setG equipped with a map: x G — G denote by(x, y) — zy is a group if
1. (Identity)de € G s.t.Vg € G : eg = ge = g.

2. (Associativityfz,y, z € G : (zy)z = x(yz).
3. (InverseNVz € G,y € G s.t.xy = yxr = e.

4. (ClosurelVz,y € G: zy € G.

We have written the group multiplicativelfy, y) — zy; if we wrote (z, y) — = + y, we say the group is
written additively. We call~ a finite group if the sef7 is finite. If Vz,y € G, xy = yx, we say the group is
abelian or commutative.

Exercise 4.2.ShowZ /nZ is an (additive) group.

Exercise 4.3.Consider the group oV x N matrices with real entries and non-zero determinant. Prove this
is a group under matrix multiplication, and show this group is not commutatitve¥ 1. Is it a group under
matrix addition?

Exercise 4.4.Let (Z/pZ)* = {1,2,...,p — 1} wherea - b is defined to bew mod p. Prove this is a
(multiplicative) group ifp is prime. More generally, |67 /mZ)* be the subset & /mZ of numbers relatively
prime tom. Show(Z/mZ)* is a (multiplicative) group.
Exercise 4.5 (Euler'sy-function (or totient function) ). Let¢(n) denote the number of element§#ynZ)*.
Prove that forp prime, ¢(p) = p — 1 and ¢(p*) = p* — p*~L. If p and ¢ are distinct primes, prove
d(pd*) = ¢(p?)é(q"). If n andm are relatively prime, prove thab(nm) = ¢(n)¢(m). Noteg(n) is
the size of the groufZ/nZ)*.
Definition 4.6 (Subgroup). A subsetd of GG is a subgroup ifH is also a group.

Our definitions imply any group’ has at least two subgroups, itself and the emptyset

Exercise 4.7.Prove the following equivalent definition: A subgétof GG is a subgroup if for allr,y € H,
-1
xy € H.

Exercise 4.8.Let GG be an additive subgroup &. Prove there exists am € N such that every element 6f
is an integral multiple of..



4.2 Lagrange’s theorem
We prove some basic propertiesfivfite groups (groups with finitely many elements).

Definition 4.9 (order). If G is a finite group, the number of elementsbfs the order ofG and is denoted
by |G|. If z € G, the order ofr in G, ord(z), is the least positive power such that:™ = e, wheree € G is
the identity of the group.

Exercise 4.10.Prove that, in a finite group, every element has finite orbiant: use the pigeon-hole principle
(see 7).

Theorem 4.11 (Lagrange).Let H be a subgroup of a finite grou@@. Then|H| divides|G|. In particular,
taking H to be the subgroup generated by G, ord(z) | ord(G).

We first prove two useful lemmas.
Theorem 4.12 (Cayley).Let H be a subgroup of7, and leth € H. ThenhH = H.

Proof. It suffices to showhH C H andH C hH. By closurehH C H. For the other direction, lét’ € H.
Thenhh='h' = I/; ash™'h/ € H, everyh/ € H is also inhH. O

Lemma 4.13. Let H be a subgroup of a grou@. Then for allg;, g; € G eitherg;H = ¢g;H or the two sets
are disjoint.

Proof. Assumeg, H N ¢;H is non-empty; we must show they are equal. ket g;hy = g;h, be in the
intersection. Multiplying on the right by, ' € H (which exists becaus# is a subgroup) giveg = g;hah; .
Sog;H = g;hohi'H. As hohi'H = H, we obtaing; H = g, H. O

Definition 4.14 (Coset).We call a subsejH of G a coset(actually, a left coset) off. In general,gH is not
a subgroup.

We now prove Lagrange’s Theorem.

Proof of Lagrange’s theorem\We claim
G=|JgH (19)

geG
Why is there equality? Ag € G andH C G, eachgH C G, hence their union is containedd@ Further, as
e € H, giveng € G, g € gH. Thus,G is a subset of the right side, proving equality.
By Cayley’s theorem, two cosets are either identical or disjoint. By choosing a subset of the cosets, we
show the union in (19) equals a union of disjoint cosets. There are only finitely many eleméhtéawe
go through ally in G, if the cosetyH equals one of the cosets already chosen, we do not include it; if it is
new, we do. Continuing this process, we obtain

k
¢ =JauH (20)
=1

for some finitek and all cosets are disjoint. ll = {e}, k is the number of elements of; in general,
however,k will be smaller. Each se§; H has|H| elements, and no two cosets share an element. Thus,
|G| = k|H|, proving| H| divides|G|. O

10



4.3 Fermat’s Little Theorem
Corollary 4.15 (Fermat's Little Theorem). For any primep, if gcd(a, p) = 1, thena?~! = 1 mod p.
Proof. As|(Z/pZ)*| = p — 1, the result follows from Lagrange’s Theorem. O

Exercise 4.16.0ne can reformulate Fermat’s Little Theorem as the statement thas iprime, for alla we
havep|a? — a. Give a proof for this formulation that does not use group theory.

Exercise 4.17.Prove that if for some, a"~! # 1 mod n thenn is composite.

Thus, Fermat'’s Little Theorem is a fast way to show certain numbers are composite (remember exponen-
tiation is fast!). Unfortunately, it is not the case thét! = 1 mod n impliesn is prime. Such composite
numbers are called Carmichael numbers (the first few are 561, 1105, and 1729). More generally, one has

Theorem 4.18 (Euler). If gcd(a,n) = 1, thena?™ = 1 mod n.

Proof. Let (a,n) = 1. By definition,¢(n) = |(Z/nZ)*|. By Lagrange’s Theorem the order ot (Z/nZ)*
divides$(n), or a®™ = 1 mod n. O

Remark 4.19. For our applications to RSA, we only need the case wheés the product of two primes.
In this case, consider the sét, ..., pq}. There arepg numbersg are multiples ofp, p are multiples ofy,
and one is a multiple of both andgq. Thus, the number of numbers{m, ..., pg} relatively prime topq is

pq —p — q + 1 (why?). Note this equals(p)¢(q) = (p — 1)(¢ — 1).

Exercise 4.20.Korselt [Kor] proved that a composite numberis a Carmichael number if and only:if is
square-free and if a primg|n, then(p — 1)|(n — 1). Prove that if these two conditions are met, theis a
Carmichael number.

Research Project 4.21 (Carmichael Numbers)lt is known (see [AGP]) that there are infinitely many
Carmichael numbers. One can investigate the spacings between adjacent Carmichael numbers. For example
choose a largeX, and look at all Carmichael numbers (X, 2X], sayc,...,c,.1. The average spacing
between these numbers is abéétn‘—x (they are spread out over an interval of sixg and there aren
differencesic, — cq, ..., ¢, 1 — ¢, HOw are these differences distributed?

Often, it is more natural to rescale differences and spacings so that the average spacing is 2%see §
The advantage of such a renormalization is the results are often scale invariant (ie, unitless quantities).

4.4  Structure of (Z/pZ)*

The multiplicative grougZ/p/Z)* for p prime has a rich structure which will simplify many presentations
later.

Theorem 4.22.For p prime, (Z/pZ)* is cyclic of orderp — 1. Thus, there is an elemente (Z/pZ)* such
that

(Z/ZDZ)>’< = {1727"’7p_27p_1} = {917927"'7gp_27gp_1}’ (21)

We sayg is agenerator of the group. For each there is a unique integére {1,...,p — 1} such that
r = ¢g* mod p. We sayk is theindex of x relative tog. For eachr € (Z/pZ)*, theorder of z is the smallest
positive integern such thatt™ = 1 mod p. For example, ifp = 7 we have

{1,2,3,4,5,6} = {3°3%3",3",3° 3%}, (22)

which implies3 is a generator (and the index of 4 relative to 3 is 4, becdause3* mod 7). Note5 is also a
generator of this group, so the generator need not be unique.

11



Sketch of the proofWe constantly use the fact thgZ/pZ)* is a commutative groupty = yx. Letz,y €
(Z/pZ)* with ordersm andn for the exercises below. The proof follows from the following:

Exercise 4.23.Assumen = mymsy, With my, m, relatively prime. Show™! has orderm..

Exercise 4.24.Let/ be the least common multiple @of andn (the smallest number divisible by bothand
n). Prove there is an elementof order /. Hint: use the previous exercise to reduce to the case whand
n are relatively prime by changing. Look at appropriate powers aofy, using(zy)” = z"y" mod p.

Exercise 4.25.By Lagrange’s Theorem, the order of anydividesp — 1 (the size of the group). From this
fact and the previous exercises, show there is sésuch that the order of every element divides p — 1,
andthere is an element of ord@rand no elements of larger order.

The proof is completed by showinh= p — 1. The previous exercises imply that every element satisfies
the equation: — 1 = 0 mod p. As every element in the group satisfies this, and therg are elements in
the group, we have a degrégolynomial withp — 1 roots. We claim this can only occurdf= p — 1.

Exercise 4.26.Prove the above claimHint: show any polynomial (that is not identically zero) of degiee
has at most/ roots modulg by long division. Namely, if is a root of f(x) = 0 mod p, then the remainder
of % must be zero. We then hayér) = (x — a)g(z), with g(z) of smaller degree thaifi(z).

Therefored = p — 1 and there is some elemenof orderp — 1; thus,g’s powers generate the groupl]

Exercise 4.27.For p > 2, k > 1, what s the structure dfZ/p*Z)*? If all the prime divisors ofn are greater
than 2, what is the structure 6% /mZ)*? For more on the structure of these groups, see any undergraduate
algebra textbook (for example, [Art, LaZ2]).

5 RSA Reuvisited

We have developed sufficient machinery to prove why RSA works. Remember Bob chose twoyaimles
and numberg (for decrypt) anc: (for encrypt) such thade = 1 mod ¢(pq). He made publidV = pq ande
(and kept secret the two primes ad#)d Alice wants to send Bob a numb&f (smaller thanV). She encrypts
the message by sendifij= M ¢ mod N. Bob then decrypts the message by calculafiffgnod N, which
we claimed equalg/.

As X = M¢°mod N, there is an integer such thatX = M¢ + nN. Thus,X¢ = (M¢ + nN)4, and
the last term is clearly of the forif/¢)¢ + n’N for somen’. We need only show)/¢)? = M mod N. As
ed =1 mod ¢(N), there is anm such thakd = 1 + m¢(N). Therefore

(Me)d _ Med — M1+m¢(N) — MMm¢(N) = M- (M¢>(N))m (23)

By Euler’s Theorem (Theorem 4.18)/¢(™) = 1 mod N, which completes the proof.

Why is RSA secure? Assume a third person (say Charlie) intercepts the encrypted nmésbiegenows
X, N ande, and wants to recovey/. Knowingd such thatle = 1 mod ¢(/N) makes decrypting the message
trivial: one need only comput&¢ mod N. Thus, Charlie is trying to solve the equatieh= 1 mod ¢(N);
fortunately for Alice and Bob this equation has two unknowhand¢(N)! Right now, there is no known
fast way to determing (V). Charlie can of course factd¥; once he has the factors, he knan(gV) and can
find d; however, the fastest factorization algorithms make 400 digit numbers unaccessible (for now).

This should be compared to primality testing, which was only recently shown to be fast ([AgKaSal).
Previous deterministic algorithms to test whether or not a number is prime were known to be fast only if
certain (expected) conjectures are true. It was an immense achievement showing that there is a deterministic
efficient algorithm. The paper is very accessible, and worth the read.
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Remark 5.1. Our simple example involved computing a sixty-six digit number, and this was for a Small
(N = 9797). Using binary expansions to exponentiate, as we need only transmit our message Mpeaelo
never need to compute anything larger than the product of two four digit numbers.

Remark 5.2. See [Bon] for a summary of attempts to break RSA. Certain products of two primes are denoted
RSA challenge numbers, and the public is invited to factor them. With the advent of parallel processing,
many numbers have succumbed to factorization. See http://www.rsasecurity.com/rsalabs/node.asp?id=209:
for more details.

Exercise 5.3 (Security Concerns)ln the system described, there is no way for Bob to verify that the message
came from Alice! Design a system where Alice makes some information public (and keeps some secret) st
that Bob can verify that Alice sent the message.

Exercise 5.4.Determiningp (V) is equivalent to factoringV; there is no computational shortcut to factoring.
Clearly, if one knowsV, one knows)(N). If one knowss(/N) and N, one can recover the primesand q.
Show that ifK = N + 1 — ¢(XN), then the two prime factors of are (K + K2 —4N)/2, and these
numbers are in fact integers.

6 Eisenstein’s Proof of Quadratic Reciprocity

We conclude this introduction to basic number theory and group theory by giving a proof of quadratic reci-
procity (we follow the beautiful exposition in [LP] of Eisenstein’s proof). In §2.4, we described Newton’s
Method to find square-roots of real numbers. Now, we turn our attention to a finite group analogue: for a
prime p, givena # 0, when isz? = a mod p solvable? For example, if = 5, then(Z/pZ)* = {1,2,3,4}.
Squaring these numbers givés, 4,4,1} = {1,4}. Thus, there are two solutionsdf € {1,4} and no
solutions ifa € {2,3}. The problem of whether or not a given number is a square is solvable: we can sim-
ply enumerate the grou@./pZ)*, square each element, and see i§ a square. This takes abqusteps;
quadratic reciprocity will take abolibg p steps. For applications, se@3

6.1 Legendre Symbol

We introduce notation. From now omandgq will always be distinct odd primes.

Definition 6.1 (Legendre Symbol(:)). The Legendre Symb¢f) is

= 0 ifa=0modp (24)

(a) { 1 if ais a non-zero square mqd
—1 otherwise

p

The Legendre symbol is a function Bp = Z/pZ. We can extend the Legendre symbol to all integers. We

only need to know mod p, and we defing?) = (%fdp)

Notea is a square mod if there exists ar € {0,1,...,p — 1} such thatz = > mod p.

Definition 6.2 (Quadratic Residue / Non-residue).For a # 0, if 2> = a mod p is solvable (not solvable)
we sayu is a quadratic residue (non-residue).

Exercise 6.3.Show the Legendre symbol is muItipIicati\(%@.) = (%) (i)
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Exercise 6.4 (Euler’s Criterion). (i) = 4"z mod pforoddp. Hint: if (a,p) = 1,a"z squaredis?~! =1,

SO0a z = 41 mod p.

1 p2_1
Exercise 6.5.Show(~') = (—1)"z and (%) = (-1)"5 .
Lemma 6.6. For p an odd prime, half of the non-zero number$)pZ)* are non-zero squares, half are not.

Proof. As p is odd,2* € N. Consider the numbers, 22, ..., (%)% Assume two numbers andb are
equivalent modp. Thena® = b* mod p, so (a — b)(a + b) = 0 mod p. Thus, eithera = b mod p or
a = —bmod p (in other wordsg = p — b). Forl < a,b < ?%1, we cannot have = p — b mod p, implying
the 2+ values above are distinct. Ap — r)*> = r? mod p, the above list is all of the non-zero squares mod

p. Thus, half the non-zero numbers are non-zero squares, half are non-squares. ]

Remark 6.7. By Theorem 4.22(Z/pZ)* is a cyclic group with generatog. Using the group structure,
one can prove the above lemma directly: once one shows there is at least one non-resigtfeataehe
quadratic residues and thg*+! are the non-residues.

Exercise 6.8.Show for any: # 0 mod p that

()£ -

t= =0

Initially the Legendre symbol is defined only when the bottom is prime. We now extend the definition.

Letn = p; - po- - - p; be the product of distinct odd primes. The(%) = (p%) (;%) <I%> this is the
Jacobi symbol, and has many of the same properties as the Legendre symbol. We will study only the Legendre
symbol (see [IR] for more on the Jacobi symbol). Note the Jacobi symbolndbeay that ifa is a square (a
guadratic residue) mou, thena is a square mog; for each prime divisor.

The main result (which allows us to calculate the Legendre symbol quickly and efficiently) is the cele-

brated Law of Quadratic Reciprocity:
Theorem 6.9 ((Generalized) Law of Quadratic Reciprocity).For m, n odd and relatively prime() (£) =
(—1)"z "= .

Gauss gave eight proofs of this deep result (wheandn are prime). If eithep or ¢ are equivalent to
1 mod 4, then one haé%) = (g) ie, p is a square root modulgif and only if ¢ is a square root modula
We content ourselves with proving the case withn prime.

Exercise 6.10.Using the (Generalized) Law of Quadratic Reciprocity, Exercise 6.5 and the Euclidean al-
gorithm, show one can determinedifis a square modulan in logarithmic time (ie, the number of steps

is a universal multiple ofog m). This incredible efficiency is just one of many important properties of the
Legendre and Jacobi symbols.

6.2 Preliminaries
Our goal is to prove

Theorem 6.11 (Quadratic Reciprocity). Letp andq be distinct odd primes. Then
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As p andgq are distinct, odd primes, bot@) and § are+1. The difficulty is figuring out which signs
are correct, and how the two signs are related. We use Euler’s Criterion (Exercise 6.4).

The idea behind Eisenstein’s proof is as foIIov(ép{-:) (’g) is —1 to a power. Further, we only need to

determine the power modulb Eisenstein shows many expressions are equivalent, madtdahis power.
Eventually, we arrive at an expression which is trivial to calculate modulo 2.

As p andq are distinct primes, the Euclidean algorithm implies that invertible modulop, andp is
invertible modulog.

6.3 First Stage

Consider all even multiples afby anya < p — 1: {2¢,4q,6q, ..., (p — 1)q}. Denote a generic multiple by
aq. Recall[z] is the greatest integer less than or equal.tBy integer division,

aq
aqg= |—
p

Thus,r, is the least non-negative number equivalentg¢anod p.
The numberg—1)"r, are equivalent to even numbers{io, ..., p — 1}. If r, is even this is clear; if,
is odd, then—1)"*r, = p — r, mod p, and a® andr, are odd, this is even.

Lemma 6.12.1f (—1)"r, = (—1)"r, thena = b.

pt+rey, 0<r,<p—1. 27)

Proof. We quickly get+r, = r, mod p. If the plus sign holds, then, = r, mod p impliesga = ¢b mod p.
As g is invertible modp, we geta = b mod p, which yieldsa = b (asa andb are even integers betweémand
p—1).

If the minus sign holds, then, + r, = 0 mod p, or ga + gb = 0 mod p. Multiplying by ¢~ mod p now
givesa + b = 0 mod p. Asa andb are even integers betweérandp — 1,0 < a+ b < 2(p — 1). The only
integer strictly betweefi and2p which is equivalent t® mod p is p; however,p is odd andz + b is even.

Thus, the minus sign cannot hold, and the elements are all distinct. O
Lemma 6.13.
(g) — <_1)Zaevenr'1' (28)
p

Proof. For each even, ga = r, mod p. Thus, mod:

Lo = 11

a even a even
p—1
¢z [Ja= ][I
a even a even
q
(— H a = Tas (29)
p a even a even

where the above follows from the fact that we ha“gé choices for an even (to getqp%l) and Euler’s
Criterion. Asa ranges over all even numbers fréno p — 1, so too do the distinct numbefs-1)"+r, mod p.

Thus, modp,
I

Il
|
—_
~—

3
IS}
<
IS

a even a even
H a = (_]_)Za even’a H Tg- (30)
a even a even



Combining gives

(2) () ewre I ro= [ 7o (31)

p

As eachr, is invertible modp, so is the product. Thus,

<2> (—1)%eewen’™ = 1 modp. (32)
p
As (%) = =+1, the lemma follows by multiplying both sides t(y;) O

Therefore, it is sufficient to determine;
division, we have

r, mod 2. We make one last simplification. By integer

a even

se-gB)-ghlze

a even a even a even a even
As we are summing over even the left hand side above is even. Thus, the right hand side is even, so

Z [%a} P Z r, mod?2

a even a even

Py [%} > r, mod2

a even a even

3 {%] Y r, mod2, (34)

a even a even

where the last line follows from the fact thats odd, so mo@, dropping the factor g from the left hand side
doesn’t change the parity. We have reduced the proof of quadratic reciprocity to calchlatipg, [%]

6.4 Second Stage

Consider the rectangle with vertices &t= (0,0), B = (p,0), C = (p,q) andD = (0,q). The upward
sloping diagonal is given by the equatign= %x. As p andq are distinct odd primes, there are no pairs of
integers(x, y) on the lineAC.

We now interpred ., [%] Consider the vertical line with-coordinatez. Then [%] gives the num-

ber of pairs(x, y) with z-coordinate equal ta andy-coordinate an integer at mo £ Thus,> ", even %“]

is the number of integer pairs (in the rectanglBC D) with evenz-coordinate that are below the ling”.
We add some non-integer points:= (£,0), F' = (§,4), G = (0,4) andH = (£, q). We prove

272

Lemma 6.14. The number of integer pairs under the lidg” (inside the rectangle) with evencoordinate
is congruent moa@ to the number of integer pairs under the lidg.

Leta > £ be an even integer. The integer pairs on the line a are(a,0), (a,1),...,(a,q). There are
q + 1 pairs. Asq is odd, there are an even number of integer pairs on theclire:. As there are no integer
pairs on the lineAC, for a fixeda > £, mod2 there are the same number of integer palveveAC as there
arebelow AC.

Further, the number of integer pasboveAC is equivalent mo@ to the number of integer pairs below
AF on the linex = p — a. To see this, consider the map which takesy) to (p — z,¢ — y). Asa > £ and
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is even,p — a < § and is odd. Further, every odd< £ is hit (givena.qa < &, start with the even number
P — Qodd > §)

Let #FCH.,,., be the number of integer paifs, y) in triangle F'C H with z even.

Let #E£BCH be the number of integer pairs in the rectanglBCH; #EBCH = 0 mod 2 (we've
shown each vertical line has an even number of pairs).

Let #AF E..., be the number of integer paifs, y) in the triangleA F'E with = even, and le: AF'E be
the number of integer pairs in the triangld” £

We need to calculat®’, .., [%} mod 2:
- {@] = YAFE.p, + #EBCH — #FCH
a even p
= #AFEeen + #EBCH + #FCH
— #AFFE.,, + #FCH + #EBCH
— #AFE+ #EBCH
— #AFE. (35)

Thereforep =", oven [%} = #AFF mod 2, and we have

(%) = (1)~ (36)

(g) = (-1y, (37)

wherev = #AFG mod 2, with #AF G equal to the number of integer pairs in the triandlEG.
Now, iu + v = #AFFE + #AFG, which is the number of integer pairs in the rectandl@'G. There
areZ! choices forr and;* choices fory, giving 22 -1 pairs of integers in the rectangle? FG. Thus,

B - o

— (_1)#AFE+#AFG

Reversing the rolls gf andg, we see that

p—1g—1

= ()%= %7, (38)

which completes the proof of Quadratic Reciprocity.
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