Chapter 1:
A Quick Introduction to Benford’s Law (Miller)
- Additional Reading:
- A. Berger and T. Hill:
Benford Online Bibliography.
- F. Benford, The Law of Anomalous Numbers, Proceedings of the
American Philosophical Society 78 (1938), 551--572.
Available through JStor.
- T. Hill, The first-digit phenomenon, American Scientist 86
(1996), 358--363.
Available online here.
- T. Hill, A statistical derivation of the significant-digit law
Statistical Science 10 (1996), 354--363.
Available online
here.
- L. M. Leemis and colleagues, Univariate Distribution Relationships.
Available online
here.
- L. M. Leemis, B. W. Schmeiser and D. L. Evans, Survival Distributions
Satisfying Benford's Law, The American Statistician 54 (2000),
no. 4, 236--241.
Available online here.
- S. Newcomb, Note on the Frequency of Use of the Different Digits in
Natural Numbers, Amer. J. Math. 4 (1881), 39--40.
Available online here.
- R. A. Raimi, The first digit problem, Amer. Math. Monthly 83
(1976), no. 7, 521--538.
Available through JStor.
- Homework Problems:
- Programs:
- Benford Tester:
Excel program to test for Benfordness.
- In Mathematica, if you define the following function you can then use it
to find the first digit: firstdigit[x_] :=
Floor[10^Mod[Log[10,x],1]]
- Videos:
Return to "Theory and Applications of Benford's Law"
Homepage
Email the editor at sjm1@williams.edu,
Steven.Miller.MC.96@aya.yale.edu