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Abstract

We give some examples of differentiating identities to prove formulas in probability theory
and combinatorics. The main result we prove concerns the number of alternating strings of heads
and tails in tossing a coin. Specifically, if we toss a coin+ n, times and see; heads andh,
tails, the mean of the number of runsﬁlgjr%?2 + 1 and the variance ié&ll’ffi;‘;&;’:jz__"s). For
example, if we observe HHTHHTTTTHTT thenny; = 6, ng = 7 and there would bé
alternating strings of runs.

More generally, assume we toss a coin with probabjlityf heads a total ofV times. The
expected number of runs2e(1 — p)(IN — 1) + 1. In particular, if the coin is fair (sp = %) then

the expected number of runsfif#.




D Divergence of the Harmonic Series 24

E Interchanging Differentiation and Summation 25

1 Simple Examples

We give a standard example illustrating the key idea of differentiating identities. Assume, for some

reason (perhaps because of the tantalizing simplicity of the expression), that we want to evaluate

1,234 5 6 1 @
1 2 4 8 16 32 64 ' '

After some thought we might realize that this is the same as

=2 (1.2)
n=0

The series does converge by the comparison test:(farge, comparef;; to
Abstraction actually helps us. It is easier to study

1
@72

i n-a" L (1.3)
n=0

Using the comparison test, one can show this series converged farl. If we didn’t have then’s
above, the series would be easily summable: the geometric series formula gives

> 1
Dot = (1.4)
n=0

If we could differentiate both sides of the above equatindinterchange the order of summation and
differentiation we would have

d =, d 1

DL

S 1

—dx - (1—-x)2

> 1
n—1 _

n=0

Now all we have to do is take = % above to solve the original problem. For this problem, as long as
|x| < 1 we can justify interchanging the order of summation and differentiation. See Appendix E for
some results about interchanging orders of differentiation and summation.

The above is a standard exampledifferentiating Identities. We give an interesting application
of a related problem in Appendix C; namely, by considering a finite geometric sum and differentiating
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the resulting identity we obtain formulas for the sums of powers of integers. Typically such formulas

are proved by induction; this presents an alternative approach. As another example, in Appendix D we

use this method to show that the harmonic series (the sum of the reciprocals of the integers) diverges.
We give another common example, this time from basic probability. Consider a binomial distrib-

ution with n trials, where each trial has probabilipyof being a success (coded Bsand probability

1 — p of being a failure (coded a¥. For example, consider tosses of a coin with probability of

heads and — p of tails. Thus

(MpP —p)"* if ke {0,1,...,n}

i (2.6)
0 otherwise.

Probk) = {

What is the expected number of successes (or heads)? What is the variance? One simple way to
solve this is by linearity of expectation. Namely, considendependent trials, whet¥; is a random
variable denoting the outcome of th# trial. SpecificallyX; is 1 for a success (which occurs with
probability p) and0 for a failure (which occurs with probability — p). If X = X; +--- 4+ X,,, then

X has the binomial distribution with parametersindp and we have

E[X] = E[Xi;+- -+ X,]
= E[Xi]+ - -+E[X,] 1.7
As
E[X;] = 1-p+0-(1—p), (1.8)
we find that
E[X] = np. (1.9)
Similarly, using
Var(X) = Var(Xy) + - - + Var(X,,) (1.10)
and
Var(X;) = E[X7] -E[X;]* = (17 p+0*- (1-p)) — (»)* = p(1—p), (1.11)
we see that
Var(X) = np(1—p). (1.12)

We now show how these formulas can be derived by differentiating identities. Similar to the
geometric series formulas above, it is much easier to work with a free parameter (spclaras
then set it equal to a desired probability at the end; if we didn’'t have a free parameter, we couldn’t
differentiate! Thus, even if a problem gives a particular valuesfadt is easier to derive formulas for
arbitraryp and then set equal to the given value at the end. This allows us to use the tools of calculus.
Thus to study the binomial function we should consider

P+o" =), <Z>pkq"k- (1.13)

k=0

(Aside: for those knowing moment generating functions, think about connections between moment
generating functions and differentiation.) If we take [0, 1] andg = 1 — p, then we have a binomial



distribution and(p + ¢)" = 1. We now differentiate the above with respectpto While we will
eventually sety = 1 — p, for now we considep andq independent variables.

In fact, instead of(% we applypa%. The advantage of this is that we do not change the powers of
p andgq in our expressions, and we find

0 - n n— 0 n
3 <Z<k>pkq ’“) = py, Pt Q)

k=0
Py (Z)kp’“‘lq”"“ = palp+o™!
k=0
Zk’<k>pkqn o= mpp+ )" (1.14)
k=0

interchanging the differentiation and summation is trivial to justify because we have a finite sum. The
expected number of successes (when each trial has probalufisuccess) is obtained by now setting
g = 1 — p, which yields

n n .
Zk<k>pk<1 —p)" = np. (1.15)
k=0
To determine the various, we differentiate again. Hence applying the opp?%f@rto (1.13) gives
? [ 0?
P 5 (kz_:_o <k>pq ) P op Pt (1.16)

again, we apply) > as this keeps the powersphndq the same before and after the differentiation.
After some S|mple algebra we find

Zk -1) ( > k n—k _ p>on(n—1)(p+q)" 2 (1.17)

Unfortunately, to find the variance we need to study

n

D (k= p)? <k>pkq” F, (1.18)

k=0

wherep = np is the mean of the binomial random variabfe This is not a serious problem, as we
can determine the variance frddiX 2] — E[X]? and writek(k — 1) ask? — k; note the sum o2 will
beE[X?]. Thus

n(n —1)p?(p+q)" 2 Zk2< > Fgn=k Zk( ) Fgnk, (1.19)

But we have already determined the second sum — it issfjustheng = 1 — p. Settingg = 1 — p we
thus find

n n -
> K (k)p'“(l —p)" " = n(n—1)p* +np = n’p> +np(1 - p). (1.20)
k=0



Therefore the variance is just

var(X) = kzn:OkQ (Z)pk(l -p)" - (ik(Z)p’“u - p)n_k> 2

k=0
= n*p* +np(1—p) — (np)®
= np(l—p). (1.21)

As a final remark, consider again (1.15) and (1.20). If wepset ¢ = % and then move those
factors to the right hand side, we obtain

ik(Z) = o, zn:k?(;:) = n(n+1)2"2, (1.22)
k=0 k=0

Thus we can find nice expressions for sums of products of binomial coefficients and their indices.

Remark 1.1. Itis interesting to note that even if we only want to evaluate sums of integers or rationals,
we need to haveontinuousrariables so that we can use the tools of calculus.

Remark 1.2. Instead of applyingﬁa%, it is easier to applyp% twice. The advantage of this is that
we havek? coming down and ndt(k — 1). Specifically, we start with

> (Z)p’“q”’“ = (p+q (1.23)
k=0
Applyingpa% once yields
n n - o
k<k>pkq" "= ponp+o"" (1.24)
k=0
Applyingp% again gives
> K (Z)p’“q”"“ = p[l-np+9" " +p-nn-1)(p+9" 7. (1.25)
k=0

By lettingg = 1 — p and subtracting the square of the mean, we regain the varian¢e21)

2 Matching Coefficients

Sometimes we can derive identities of binomial coefficients without differentiating — one common
technique is matching coefficients. For example, consider

(1) =20

k=0 k=



becausg}) = (,,",). Consider now the following sum

=~ (n k, n—k n n—k, k
Z <k>x Y . (n— k>x T (2.2)

k=0
as well as
(+y)"(@+y)" (2.3)
Expanding the product gives
2n m A ‘
@y ety = @y =3 ( j ) iy, (2.4)
j=0

note the coefficient of™y" in this product is(%}f). The key observation is that (2.2) is just thiéy™
term of (z + y)?". This is because it can be interpreted as takingrthg term of (z + 3)" (z + y)".
How do we get an:"y™ term from multiplying(z + y)™ with (z + y)™? Well, the two factorgz + y)”
give terms like("})z'y"~* and (?)xﬂ'y”*j, which are then multiplied together. The only way we get
anz"y" is whenj = n — i, and we can do this for any € {0,1,...,n}. Thus thex"y" term in

(x+y)*"is
(?) 2yt =y (Z) aky" (n " k:) a" oy, (2.5)

The proof is completed by taking= y = 1.

The reason arguments like this work is because if we have two polynomials of finite degree in
finitely many variables, then if they take on identical values for all values of the parameters then
all the coefficients of the two polynomials are equal. This allowed us to take two expressions and
equate the coefficients of terms. Without this observation, the equality of two polynomials (at all
values of the parameters) would not imply the equality of the coefficients. For example, assume
22+ 2xy — Ty = 2% + 3xy — 5y? +y forall z, y € C (of course these two polynomials are not always
equal); however, if thisvereto happen, we would be in trouble as in the first we hawveg and the
second we havazry. Thus while some terms (such &%) have the same coefficient, others do not.

Specifically, sayF'(z,y) andG(z,y) are two polynomials of finite degree with complex coeffi-
cients. Then if they are equal for all choicesof) € C we haveF'(z,y) — G(x,y) is a polynomial of
finite degree and itis zero for all y € C. Itis an easy exercise to show this implies all the coefficients
of F(x,y) — G(z,y) are zero (i.e., all the coefficients 6%z, y) equal those of(x, y)). One way to
see this is to choose fixed valuesiofSayxz = a. Except for finitely many choices af, we would get
F(a,y) — G(a,y) is afinite degree polynomial and it has some non-zero coefficient but it vanishes for
all y € C. This is absurd as a polynomial of degegébas at mostl complex roots. We do not need to
havex andy range over all ofC; it suffices to have them range over a large enough set, for example
||, ly| < R for someR > 0.

The biggest difficulty in successfully applying arguments of this nature is figuring out what to
compare the observed sum to. Here we needed to see that we should c@ﬁ;@réﬁf to the
coefficient ofz"y™ in (z + y)?". Writing (}) as(}) - (,",) suggests that we should compare it to a
coefficient of(z + y)"(z + y)".



3 Combinatorics and Partitions

We review some needed results on combinatorics and partitions before tackling the number of alter-
nating strings of coin tosses.

3.1 The Cookie Problem

We describe a combinatorial problem which contains many common features of the subject. Assume
we have 10 identical cookies and 5 distinct people. How many different ways can we divide the
cookies among the people, such that all 10 cookies are distributed? Since the cookies are identical,
we cannot tell which cookies a person receives; we can only tell how many. We could enumerate
all possibilities (there are 5 ways to have one person receive 10 cookies, 20 ways to have one person
receive 9 and another receive 1, and so on). While in principle we can solve the problem, in practice
this computation becomes intractable, especially as the number of cookies and people increase.

We introduce common combinatorial functions. The first isfeaorial function: for a positive
integern, setn! =n - (n —1)---2- 1. The number of ways to chooseobjects fromn when order
mattersisn- (n —1)---(n— (r — 1)) = (nﬁ—'r), (there aren ways to choose the first element, then

n — 1 ways to choose the second element, and so on)biftwnial coefficients (") = #LT), is the
number of ways to chooseobjects fromn objects when order does not matter. The reason is once
we've chosen- objects, there are! ways to order them. For convenience, we defihe= 1 (thus
(8) = 1, which may be interpreted as saying there is one way to choose zero elements fromsa set of
objects). For more on binomial coefficients, see 8B.

We show the number of ways to divide 10 cookies among 5 peogl&i§ ). In general, if there

areC' cookies andP people,

Lemma 3.1. The number of distinct ways to dividéidentical cookies among different people is
C+P-1

(5o

Proof. ConsiderC + P —1 cookies in a line, and number theinto C' + P — 1. ChooseP — 1 cookies.

There are(clﬁffl) ways to do this. This divides the cookies intbsets: all the cookies up to the

first chosen (which gives the number of cookies the first person receives), all the cookies between the

first chosen and the second chosen (which gives the number of cookies the second person receives),

and so on. This divide§' cookies amongd® people. Note different sets ¢t — 1 cookies correspond

to different partitions ofC' cookies amongP people, and every such partition can be associated to

choosingP — 1 cookies as above. O

Remark 3.2. In the above proof, we do not cavehich cookies a person receives. We introduced the
numbers for convenience: now cookies 1 througfsay) are given to person 1, cookigst 1 through
15 (say) are given to person 2, and so on.

For example, if we have 10 cookies and 5 people, say we choose cookies 3,4,7, and 13 of the
10+5-1 cookies:

OORKRKIOVORIOOOOOKRO

This corresponds to person 1 receiving 2 cookies, person 2 receiving 0, person 3 receiving 2, person 4
receiving 5, and person 5 receiving 1.



The above is an example of a partition problem: we are solving z2 + x5 + x4 + x5 = 10,
wherez; is the number of cookies persemeceives. We may interpret Lemma 3.1 as the number of

ways to divide an integeV into k£ non-negative integers (év,jfl‘l).

i<n+k—1>:<z\/+1+k—1> 3.1)
= k—1 k—1
One can interpret the above as divididg cookies among: people, where we do not assume all
cookies are distributed. Note here we have a sum of binomial coefficients where both dinel tiog

bottom index are varying. In general such sums are diffignlessyou can find a nice way to interpret

such a sum.

Exercise 3.3.Show

Exercise 3.4.In partition problems, often there are requirements such as everyone receives at least
one cookie. How many ways are there to wiNeas a sum ok non-negative integers? How many
solutions ofr; +x2+x3 = 2005 are there if each; is an integer and:; > 5, x5 > 7, andxs > 10007?

3.2 The Alternating Strings Problem

Consider a string ofi; + ns coin tosses witlm; heads ana tails. There aré”lrzm) ways to order
the n; heads and tails. Assume all orderings are equally likely. Our goal is to eventually study
the number of alternating strings of heads and tails. We start with a simpler problem, namely trying
to figure out how many ways there are to arramgeheads ancdh, tails and observe: runs (again,
HHTTHTTT H would have5 runs andt alterations).

For example, let us say; = ns = 3 and we want to hav8 runs. If we assume we start with
a head we could havHETTTHH or HHTTTH, and by symmetry if we start with a tail we could
haveTHHHTT or TTHHHT.

In general, we have

Theorem 3.5. Let there bew; heads andhs tails, and assume each of tl@@ljlm) arrangements are
equally likely. Let there be runs of heads and tails. Then
2 H () if u = 2k for a positive integek (3.2)
u = .
(MY + () (30Y) if w = 2k + 1 for a positive integek.

Proof. We consider: = 2k and leave the other case as an exercise. As there are an even number of
runs, we must either begin with a head and end with a tail, or we must begin with a tail and end with a
head. By symmetry, it is enough to consider just the case when we start with a head and then multiply
by 2. The reason is if we have a sequence lk&l HTTHTTTHT HT we can reverse it and obtain

a sequence that starts with a tail and ends with a head.

Let us assume we will start with a head and end with a tail. Consider a stringlodads. If we
partition it intok strings of heads, we can then put tails in after the partitions, and we will2ianes;
however, wemustput a partition after the final head, as we must end with a tail. Further, we cannot put
a partition before the first head as wriststart with a head. For example, if we partitiéhH H H H
by adding partitiong to get H|H H H|H|, then we can add strings of tails after the partitions to get
HT---THHHT---THT ---T for atotal of6 runs. How many ways are there to partitienheads
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into & groupswith a partition occurring after the final head and no partition allowed before the first
head? Note there are; + 1 positions where we can put a partition (before the first head, after the first
head, after the second head,, after the last head); however, we shall see that two of these positions
have their values forced.

We must choose the last place for one partition, we cannot choose the place before the first head,
and then we must chooge— 1 of the remaining:; — 1 positions for the other partitions. Thus the
number of ways to adk partitions when we must add a partition after the final head and we cannot add
one before the first head is jugt) (;) (7)) = (%7)'). A similar argument shows there afé* ')
ways to partitionn,, tails into & groups, assuming we must have a partition before the first tail and we
are not allowed to have a partition after the final tail.

We now intersperse the partitioned heads and tails. Consider any (ﬂ};ﬂ‘f@ partitions of the
n1 heads and any of thé}j_‘ll) partitions of then, tails. Each such pair gives rise to a sequence of
n1 heads and tails with exactly2k runs, and any such sequence corresponds to a unique pair. For
example, say we havd|H H|HH H| and|TTTT|T|TT; these unite to becom@TTTTHHTHH.

Thus the number of partitions leading2é runs where the first coin is a head and the last is a tail
is just ("1 7') (7). By symmetry this is the same as the number of partitions where the first coin is
a tail and the last is a head, which completes the proof of the theorem in the case of an even number of
runs. O

Of course, in the arguments above< k& < min(ng, ng); for otherk the number of strings with
2k runs is zero.

4 Determining How Often There are an Even Number of Runs

By differentiating identities we determine how often there areea@nnumber of runs when there
aren; heads andh; tails and each of theé"lntm) strings are equally likely. A similar argument is
applicable for the case when there are an odd number of runs; we concentrate here on the case of an
even number to highlight the methods.

If u = 2k is the number of runs, then we know the number of ways to Baweins is just

2(7;1__11> (7;2__11) (4.1)

Without loss of generality, for notational convenience let us assuime no, S0k runs from1 to n,.
Thus the number of strings with an even number of runs is just

n2 ] n1—1 n2—1
;_12(k—1)<k—1>’ (4.2)

as there must be at least two runs (there is no way to have zero runs apless, = 0, which we
shall assume we do not have). We first need to determine what this sum is, and then to determine the
expected number af (whenu = 2k is even) we will need to sum

ngzl(%) 2 <7;€1__11> <”I’:__11>. (4.3)

k=1



4.1 Determining the number of strings withu = 2k runs

Consider the polynomial
(21 +y)™ Moo +y2)"2 (4.4)

we shall see very shortly why this is a “natural” polynomial to examine. Using the Binomial Theorem
(Theorem B.4) we have

—1
ni—1 '~ (M =1\ 1k ok N S A
(z1+y1) = > b )M w' =) g —1)f0 %

k1=0 ki=1
na—1 n2
_ ng — 1 1 no — 1 _ _
et = 3 (M e = 30 (D) )ab e @)
ko=0 ko=1

we will see later why it is convenient to hav&' —*' but z52~!; we can write the binomial theorem
this way as("") = (," ). Therefore

m—r

ni n2
ny—1 _ _ no — 1 _ _
(w1 +y)" oy = [ <ki—1>$?l S DY <k2—1>x§2 L

ka=1
(4.6)

Consider what happens if we sat = zo = x andy; = y» = y. Then the above becomes

n1+ng—2 < n =1\ ok k-1 - n2 =1\ 1 pa—k
(x4 y)mtne — Zk 11-1 Lyk Zk 1$2 Y2k
1— 2 =

ki=1 kz=1
ni ng 1 1
_ Z Z ny — ng — xnl—l—k1+k2yn2—1+k1—k2‘ 4.7)
ki —1 ko —1
k1=1ko=1

Now we use the uniqueness of polynomial expansions and equate coefficients. Consiter thee—1
term in (4.7). There are two ways we can calculate it. Looking at the left hand side, we have
(z + y)™*"272, and thus the term is jugt" ™" ?)z™~1y"2~1  Looking at the right hand side

ny1—1
we see the term we desire occurs whign= ko. We see now why we Wrotﬁ?l’kl and:cg?’l; this
made it easy to combine the terms. Denoting the common valagaridks by k& we obtain

ny+mng —2 n1—1, no—1 S ny— 1\ (n2 —1 n1—1, no—1
= 4.8
( ny — 1 )”3 Y ; k—1)\k-1)" ¥ (4.8)
or cancelling ther’s and they’s
ni+no — 2 2 ny —1 no — 1
= ) 4.9
() = 2 o)) 49
We have determined the sum in (4.2), the sum we needed to figure out how many different strings there

are withn; headsn,, tails andu = 2k runs! Namely, we have shown
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Lemma 4.1. The number of strings with; headsyn. tails andu = 2k runs is

nel ny—1 no — 1 ny+no — 2
Z2<k_1><k_1>:2( o1 > (4.10)
k=1

Some discussion is clearly in order as to how we knew we should con@igder ;)™ ~!(xs +
y2)™2~ 1. This is the hardest step in all such proofs by matching or proofs by differentiating identities,
namely figuring outvhereto start. The answer is usually suggested by trying to analyze the quantity
being studied, looking for clues as to what series or products we should consider.

no—1

In this case, we knew that we had to eventually have productglike') (%>~'). How can we get

such terms? Well, th 7};_‘11) are the coefficients when we expapd + B)"~!; we chosed = z;
andB = y; to have some flexibility, and to distinguish these terms from the other factors. For simply
counting the number of strings witlhh = 2k runs this extra degree of freedom or flexibility was not
needed; however, it will be crucial in trying to find the meanuofhenu is even. Similarly the
(27! are the coefficients from expanding. + B)"2~!, and we choosel = x5 andB = y, for the
same reasons as before. By setting= x2 = z andy; = y» = y in the end we are arguing in a
similar manner as in §2. This is a common and powerful technique, namely witingy)"*™ and

(z +y)"(z + y)™ and then deducing identities for sums involving terms [ikg(,",) for a fixeda.

4.2 Determining the expected value of: for strings with v = 2k runs

We now turn to the sum in (4.2), which gives the expected value-ef2k; again, remember that we
are only considering strings with, headsn. tails and an even number= 2k of runs. As by Lemma
ni1—1\ (n2—1

4.1 there are("*"2?) such strings and the number of strings wthruns is2 (" 7}') (27)'), we
need to determine

ek 203 (L) X ke () (7))
2(n1+n2—2) - (n1+n2—2) .
ni—1 n1—1

(4.11)

We shall ignore the factor (ﬁ(m:l”_?f)_l for now and concentrate on evaluating

mzlk- <n1—1> <n2—1>. (4.12)
P k—1 k—1
Actually, it will be significantly easier to find, not the sum withbut the sum with — 1:
nf(ls ~1). (”1 - 1) <n2 - 1>' (4.13)
Pt k—1 k—1)’

clearly if we can evaluate this sum fbr— 1 then by adding we can find the sum with.
We have seen in §4.1 that the sum oweof (') (">"') can be obtained by looking at the
xm—1lyn2=1 coefficient of(xq + y1)™ (22 + y2)"2 7! underz; = z9 = x andy; = y2 = y. So, let

11



us study again (4.6):

ni n2
ny—1 _ _ no — 1 _ _
(w1 +y)" o +y)" = [ <ki—1>$?l Sy D <k2—1>x§2 L

ko=1
(4.14)

We will now see the advantage of having two differerg and two differenty’s. Let us take the
derivative with respect tg; and then multiply byy;. Thus we are applying the opera@r%; the
advantage of multiplying by, after differentiating byy; is that we do not change the degree of any
of the terms. Applyingﬂ% to the left hand side of (4.14) gives

(n1 — Dyr(z1 + yl)"ld(azg + yg)"rl, (4.15)

becausery, y1, x2 andys are independent variables. When we apﬁlg% to the right hand side of
(4.14) we get

= ny—1\ , _ _ 2y (ng—1 1 ng—
DU VA it Y D O Vi -l BT

k1=1 ko=1

The above shows why it is easier to study- 1 rather thark: when we differentiate a factor éf— 1
comes down, not. We have thus shown

(1 — Dy (21 +y1)™ (w2 +y2)™ !

s np—1 _ _ L (ng — 1 1 o
| = ([T a3 (D )| @an

k1=1 ko=1
NOW we takex; = x5 = x andy; = y» = y and obtain

Lemma 4.2.

(n — Dy(z +y)mtm23

n2

= -1 -1
- Z(kl—n(;‘l 1)&1*1&1* - 2(22 1>xkyk . (418)
1 — 2 —

k1=1 ko=1

It is extremely important that we waited to sgtequal tozs andy; equal toy.; if we had set them
equal first and then differentiated, we would have two pieces (from when the operator hit the first sum
and when it hit the second). The difficulty would be the first sum would bring down a fackgr-efl
and the second a factor 0f — k5. With some book-keeping this could probably be made to work, but
this is easier.

We now look at ther™ ~y™2~1 term of both sides of Lemma 4.2. First consider the left hand
side. We have one factor gfautomatically because of theoutside. There ar(a”ﬁ”ff 3) ways to

12



choosen; — 1 factors of(z + y)" 7273 to givex andny — 2 factors to givey. Thus the coefficient
of 2™~ 1y"2~1 on the left hand side is

(n1—1) ("1 e 3). (4.19)

n1—1

We now determine the™ —!ym2~! term from the right hand side of Lemma 4.2. As before, this
term arises fronk; = k». Denoting this common value bywe find the coefficient of the™1 —1ym2—1
term from the right hand side is

2 n1—1 n2—1
;(k—1)<k_1><k_l>. (4.20)

As always, the proof is concluded by the uniqueness of the coefficients. By matching we obtain

S (k- 1) @1__11) (f:f) = (m1 ~ 1)(”1;7121_ 3). (4.21)

k=1

Lemma 4.3.

We can now determine the meankof- 1, or better yeR(k — 1). From this it is trivial to determine
the mean oRk. Specifically

Lemma 4.4. . . .
Sy 2(k=1) 2007 (7)) _ pMne — 1 — N2 +1 4.92
ni+ng—2 - _ : ( . )
2( 1nlfl ) 11 + n2 3

Proof. The denominator comes from Lemma 4.1, where we showed this is the number of strings with
n1 headsny tails and an even number of runs. We cancel two of the factogsarfd are left with
one factor of2 in the numerator, and then use Lemma 4.3 to evaluate the numerator. The proof is
completed by expanding out the binomial coefficients. fgts evendenote the mean of two less than
evenu (in other words, the expected valueik — 1) whenu = 2k). Then

2(ng — 1) (" 1m278)

_ ni—1
Hu—2,even = (n1+n2,2)
ni—1

ni+ne—3 ni+ng —2 -1
B 2(n1_1)< np—1 )( np —1 >
2(n1 — 1)(”1 + no — 3)' ' (n1 — 1)'(%2 - 1)'

(n1 — 1)!(ng — 2)! (n1 + ng — 2)!
2(n1+n2—3)! . (nl—l)!(ng—l)!
(n1—2)!(n2—2)! (n1+n2—2)(n1+n2—3)!
2(ny —1)(ng — 1)

ny+ng —2
—ny — 1
_ 2n1n2 ni n2+' (4.23)
ni+ng —2

13



Note that as we writén, + ny — 2)! as(ny + na — 2) - (n1 + ng — 3)!, we are implicitly assuming
thatny + ny — 2 > 1. If this fails, i.e. ifn; + ny < 2, then the above algebra could be wrong and
those cases should be investigated separately (though if interpreted properly, our formulas will still be
correct in these cases). O

By adding2 we get the mean af = 2k for evenu.

Theorem 4.5. Assume we hawe, headsy., tails, u = 2k runs and all strings are equally likely. Then
the expected number of runs is

ning —niy —ng + 1 ning — 1
= 2 1| = 2———. 4.24
Haueven n+ g — 2 + n+ ng — 2 ( )

Whenever one derives a complicated formula, it is a good idea to test it in extreme cases and see if
it is reasonable. For example, the formula does not make sense-ifi, — 2 = 0. However, the only
way that could happen, sineg andns are non-negative integers, is if either both equal one is0
and the othe®. If one isO and the other i then we have andd number of runs, and this formula is
only for the case of an even number of runs. We are left with the case mthenn, = 1. We have
two runs, eithet T or T H. In this case we havérzlf—;;_lz = 2%; it is not unreasonable to thin8<
should be interpreted dsin this instance, and we would then gefthe correct answer). However,
some care is needed in using this formula whenr- no = 2, but this case can be handled directly.
Another good extreme to consider is whenis much larger tham, (or vice-versa, but we have
assumed without loss of generality earlier that> ns). In this case, the mean for sequences with
an even number of runs is approximatel£™2 or about2n,. This is the correct behavior for such
n1 andns. Why? Imagine we have millions of time more heads)(than tails ¢2). In that case it
is extremely unlikely that any two tails will be adjacent. Thus there will be strings of varying lengths
between the tails. As there ang tails, this gives u€n, runs (the heads before a tail, a tail, another
string of heads, a tail, another string of heads, a tail, and so on).
While such sanity checks are not proofs, they help us see if our formulas are reasonable, as well as
possibly catching missing factors. For example, if we had dropped a fac2aatier we would have
found the mean W&%, and this would not have the right behavior for significantly larger
thanns. We also saw that the 2 in the denominator is reasonable.
We can also try a special case, for example= 2, no, = 1. In this case if we want an even number
of runs we must havél HT or TH H. Thus all strings with an even number of runs havens, and
our formula does giveé whenn; = 2 andn, = 1. This helps check the 1 factor.
Thus, while it is still possible that we have made an algebra error somewhere, we should have a
high degree of confidence in the result.

4.3 Determining the variance ofu for strings with « = 2k runs

Theorem 4.6. Assume we have, headsy,; tails, © = 2k runs and all strings are equally likely. Then
the variance in the number of runs is
2 (n1 —1)%(ng — 1)

= 4 . 4.25
Tu,even (n1 +ng —2)%(ny +ng — 3) (4:29)
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Proof. As u = 2k is even, we need to find Vi@k) = E[(2k)?] — E[2k]%. We can simplify the
calculations by noting that the variancewf= 2k is the same as the variancewf- 2 = 2(k — 1).
While we know the mean of botlh = 2k andu — 2 = 2(k — 1), it will turn out to be easier to calculate
E[(2k — 2)?] thanE[(2k)?].

Thus we must evaluate

no—1 2 ni—1\ (ma—1 ng—1 n1—1\ (mao—1
par k=11 2005 () _ 4 w2 (R =102 () (%) (4.26)
ni+n2—2 - 1 119 —2 . .
2("0207) (")
As before, the starting point is (4.6):
e SC B Dol (R Ul B D DN (i FE o
1 1 2+ Y2 ey — 1)1 1 ky —1)72 2
k=1 ka=1
(4.27)

We apply the operatorgylﬁzyl. The reason for this choice is that the two derivatives bring down a
factor of (k1 — 1)(ke — 1); the presence of,y; means the degree of each term is unchanged (in all
four variablesry, 2, y1, y2). Settingxy = 2 = x andy; = y» = y and matching coefficients will
complete the proof, as looking at the coefficient:6f—14™1—1 will causek; = k, and this will give
us the sum we desire.

Specifically, after applyin@gylﬁgyl the left hand side of (4.27) is

(n1 — 1)(ng — Daayr (21 + y1)™ (22 + 12)" 2, (4.28)
while the right hand side of (4.27) is
1 n =1\ ok k-1 e ne =1\ po 1 no—ke
L;l(kl - 1) <k1 B 1)3:1 Y ] : Lzl(kz —1) (1@ - 1):132 Y5 ] : (4.29)

Settingr; = x2 = x andy; = y2 = vy, (4.28) and (4.29) give

ni _1
(1 = 1)(ng = Day(x +y)™rmt = Z(kl—n(}f 1)xmklyk11
L
k1=1

i (k2 — 1) <”2 i 1>xk21y”2k2 . (4.30)

P ko —1

We match ther™ ~1y™1~1 term on both sides. The left hand side is easy. As we havejautside,
we see we need to choose — 2 morex’s andns — 2 morey’s. The right hand side is just the sum
overk; = ko. Denoting this common value Bywe find

! 2 ny —2 y 2 k—1)\k—1 ¥y o
(4.31)
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or equivalently
n2
B 9fn1—1 ng — 1 B B B ny+no—4
;(k 1)<k_1><k_1>—(n1 1)(ng 1)< oy 2 ) (4.32)
Therefore we have

A(ny —1)(ng — 1) ("2

-2
(m:ln—?l_2) -

E[(2k —2)%] = (4.33)

We can simplify the above expression to make it easier to suliiféer — 2)]?:

(n1+n274)! . (n1*1>!(n2*1)!
(n1—2)!(n2—2)! (n1+n2—2)!
(n1+n274)! . (n171)(71172)!(71271)(71272)!
(n1—2)!(n2—2)! (n1+n2—2)(n1+n2—3)(n1+n2—4)!
(m1 — 12(n — 1)?
(n1 —+ ng — 2)(711 + ng — 3)
(m — 1)2(n2 — 1)2 m +ng —2
(n1+n2—2)2 n1+n2—3'

E[(2k —2)!] = 4(n;—1)(ng—1)

= 4(711 — 1)(712 — 1)

4 (4.34)

We must now subtradt[(2k — 2))2. It is easiest algebraically to use the expressiorEfg2k — 2)]?
from the second to last line of (4.23). This yields

Var(2k —2) = 4(n1 —1)%(nz — 1) nptng—2 [Q(nl —1)(ny — 1)]?

(n1+n2—2)2 ni+no—3 ny+no — 2

_ 4(711—1)2(712—1)2 n1+n2—2_1
a (n1+n2—2)2 ny+no —3
(n1 —1)%(ng — 1)? 1

(n1+n2—2)2 "I’L1—|—TL2—3
(n1 —1)*(ng — 1)

4.35
(n1+ng —2)2(ny +ng —3)’ ( )
and Va(2k — 2) = Var(2k). O
For largen; andna,
Var(2k) 4 M5 (4.36)
(n1+n92)?’ '

2
If n1 is much larger tham,, the mean is approximatefn, and the variance is approximateil%.

4.4 Behavior for all ©

We briefly describe what happens if we don't restrict to the case wh#re number of runs, is even.
The main result is that
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Theorem 4.7. Assume we have; headsys tails, u runs and all strings are equally likely; may be
either even or odd and we assumgeny > 1. Then the expected number of runis 21"2 1 1 and the

ni+ng

2nin2(2nina—ni—ng2)

variance is T =2 For n; and n22 I?rge, the expected number of runs is approximately
ning i i i niny
212 and the variance is approxmate&;{er—nz)g.

Note our results on the expected number and variance @fhen is forced to be even) are
consistent with the above, at least whenandns are large. This isn’t surprising, as when andns
are large it is reasonable to think that there are about as many strings with an odd number of runs as
an even number of runs.

Sketch of the proofTo prove Theorem 4.7 we would need to investigate the case wher2k + 1.
The starting point is the second part of (3.2), which tells us how many ways there are toha/et1
runs. We need to know how many strings there are witlheads anah, tails so that we can find the
probabilities of having: = 2k oru = 2k + 1 runs. This isjus(”lqjlm) as we choose; of then; + no
positions to be heads.

In determining the mean and variance when- 2k — 2 we divided the number of strings with
2k runs by2 (”1;“1”_21‘2), which is the number of strings witly, headsp, tails and an even number of
runs. What we can do is multiply our results on the mean and variance in this case by

(")

(4.37)

which now divides the contribution by the total number of strings and not just the total number of
strings with an even number of runs.

The proof is completed by determining the contributions to the mean and the variance from the
u = 2k + 1 terms. These contributions are found in a similar manner (i.e. by differentiating identities)
as theu = 2k terms. We leave the details to the reader. O

For completeness, we sketch the key steps in the algebra to finish the proof. We need to find the
mean. For the terms with an even number of runs we need to av&kagel for the terms with an odd
number of runs we avera@é + 1.

For the even terms, we showed that there 2/ "2~?) strings, and there arg" ") total

ni+no—2
strings. We multiply the mean in Theorem 4.5%(:(,111’%1)).

For the odd terms, from (3.2) we have two sums to study. To analyze the contribution from

3 (”lk_ 1) (?_‘11) (4.38)

k

we see this can be interpreted by looking atthe2y"2 term of

ny—1\ ,_1— ng —1 1 o
Z( 1k1 >a:11 ! ’“y’FZ(;_l)x’;Q Lyp2he (4.39)

k1 k2

when we set; = x9 = x andy; = y» = y. We see this term is the’2—2y"2 term of

(21 +y)™ oo +y2)™ ! (4.40)
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when we setr; = x5 = x andy; = y» = vy, and that term is jus(m;"_?z_Q)x”l’Qy"Q. Note this

allows us to determine the sum of these binomial coefficients. We need to evaluate the sum with a
factor of 2k + 1. To evaluate the sum with a factor bfve apply the operatqha%l; to handle the-1

in 2k 4+ 1 we just need to count the number of terms, which from ab0\(€17|;§{?2’2). Therefore, the
contribution from these terms with oddfrom (3.2) to the mean is just

ny+ng—3 ny+mne —2
2(n1—1)< 1n1_22 >+( 1n1_22 > (4.41)

while the other terms with odd in (3.2) give (by a similar argument or by symmetry) a contribution

of
<n1—|—n2—3)+<n1+n2—2>. (4.42)
ng — 2 no — 2
We then must go through a lot of algebra - after adding all of these contributions we divide by the

number of strings(”ljlm). In adding the various terms it is often convenient to pull out factors of

% In the end we show the meanﬁ?}%ﬁ2 + 1. Itis convenient to notice that

(n1 +n2)(n14+ng —1)(n1+n2 —2) = n8+n3+3n2ny+3n1n3 —3n? —3n2 —6n1ns +2n; + 2ns.
(4.43)

Exercise 4.8.Calculate the contributions from the = 2k + 1 terms and rescale the contributions
from theu = 2k terms to complete the proof of Theorem 4.7.
4.5 Expected Number of Runs with Arbitrary Numbers of Heads and Tails

So far we assumed that there wereheadsn, tails and all strings were equally likely. Let us assume
now that we havéV coin tosses where each toss has probahilibf being a head angl = 1 — p of
being a tail. Thusps = N — ny. For eachn, there are(ﬁ) strings; all of these strings are equally
likely, each occurring with probability™ ¢’¥ —"1. Our main result is

Theorem 4.9. Assume we toss a coin with probabilpyof heads a total ofV times. The expected
number of rungu, (p) is 2p(1 — p)(N — 1) + 1. In particular, if the coin is fair (s = ¢ = 1) then
the expected number of runsis™.

Proof. If there aren, heads then the expected number of run%’—’i‘éjx,;’“) + 1, and there aréflvl)

18



such strings, each occurring with probabiliyt ¢™¥ —"1. Thus the expected number of ryng(p) is

N
2711 anl N —
Moy = Z |: ( N ) + 1:| . <nl>pn1qN -

n1=0

N N
n (N —nq) N! N_ N N_
- 9 ni ni ni ni
> T x (N —n )P 1 2 n )P 4

n1=0 L n1=0

N-1
(N_l)' —1 N—-ni;—1 N
- 9 n1 ny
pq > DI +(p+q)

ni=1

N-1
= 2pg(N-1) ) v —2): PN T T (p g
(n1 — 1)'(N —nip — 1)'

ni=1

)N

= 2p1-p)(N =D+ >+ (p+a)". (4.44)

As ¢ = 1 — p the above becomes

fu(p) = 2pg(N — 1) + L. (4.45)
In the special case that= g = % we have
1 N +1
wl=) = —. 4.46
m(3) = 5 (4.46)
O

Exercise 4.10.Calculate the variance g, (p).

A Proofs by Induction

Assume for each positive integerwe have a statemeit(n) which we desire to show is trué?(n)
is true for all positive integers if the following two statements hold:

e Basis Step:P(1) is true;
¢ Inductive Step: wheneverP(n) is true,P(n + 1) is true.

This technique is calle@roof by Induction, and is a very useful method for proving results. The
reason the method works follows from basic logic. We assume the following two sentences are true:

P(1)is true
Vn > 1, P(n) is true impliesP(n + 1) is true. (A.1)

Setn = 1 in the second statement. AY1) is true, andP(1) implies P(2), P(2) must be true. Now
setn = 2 in the second statement. &Y2) is true, andP(2) implies P(3), P(3) must be true. And so
on, completing the proof. Verifying the first statementiasis stepand the second thieductive step
In verifying the inductive step, note we assuign) is true; this is called thenductive assumption
Sometimes instead of startingrat= 1 we start at» = 0, although in general we could start at any
and then prove for alt > ng, P(n) is true.
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Theorem A.1. For n a non-negative integer,

= 1
Sk = Mt (A2)
k=1

Proof. Let P(n) be the statement
Sk = ”(”;1) (A.3)
k=1

Basis StepP(1) is true, as both sides equal

Inductive StepAssumingP(n) is true, we must show’(n + 1) is true. By the inductive assumption,
S k=) Thus

n+1 n
ko= (n+D)+ )k
k=1 k=1
1
_ 01*‘1)+‘n(né+ )
1 1+1
_ (et D+1+ )‘ (A4)
2
Thus, givenP(n) is true, thenP(n + 1) is true. O
Exercise A.2. Prove
- n(n+1)(2n+1)
K = : A5
kZ_l 6 (A.5)

Find a similar formula for the sum df}. See also Remark A.3.

Remark A.3. Ingeneral,>";_, kP = f,(n), wheref,(x) is a polynomial of degreg+ 1 with leading
2P+l

term <= one can find the coefficients by evaluating the sumsfer0, 1, ..., p because specifying
the values of a polynomial of degreat p + 1 points uniquely determines the polynomial.

Exercise A.4. Notation as in Remark A.3, assumifign) is a polynomial inn, use the integral test
from calculus to show the leading term%%.

Exercise A.5. Show the sum of the firstodd numbers i&?, i.e.,

En:(% —1) = n2 (A.6)

k=1
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B The Binomial Theorem

We prove the Binomial Theorem. First, recall that

Definition B.1 (Binomial Coefficients) Letn andk be integers with) < k& < n. We set

n n!
() - 7 oY

Note that0! = 1 and(Z) is the number of ways to choogepbjects fromn (with order not counting).

Lemma B.2. We have

n n n n n+1
) =Gl ()60 = (0 ©2)
Exercise B.3. Prove Lemma B.2.

Theorem B.4(The Binomial Theorem)For all positive integers: we have

(x+y)" = Z <Z> "Rk (B.3)

k=0
Proof. We proceed by induction.

Basis StepForn = 1 we have

kizo <,1>$1_kyk = <é>w + G)y = (z+y)". (B.4)

Inductive StepSuppose
(x+y)" = Y <n> "Rk (B.5)
Then using Lemma B.2 we find that
(+y)"" = (@ +y)(z+y)"

= (z+vy) zn: <Z> xRy

k=0

_ — (n n+l—k, k N\ n—k k+l
= 3 (L)t (1)

k=0

_ xn+1+z{<n> +( n )}xn+1—kyk+yn+1
P k k—1
n+1
n+1\ ,.q_
_ Z( . )x kb

k=0

(B.6)

This establishes the induction step, and hence the theorem. O
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C Summingp™ powers of integers

Using Induction (Appendix A), it is possible to prove results such as

Theorem C.1. For p a positive integer
Sk = fy(n), (C.1)
k=1

where f,,(z) is a polynomial of degreg + 1 in x with rational coefficients, and the leading term is

P+l
p+1°

See Remark A.3 for more details. It is also possible to prove these restlitsut resorting to
induction! Namely, we can prove these results by differentiating identities. We need the following
result about finite geometric series:

Lemma C.2. For anyx € R,
n+1_1
l4zta?+ 42" = = T (C.2)
x_

Proof. If x = 1 we evaluate the right hand side by L'Hospital’s Rule, which gi%% =n+ 1. For
otherz,letS =14z +---+ 2™ Then

S = l4+ata®+.- +a"
xS = 4ot 4 a4 (C.3)
Therefore
xS —8 = " -1 (C.49)
or 1
ntl
g =2 -2 (C.5)
r—1

O

We now show how to sum thé" powers of the first: integers. We first investigate the case when
p = 1 and provide an alternate proof of Theorem A.1. Consider the identity

- antl—1
k=0
We apply the operaton‘% to each side and obtain
d <~ d z"t —1

T T Tl a1
ikxk B JU(n—}-l)ﬂs”-(95—1)—1'(x"‘*'l - 1)
— (x —1)2
Sokat = Tk Dat e €7
=0 - (z —1)2 ' '
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If we setz = 1, the left hand side becomes the sum of the firgttegers. To evaluate the right hand
side we use L'Hospital’s rule, as when= 1 we getl - % As long as one of the factors has a limit, the
limit of a product is the product of the limits. As — 1, the factor ofx becomes just and we must

studylim,_; ”"’“"nﬂ(‘x(f;;?xn“. We find

nz"t — (n+ 1)2"™ + 1 n(n+1)z" —n(n + 1)z !

a£1—>ml (x —1)2 - i1—>ml 2(x —1) (C.8)
As the right hand side i% whenz = 1 we apply L'Hospital again and find
n+1 n 2 n—1 _ - n—1
i ™ (n+1)z"+1 — " (n+1)x nn+1)(n—1)x
z—1 (x — 1)2 z—1 2
_ nletl) (C9)

Therefore, by differentiating the finite geometric series and using L'Hospital’s rule we were able
to prove the formula for the sum of integexsthout resorting to induction. The reason we used the
operatorx% and not% is this leaves the power af unchanged. While this flexibility is not needed
to compute sums of first powers of integers, if we want to calculate surks fafr p > 1, this will
simplify the formulas.

Theorem C.3. For n a positive integer,

& _ nn+1)2n+1)
gk%’“ = : . (C.10)

Proof. To find the sum ok? we applyx% twice to (C.6) and get

d d <& K d Tl daz"1 -1
d ¢ d [ nz™ —(n+1)2"+1
=N kb = 2
T 2 Yar [T @1y }
k=0 L
i Kb = xi [nat2 — (n+ 1)xn+1 +x
Zn: 2ok [n(n +2)2" ! — (n+1)%2" + 1} Sz — 1)2
k=0 (z — 1)1
.y [nxn+2 —(n+ 1)xn+1 + x] 2z — 1). 1)
(x — 1)

Simple algebra (multiply everything out on the right hand side and collect terms) yields

zn: 2k xn2x"+2 — (2n2 4+ 2n — 1)(x"+11—)+—3(n2 +2n+1)2" —z — 1. (C.12)
x —_—

k=0
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The left hand side is the sum we want to evaluate; however, the right hand gicﬂeris =1.As
the denominator igz — 1)? it is reasonable to expect that we will need to apply L'Hospital’s rule three
times; we provide a proof of this in Remark C.4.

Applying L'Hospital’s rule three times to the right hand side we find the right hand side is

n(n+2)(n+ nz" !t — (2n?2 +2n— D)(n+ Dn(n — Dz" 2+ (n® +2n+ Dn(n — 1)(n — 2)$”_3'

3-2-1
(C.13)
Taking the limit asc — 1 we obtain
i 20k n?(n+2)(n+1)n—2n2+2n—1)(n+ )nn — 1)+ (0?2 +2n+ )n(n — 1)(n — 2)
n(n+1)(2n+1)

14
6 ’ (C.14)

where the last line follows from simple algebra. O

Remark C.4. While we are able to obtain the correct formula for the sum of squares without resorting
to induction, the algebra is starting to become tedious, and will get more so for sums of higher powers.
After applylng:z: twice we had%, whereg(x) is a polynomial of degree + 2 andg(1) = 0.

It is natural to suppose that we need to apply L'Hospital’s rule three times as we have a factor of
(x — 1)3 in the denominator. However, §f(1) or g”(1) is not zero, then we do not apply L’Hospital’s

rule three times but rather only once or twice. Thus we really need to check and make sure that
g (1) = ¢"(1) = 0. While a straightforward calculation will show this, a moment'’s reflection shows
us that both of these derivatives must vanish. If one of them was non-zero, say egutiein we

would havej which is undefined; however, clearly the sum of the firsguares is finite. Therefore
these derivatives will be zero and we do have to apply L’'Hospital’s rule three times.

Remark C.5. For those concerned about the legitimacy of applying L'Hospital’s rule and these for-
mulas wherr = 1, we can consider a sequencexdd, sayxy = 1 — % with N — oo. Everything is

then well-defined, and it is of course natural to use L'Hospital’s rule to evaliatg . (:f](fﬁ))g.

D Divergence of the Harmonic Series

Instead of considering (1.3):

o0
Zn-x”_l =142z +322+423 + - | (D.1)
let us consider
2 3 4
LA S S A D.2
Z + +o T (D.2)

Takingz = 1 yields the famous harmonlc series

1 1 1
T D.3
R (D.3)
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There are many proofs of the divergence of the harmonic series (one simple one is to groug¥terms
through2**! — 1 together, note each term is at Ie%iso their sum is at least another is to multiply

by % and subtract and note that the sum of the reciprocals of the odd numbers is greater than the
sum of the reciprocals of the even numbers); we present a proof based on differentiating (or actually
integrating) identities. Let

oo
n T :E2 3 4

X X
Flp) = S 2 v v v D.4
() e B T N (4)

If |z| < 1 then the above series converges. We now differentiate and note thatif1 then we can
interchange differentiation and summation, and we find

S 1
f(I):F/(IE):ZIEn_I:1+x+x2+$3+:m’ (DS)

n=1

where the last equality follows by the geometric series formula. We now integrate the abovetrom
u foru € (0,1) (so we may interchange integration and summation). We find

= u” Y odx
=30 = [ = st w 0)
We have therefore shown that forc (0, 1) that
2 3 4
U Y L~ Clog(l— ). (D.7)

1 2 3 4

We now take the limit as — 1 from below; let us write; asu = 1 — e~! with ¢ positive andt — oc.
Then the left hand side of (D.7) as— oo is just the harmonic sum,

11 1
L4 sbgt gt (D.8)

For a fixedt, the right hand side is-log(e™*) = t. Thus asu — 1 from belowt — oo and
—log(1 — u) — oo. Thus the harmonic series diverges.

Exercise D.1. Use the above arguments to show that the sum of theNirstrms of the harmonic
series is of sizég N.

E Interchanging Differentiation and Summation

We first recall Fubini’s Theorem, which states when we may interchange orders of integration.

Theorem E.1(Fubini). Assumef is continuous and

b d
// |f(z,y)|dzdy < oo. (E.1)
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Then

/ab [/cdf(a:,y)dy] dr — /Cd [/:f(x,y)dx] dy. (E.2)

Similar statements hold if we instead have

Ny d N1 My
DN INCHIEED S D (A} E3)
n=No* ¢ n=No m=DMo

For a proof in special cases, see [BL, VG]; an advanced, complete proof is given in [Fol]. One
cannot always interchange orders of integration. For simplicity, we give a sequgpcguch that
Yo mm) # >, (O, amn) (@lthough it is trivial to modify this to an example involving inte-
grals).

Exercise E.2.For m,n > 0 let
1 if n=m
Amn = { -1 if n=m+1 (E.4)
0 otherwise.

Show that the two different orders of summation yield different answers.

We now study when we can justify interchanging orders of differentiation and summation. We
know the geometric series formula gives

= 1

E " = , x| < 1. (E.5)
1—=x

n=0

We show that we may interchange differentiation and summation above. The derivative of the right
hand side (with respect to) is just(1 — x) ~2. We want to say the derivative of the left hand side is

Zn:p”_l, (E.6)
n=0
but do to so requires us to justify
d X, ~=d ,
n=0 n=0

A standard way to justify statements like this is as follows. We noteXh#t, nz"~! converges for
|z| < 1; if we can show that for any > 0 that this is withine of (1 — z)~2, then we will have justified
the interchange.

To see this, fix am > 0. For eachV, we may write

00 N 00
E " = E "+ E z"
n=0 n=0

n=N+1
N N+1 1
= Zx”er = : (E.8)
1—=x 1—=x
n=0
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We can differentiate each side, and we can justify interchanging the differentiation and the summation
because we havinite sums. Specifically, there are only + 2 terms (V + 1 from the sum and then
one more,%). Therefore we have

A, 4% d 1
da:nio drl—z  dxl—=x
N
SS gt WD) e
(1—x)? (1—x)?
N
o1, N+ -2)+z § 1
= — E.9
nz:;)nx + (-2 x e (E.9)

As |z| < 1, given anye > 0 we can find anV, such that for allv. > N,

(N+1D)Q—2)+z y €
< - E.10
' (1—x)? =g ( )
Similarly we can find anV; such that for allVvV-> N; we have
G n—1 €
Z nx < 5 (E.11)
n=N-+1
Therefore we have shown that for every 0 we have
TP Z na" (E.12)

proving the claim. Instead of studying these sums for a specifige can considet. € [a, b] with
—1<a<b<1,andNy, Ny will just depend oru, b ande.
One situation where we cannot interchange differentiation and summation is when we have se-

ries that are conditionally convergent but not absolutely convergent. This Méansconverges but
> |ay| does not. For example, consider

X n

Y (E.13)

n
n=0

If z = —1 this series conditionally converges but not absolutely; in fact, as

o)
2 3 "

—log(l—2) = x4+ — + -+ ; (E.14)

then (E.13) withe = —1 is just— log 2. What happens if we try to differentiate? We have
d = "
S —log(1—w)] = — [Z ] . (E.15)
n=1
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The left hand side is easy to differentiate forc [—1,0], giving ﬁ But if we interchange the
differentiation and summation we would have

and this does not converge whenr= —1 (aside: the sum oscillates betwekeand0; in some sense it
can be interpreted a}s which is Whatﬁ equals wherr = —11).

Sometimes, however, conditionally convergent but absolutely divergent series can be managed.
Consider

[e.9] n

P (E.17)
nzlnlogn

This series converges conditionally when= —1 but diverges upon inserting absolute values. If we
interchange differentiation and summation we get

x© n—1
P (E.18)
— logn

and this sum does converge (conditionally, not absolutely) when—1.
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