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Abstract

We give some examples of differentiating identities to prove formulas in probability theory
and combinatorics. The main result we prove concerns the number of alternating strings of heads
and tails in tossing a coin. Specifically, if we toss a coinn1 + n2 times and seen1 heads andn2

tails, the mean of the number of runs is2n1n2
n1+n2

+ 1 and the variance is2n1n2(2n1n2−n1−n2)
(n1+n2)2(n1+n2−1) . For

example, if we observedHHHTHHTTTTHTT thenn1 = 6, n2 = 7 and there would be6
alternating strings or6 runs.

More generally, assume we toss a coin with probabilityp of heads a total ofN times. The
expected number of runs is2p(1− p)(N − 1) + 1. In particular, if the coin is fair (sop = 1

2 ) then
the expected number of runs isN+1

2 .
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1 Simple Examples

We give a standard example illustrating the key idea of differentiating identities. Assume, for some
reason (perhaps because of the tantalizing simplicity of the expression), that we want to evaluate

1
1

+
2
2

+
3
4

+
4
8

+
5
16

+
6
32

+
7
64

+ · · · . (1.1)

After some thought we might realize that this is the same as

∞∑
n=0

n

2n−1
. (1.2)

The series does converge by the comparison test (forn large, comparen
2n to 1

(3/2)n ).
Abstraction actually helps us. It is easier to study

∞∑
n=0

n · xn−1. (1.3)

Using the comparison test, one can show this series converges for|x| < 1. If we didn’t have then’s
above, the series would be easily summable: the geometric series formula gives

∞∑
n=0

xn =
1

1− x
. (1.4)

If we could differentiate both sides of the above equationand interchange the order of summation and
differentiation we would have

d

dx

∞∑
n=0

xn =
d

dx

1
1− x

∞∑
n=0

d

dx
xn =

1
(1− x)2

∞∑
n=0

nxn−1 =
1

(1− x)2
. (1.5)

Now all we have to do is takex = 1
2 above to solve the original problem. For this problem, as long as

|x| < 1 we can justify interchanging the order of summation and differentiation. See Appendix E for
some results about interchanging orders of differentiation and summation.

The above is a standard example ofDifferentiating Identities . We give an interesting application
of a related problem in Appendix C; namely, by considering a finite geometric sum and differentiating
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the resulting identity we obtain formulas for the sums of powers of integers. Typically such formulas
are proved by induction; this presents an alternative approach. As another example, in Appendix D we
use this method to show that the harmonic series (the sum of the reciprocals of the integers) diverges.

We give another common example, this time from basic probability. Consider a binomial distrib-
ution with n trials, where each trial has probabilityp of being a success (coded as1) and probability
1 − p of being a failure (coded as0). For example, considern tosses of a coin with probabilityp of
heads and1− p of tails. Thus

Prob(k) =

{(
n
k

)
pk(1− p)n−k if k ∈ {0, 1, . . . , n}

0 otherwise.
(1.6)

What is the expected number of successes (or heads)? What is the variance? One simple way to
solve this is by linearity of expectation. Namely, considern independent trials, whereXi is a random
variable denoting the outcome of theith trial. SpecificallyXi is 1 for a success (which occurs with
probabilityp) and0 for a failure (which occurs with probability1− p). If X = X1 + · · ·+ Xn, then
X has the binomial distribution with parametersn andp and we have

E[X] = E[X1 + · · ·+ Xn]
= E[X1] + · · ·+ E[Xn]. (1.7)

As
E[Xi] = 1 · p + 0 · (1− p), (1.8)

we find that
E[X] = np. (1.9)

Similarly, using
Var(X) = Var(X1) + · · ·+ Var(Xn) (1.10)

and
Var(Xi) = E[X2

i ]− E[Xi]2 =
(
12 · p + 02 · (1− p)

)
− (p)2 = p(1− p), (1.11)

we see that
Var(X) = np(1− p). (1.12)

We now show how these formulas can be derived by differentiating identities. Similar to the
geometric series formulas above, it is much easier to work with a free parameter (such asp) and
then set it equal to a desired probability at the end; if we didn’t have a free parameter, we couldn’t
differentiate! Thus, even if a problem gives a particular value forp, it is easier to derive formulas for
arbitraryp and then setp equal to the given value at the end. This allows us to use the tools of calculus.

Thus to study the binomial function we should consider

(p + q)n =
n∑

k=0

(
n

k

)
pkqn−k. (1.13)

(Aside: for those knowing moment generating functions, think about connections between moment
generating functions and differentiation.) If we takep ∈ [0, 1] andq = 1− p, then we have a binomial
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distribution and(p + q)n = 1. We now differentiate the above with respect top. While we will
eventually setq = 1− p, for now we considerp andq independent variables.

In fact, instead of∂∂p we applyp ∂
∂p . The advantage of this is that we do not change the powers of

p andq in our expressions, and we find

p
∂

∂p

(
n∑

k=0

(
n

k

)
pkqn−k

)
= p

∂

∂p
(p + q)n

p

n∑
k=0

(
n

k

)
kpk−1qn−k = p · n(p + q)n−1

n∑
k=0

k

(
n

k

)
pkqn−k = np(p + q)n−1; (1.14)

interchanging the differentiation and summation is trivial to justify because we have a finite sum. The
expected number of successes (when each trial has probabilityp of success) is obtained by now setting
q = 1− p, which yields

n∑
k=0

k

(
n

k

)
pk(1− p)n = np. (1.15)

To determine the various, we differentiate again. Hence applying the operatorp2 ∂2

∂p2 to (1.13) gives

p2 ∂2

∂p2

(
n∑

k=0

(
n

k

)
pkqn−k

)
= p2 ∂2

∂p2
(p + q)n ; (1.16)

again, we applyp2 ∂2

∂p2 as this keeps the powers ofp andq the same before and after the differentiation.
After some simple algebra we find

n∑
k=0

k(k − 1)
(

n

k

)
pkqn−k = p2 · n(n− 1)(p + q)n−2. (1.17)

Unfortunately, to find the variance we need to study

n∑
k=0

(k − µ)2
(

n

k

)
pkqn−k, (1.18)

whereµ = np is the mean of the binomial random variableX. This is not a serious problem, as we
can determine the variance fromE[X2]−E[X]2 and writek(k− 1) ask2− k; note the sum ofk2 will
beE[X2]. Thus

n(n− 1)p2(p + q)n−2 =
n∑

k=0

k2

(
n

k

)
pkqn−k −

n∑
k=0

k

(
n

k

)
pkqn−k. (1.19)

But we have already determined the second sum – it is justnp whenq = 1− p. Settingq = 1− p we
thus find

n∑
k=0

k2

(
n

k

)
pk(1− p)n−k = n(n− 1)p2 + np = n2p2 + np(1− p). (1.20)
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Therefore the variance is just

Var(X) =
n∑

k=0

k2

(
n

k

)
pk(1− p)n−k −

(
n∑

k=0

k

(
n

k

)
pk(1− p)n−k

)2

= n2p2 + np(1− p)− (np)2

= np(1− p). (1.21)

As a final remark, consider again (1.15) and (1.20). If we setp = q = 1
2 and then move those

factors to the right hand side, we obtain

n∑
k=0

k

(
n

k

)
= 2n,

n∑
k=0

k2

(
n

k

)
= n(n + 1)2n−2. (1.22)

Thus we can find nice expressions for sums of products of binomial coefficients and their indices.

Remark 1.1. It is interesting to note that even if we only want to evaluate sums of integers or rationals,
we need to havecontinuousvariables so that we can use the tools of calculus.

Remark 1.2. Instead of applyingp2 ∂
∂p , it is easier to applyp ∂

∂p twice. The advantage of this is that

we havek2 coming down and notk(k − 1). Specifically, we start with

n∑
k=0

(
n

k

)
pkqn−k = (p + q)n. (1.23)

Applyingp ∂
∂p once yields

n∑
k=0

k

(
n

k

)
pkqn−k = p · n(p + q)n−1. (1.24)

Applyingp ∂
∂p again gives

n∑
k=0

k2

(
n

k

)
pkqn−k = p

[
1 · n(p + q)n−1 + p · n(n− 1)(p + q)n−2

]
. (1.25)

By lettingq = 1− p and subtracting the square of the mean, we regain the variance in(1.21).

2 Matching Coefficients

Sometimes we can derive identities of binomial coefficients without differentiating – one common
technique is matching coefficients. For example, consider

n∑
k=0

(
n

k

)2

=
n∑

k=0

(
n

k

)(
n

n− k

)
, (2.1)
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because
(
n
k

)
=
(

n
n−k

)
. Consider now the following sum

n∑
k=0

(
n

k

)
xkyn−k ·

(
n

n− k

)
xn−kyk, (2.2)

as well as
(x + y)n(x + y)n. (2.3)

Expanding the product gives

(x + y)n(x + y)n = (x + y)2n =
2n∑

j=0

(
2n

j

)
xjy2n−j ; (2.4)

note the coefficient ofxnyn in this product is
(
2n
n

)
. The key observation is that (2.2) is just thexnyn

term of(x + y)2n. This is because it can be interpreted as taking thexnyn term of(x + y)n(x + y)n.
How do we get anxnyn term from multiplying(x+y)n with (x+y)n? Well, the two factors(x+y)n

give terms like
(
n
i

)
xiyn−i and

(
n
j

)
xjyn−j , which are then multiplied together. The only way we get

an xnyn is whenj = n − i, and we can do this for anyj ∈ {0, 1, . . . , n}. Thus thexnyn term in
(x + y)2n is (

2n

n

)
xnyn =

n∑
k=0

(
n

k

)
xkyn−k ·

(
n

n− k

)
xn−kyk. (2.5)

The proof is completed by takingx = y = 1.
The reason arguments like this work is because if we have two polynomials of finite degree in

finitely many variables, then if they take on identical values for all values of the parameters then
all the coefficients of the two polynomials are equal. This allowed us to take two expressions and
equate the coefficients of terms. Without this observation, the equality of two polynomials (at all
values of the parameters) would not imply the equality of the coefficients. For example, assume
x2 +2xy− 7y = x2 +3xy− 5y2 + y for all x, y ∈ C (of course these two polynomials are not always
equal); however, if thiswere to happen, we would be in trouble as in the first we have2xy and the
second we have3xy. Thus while some terms (such asx2) have the same coefficient, others do not.

Specifically, sayF (x, y) andG(x, y) are two polynomials of finite degree with complex coeffi-
cients. Then if they are equal for all choices ofx, y ∈ C we haveF (x, y)−G(x, y) is a polynomial of
finite degree and it is zero for allx, y ∈ C. It is an easy exercise to show this implies all the coefficients
of F (x, y)−G(x, y) are zero (i.e., all the coefficients ofF (x, y) equal those ofG(x, y)). One way to
see this is to choose fixed values ofx. Sayx = a. Except for finitely many choices ofa, we would get
F (a, y)−G(a, y) is a finite degree polynomial and it has some non-zero coefficient but it vanishes for
all y ∈ C. This is absurd as a polynomial of degreed has at mostd complex roots. We do not need to
havex andy range over all ofC; it suffices to have them range over a large enough set, for example
|x|, |y| ≤ R for someR > 0.

The biggest difficulty in successfully applying arguments of this nature is figuring out what to
compare the observed sum to. Here we needed to see that we should compare

∑n
k=0

(
n
k

)2
to the

coefficient ofxnyn in (x + y)2n. Writing
(
n
k

)
as
(
n
k

)
·
(

n
n−k

)
suggests that we should compare it to a

coefficient of(x + y)n(x + y)n.
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3 Combinatorics and Partitions

We review some needed results on combinatorics and partitions before tackling the number of alter-
nating strings of coin tosses.

3.1 The Cookie Problem

We describe a combinatorial problem which contains many common features of the subject. Assume
we have 10 identical cookies and 5 distinct people. How many different ways can we divide the
cookies among the people, such that all 10 cookies are distributed? Since the cookies are identical,
we cannot tell which cookies a person receives; we can only tell how many. We could enumerate
all possibilities (there are 5 ways to have one person receive 10 cookies, 20 ways to have one person
receive 9 and another receive 1, and so on). While in principle we can solve the problem, in practice
this computation becomes intractable, especially as the number of cookies and people increase.

We introduce common combinatorial functions. The first is thefactorial function : for a positive
integern, setn! = n · (n − 1) · · · 2 · 1. The number of ways to chooser objects fromn when order
matters isn · (n − 1) · · · (n − (r − 1)) = n!

(n−r)! (there aren ways to choose the first element, then

n− 1 ways to choose the second element, and so on). Thebinomial coefficients
(
n
r

)
= n!

r!(n−r)! is the
number of ways to chooser objects fromn objects when order does not matter. The reason is once
we’ve chosenr objects, there arer! ways to order them. For convenience, we define0! = 1 (thus(
n
0

)
= 1, which may be interpreted as saying there is one way to choose zero elements from a set ofn

objects). For more on binomial coefficients, see §B.
We show the number of ways to divide 10 cookies among 5 people is

(
10+5−1

5−1

)
. In general, if there

areC cookies andP people,

Lemma 3.1. The number of distinct ways to divideC identical cookies amongP different people is(
C+P−1

P−1

)
.

Proof. ConsiderC +P −1 cookies in a line, and number them1 to C +P −1. ChooseP −1 cookies.
There are

(
C+P−1

P−1

)
ways to do this. This divides the cookies intoP sets: all the cookies up to the

first chosen (which gives the number of cookies the first person receives), all the cookies between the
first chosen and the second chosen (which gives the number of cookies the second person receives),
and so on. This dividesC cookies amongP people. Note different sets ofP − 1 cookies correspond
to different partitions ofC cookies amongP people, and every such partition can be associated to
choosingP − 1 cookies as above.

Remark 3.2. In the above proof, we do not carewhich cookies a person receives. We introduced the
numbers for convenience: now cookies 1 throughi1 (say) are given to person 1, cookiesi1 +1 through
i2 (say) are given to person 2, and so on.

For example, if we have 10 cookies and 5 people, say we choose cookies 3,4,7, and 13 of the
10+5-1 cookies:⊙ ⊙ ⊗ ⊗ ⊙ ⊙ ⊗ ⊙ ⊙ ⊙ ⊙ ⊙ ⊗ ⊙
This corresponds to person 1 receiving 2 cookies, person 2 receiving 0, person 3 receiving 2, person 4
receiving 5, and person 5 receiving 1.
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The above is an example of a partition problem: we are solvingx1 + x2 + x3 + x4 + x5 = 10,
wherexi is the number of cookies personi receives. We may interpret Lemma 3.1 as the number of
ways to divide an integerN into k non-negative integers is

(
N+k−1

k−1

)
.

Exercise 3.3.Show
N∑

n=0

(
n + k − 1

k − 1

)
=
(

N + 1 + k − 1
k − 1

)
. (3.1)

One can interpret the above as dividingN cookies amongk people, where we do not assume all
cookies are distributed. Note here we have a sum of binomial coefficients where both the topandthe
bottom index are varying. In general such sums are difficultunlessyou can find a nice way to interpret
such a sum.

Exercise 3.4. In partition problems, often there are requirements such as everyone receives at least
one cookie. How many ways are there to writeN as a sum ofk non-negative integers? How many
solutions ofx1+x2+x3 = 2005 are there if eachxi is an integer andx1 ≥ 5, x2 ≥ 7, andx3 ≥ 1000?

3.2 The Alternating Strings Problem

Consider a string ofn1 + n2 coin tosses withn1 heads andn2 tails. There are
(
n1+n2

n2

)
ways to order

the n1 heads andn2 tails. Assume all orderings are equally likely. Our goal is to eventually study
the number of alternating strings of heads and tails. We start with a simpler problem, namely trying
to figure out how many ways there are to arrangen1 heads andn2 tails and observeu runs (again,
HHTTHTTTH would have5 runs and4 alterations).

For example, let us sayn1 = n2 = 3 and we want to have3 runs. If we assume we start with
a head we could haveHTTTHH or HHTTTH, and by symmetry if we start with a tail we could
haveTHHHTT or TTHHHT .

In general, we have

Theorem 3.5. Let there ben1 heads andn2 tails, and assume each of the
(
n1+n2

n1

)
arrangements are

equally likely. Let there beu runs of heads and tails. Then

u =

{
2
(
n1−1
k−1

)(
n2−1
k−1

)
if u = 2k for a positive integerk(

n1−1
k

)(
n2−1
k−1

)
+
(
n1−1
k−1

)(
n2−1

k

)
if u = 2k + 1 for a positive integerk.

(3.2)

Proof. We consideru = 2k and leave the other case as an exercise. As there are an even number of
runs, we must either begin with a head and end with a tail, or we must begin with a tail and end with a
head. By symmetry, it is enough to consider just the case when we start with a head and then multiply
by 2. The reason is if we have a sequence likeHHHTTHTTTHTHT we can reverse it and obtain
a sequence that starts with a tail and ends with a head.

Let us assume we will start with a head and end with a tail. Consider a string ofn1 heads. If we
partition it intok strings of heads, we can then put tails in after the partitions, and we will have2k runs;
however, wemustput a partition after the final head, as we must end with a tail. Further, we cannot put
a partition before the first head as wemuststart with a head. For example, if we partitionHHHHH
by adding partitions| to getH|HHH|H|, then we can add strings of tails after the partitions to get
HT · · ·THHHT · · ·THT · · ·T for a total of6 runs. How many ways are there to partitionn1 heads
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into k groupswith a partition occurring after the final head and no partition allowed before the first
head? Note there aren1 + 1 positions where we can put a partition (before the first head, after the first
head, after the second head,. . . , after the last head); however, we shall see that two of these positions
have their values forced.

We must choose the last place for one partition, we cannot choose the place before the first head,
and then we must choosek − 1 of the remainingn1 − 1 positions for the other partitions. Thus the
number of ways to addk partitions when we must add a partition after the final head and we cannot add
one before the first head is just

(
1
1

)(
1
0

)(
n1−1
k−1

)
=
(
n1−1
k−1

)
. A similar argument shows there are

(
n2−1
k−1

)
ways to partitionn2 tails intok groups, assuming we must have a partition before the first tail and we
are not allowed to have a partition after the final tail.

We now intersperse the partitioned heads and tails. Consider any of the
(
n1−1
k−1

)
partitions of the

n1 heads and any of the
(
n2−1
k−1

)
partitions of then2 tails. Each such pair gives rise to a sequence of

n1 heads andn2 tails with exactly2k runs, and any such sequence corresponds to a unique pair. For
example, say we haveH|HH|HHH| and|TTTT |T |TT ; these unite to becomeHTTTTHHTHH.

Thus the number of partitions leading to2k runs where the first coin is a head and the last is a tail
is just

(
n1−1
k−1

)(
n2−1
k−1

)
. By symmetry this is the same as the number of partitions where the first coin is

a tail and the last is a head, which completes the proof of the theorem in the case of an even number of
runs.

Of course, in the arguments above1 ≤ k ≤ min(n1, n2); for otherk the number of strings with
2k runs is zero.

4 Determining How Often There are an Even Number of Runs

By differentiating identities we determine how often there are anevennumber of runs when there
aren1 heads andn2 tails and each of the

(
n1+n2

n1

)
strings are equally likely. A similar argument is

applicable for the case when there are an odd number of runs; we concentrate here on the case of an
even number to highlight the methods.

If u = 2k is the number of runs, then we know the number of ways to have2k runs is just

2
(

n1 − 1
k − 1

)(
n2 − 1
k − 1

)
. (4.1)

Without loss of generality, for notational convenience let us assumen1 ≥ n2, sok runs from1 to n2.
Thus the number of strings with an even number of runs is just

n2−1∑
k=1

2
(

n1 − 1
k − 1

)(
n2 − 1
k − 1

)
, (4.2)

as there must be at least two runs (there is no way to have zero runs unlessn1 = n2 = 0, which we
shall assume we do not have). We first need to determine what this sum is, and then to determine the
expected number ofu (whenu = 2k is even) we will need to sum

n2−1∑
k=1

(2k) · 2
(

n1 − 1
k − 1

)(
n2 − 1
k − 1

)
. (4.3)
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4.1 Determining the number of strings withu = 2k runs

Consider the polynomial
(x1 + y1)n1−1(x2 + y2)n2−1; (4.4)

we shall see very shortly why this is a “natural” polynomial to examine. Using the Binomial Theorem
(Theorem B.4) we have

(x1 + y1)n1−1 =
n1−1∑
k1=0

(
n1 − 1

k1

)
xn1−1−k1

1 yk1
1 =

n1∑
k1=1

(
n1 − 1
k1 − 1

)
xn1−k1

1 yk1−1
1

(x2 + y2)n2−1 =
n2−1∑
k2=0

(
n2 − 1

k2

)
xk2

2 yn2−1−k2
2 =

n2∑
k2=1

(
n2 − 1
k2 − 1

)
xk2−1

2 yn2−k2
2 ; (4.5)

we will see later why it is convenient to havexn1−k1
1 but xk2−1

2 ; we can write the binomial theorem
this way as

(
m
r

)
=
(

m
m−r

)
. Therefore

(x1 + y1)n1−1(x2 + y2)n2−1 =

 n1∑
k1=1

(
n1 − 1
k1 − 1

)
xn1−k1

1 yk1−1
1

 ·
 n2∑

k2=1

(
n2 − 1
k2 − 1

)
xk2−1

2 yn2−k2
2

 .

(4.6)

Consider what happens if we setx1 = x2 = x andy1 = y2 = y. Then the above becomes

(x + y)n1+n2−2 =

 n1∑
k1=1

(
n1 − 1
k1 − 1

)
xn1−k1yk1−1

 ·
 n2∑

k2=1

(
n2 − 1
k2 − 1

)
xk2−1yn2−k2


=

n1∑
k1=1

n2∑
k2=1

(
n1 − 1
k1 − 1

)(
n2 − 1
k2 − 1

)
xn1−1−k1+k2yn2−1+k1−k2 . (4.7)

Now we use the uniqueness of polynomial expansions and equate coefficients. Consider thexn1−1yn2−1

term in (4.7). There are two ways we can calculate it. Looking at the left hand side, we have
(x + y)n1+n2−2, and thus the term is just

(
n1+n2−2

n1−1

)
xn1−1yn2−1. Looking at the right hand side

we see the term we desire occurs whenk1 = k2. We see now why we wrotexn1−k1
1 andxk2−1

2 ; this
made it easy to combine the terms. Denoting the common value ofk1 andk2 by k we obtain(

n1 + n2 − 2
n1 − 1

)
xn1−1yn2−1 =

n2∑
k=1

(
n1 − 1
k − 1

)(
n2 − 1
k − 1

)
xn1−1yn2−1, (4.8)

or cancelling thex’s and they’s(
n1 + n2 − 2

n1 − 1

)
=

n2∑
k=1

(
n1 − 1
k − 1

)(
n2 − 1
k − 1

)
. (4.9)

We have determined the sum in (4.2), the sum we needed to figure out how many different strings there
are withn1 heads,n2 tails andu = 2k runs! Namely, we have shown
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Lemma 4.1. The number of strings withn1 heads,n2 tails andu = 2k runs is

n2−1∑
k=1

2
(

n1 − 1
k − 1

)(
n2 − 1
k − 1

)
= 2

(
n1 + n2 − 2

n1 − 1

)
. (4.10)

Some discussion is clearly in order as to how we knew we should consider(x1 + y1)n1−1(x2 +
y2)n2−1. This is the hardest step in all such proofs by matching or proofs by differentiating identities,
namely figuring outwhereto start. The answer is usually suggested by trying to analyze the quantity
being studied, looking for clues as to what series or products we should consider.

In this case, we knew that we had to eventually have products like
(
n1−1
k−1

)(
n2−1
k−1

)
. How can we get

such terms? Well, the
(
n1−1
k−1

)
are the coefficients when we expand(A + B)n1−1; we choseA = x1

andB = y1 to have some flexibility, and to distinguish these terms from the other factors. For simply
counting the number of strings withu = 2k runs this extra degree of freedom or flexibility was not
needed; however, it will be crucial in trying to find the mean ofu whenu is even. Similarly the(
n2−1
k−1

)
are the coefficients from expanding(A + B)n2−1, and we chooseA = x2 andB = y2 for the

same reasons as before. By settingx1 = x2 = x andy1 = y2 = y in the end we are arguing in a
similar manner as in §2. This is a common and powerful technique, namely writing(x + y)n+m and
(x + y)n(x + y)m and then deducing identities for sums involving terms like

(
n
r

)(
m

a+r

)
for a fixeda.

4.2 Determining the expected value ofu for strings with u = 2k runs

We now turn to the sum in (4.2), which gives the expected value ofu = 2k; again, remember that we
are only considering strings withn1 heads,n2 tails and an even numberu = 2k of runs. As by Lemma
4.1 there are2

(
n1+n2−2

n1−1

)
such strings and the number of strings with2k runs is2

(
n1−1
k−1

)(
n2−1
k−1

)
, we

need to determine∑n2−1
k=1 (2k) · 2

(
n1−1
k−1

)(
n2−1
k−1

)
2
(
n1+n2−2

n1−1

) = 2

∑n2−1
k=1 k ·

(
n1−1
k−1

)(
n2−1
k−1

)(
n1+n2−2

n1−1

) . (4.11)

We shall ignore the factor of2
(
n1+n2−2

n1−1

)−1
for now and concentrate on evaluating

n2−1∑
k=1

k ·
(

n1 − 1
k − 1

)(
n2 − 1
k − 1

)
. (4.12)

Actually, it will be significantly easier to find, not the sum withk but the sum withk − 1:

n2−1∑
k=1

(k − 1) ·
(

n1 − 1
k − 1

)(
n2 − 1
k − 1

)
; (4.13)

clearly if we can evaluate this sum fork − 1 then by adding1 we can find the sum withk.
We have seen in §4.1 that the sum overk of

(
n1−1
k−1

)(
n2−1
k−1

)
can be obtained by looking at the

xn1−1yn2−1 coefficient of(x1 + y1)n1−1(x2 + y2)n2−1 underx1 = x2 = x andy1 = y2 = y. So, let

11



us study again (4.6):

(x1 + y1)n1−1(x2 + y2)n2−1 =

 n1∑
k1=1

(
n1 − 1
k1 − 1

)
xn1−k1

1 yk1−1
1

 ·
 n2∑

k2=1

(
n2 − 1
k2 − 1

)
xk2−1

2 yn2−k2
2

 .

(4.14)

We will now see the advantage of having two differentx’s and two differenty’s. Let us take the
derivative with respect toy1 and then multiply byy1. Thus we are applying the operatory1

∂
∂y1

; the
advantage of multiplying byy1 after differentiating byy1 is that we do not change the degree of any
of the terms. Applyingy1

∂
∂y1

to the left hand side of (4.14) gives

(n1 − 1)y1(x1 + y1)n1−2(x2 + y2)n2−1, (4.15)

becausex1, y1, x2 andy2 are independent variables. When we applyy1
∂

∂y1
to the right hand side of

(4.14) we get n1∑
k1=1

(k1 − 1)
(

n1 − 1
k1 − 1

)
xn1−k1

1 yk1−1
1

 ·
 n2∑

k2=1

(
n2 − 1
k2 − 1

)
xk2−1

2 yn2−k2
2

 . (4.16)

The above shows why it is easier to studyk − 1 rather thank: when we differentiate a factor ofk − 1
comes down, notk. We have thus shown

(n1 − 1)y1(x1 + y1)n1−2(x2 + y2)n2−1

=

 n1∑
k1=1

(k1 − 1)
(

n1 − 1
k1 − 1

)
xn1−k1

1 yk1−1
1

 ·
 n2∑

k2=1

(
n2 − 1
k2 − 1

)
xk2−1

2 yn2−k2
2

 . (4.17)

NOW we takex1 = x2 = x andy1 = y2 = y and obtain

Lemma 4.2.

(n1 − 1)y(x + y)n1+n2−3

=

 n1∑
k1=1

(k1 − 1)
(

n1 − 1
k1 − 1

)
xn1−k1yk1−1

 ·
 n2∑

k2=1

(
n2 − 1
k2 − 1

)
xk2−1yn2−k2

 . (4.18)

It is extremely important that we waited to setx1 equal tox2 andy1 equal toy2; if we had set them
equal first and then differentiated, we would have two pieces (from when the operator hit the first sum
and when it hit the second). The difficulty would be the first sum would bring down a factor ofk1 − 1
and the second a factor ofn2− k2. With some book-keeping this could probably be made to work, but
this is easier.

We now look at thexn1−1yn2−1 term of both sides of Lemma 4.2. First consider the left hand
side. We have one factor ofy automatically because of they outside. There are

(
n1+n2−3

n1−1

)
ways to
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choosen1 − 1 factors of(x + y)n1+n2−3 to givex andn2 − 2 factors to givey. Thus the coefficient
of xn1−1yn2−1 on the left hand side is

(n1 − 1)
(

n1 + n2 − 3
n1 − 1

)
. (4.19)

We now determine thexn1−1yn2−1 term from the right hand side of Lemma 4.2. As before, this
term arises fromk1 = k2. Denoting this common value byk we find the coefficient of thexn1−1yn2−1

term from the right hand side is

n2∑
k=1

(k − 1)
(

n1 − 1
k − 1

)(
n2 − 1
k − 1

)
. (4.20)

As always, the proof is concluded by the uniqueness of the coefficients. By matching we obtain

Lemma 4.3.
n2∑

k=1

(k − 1)
(

n1 − 1
k − 1

)(
n2 − 1
k − 1

)
= (n1 − 1)

(
n1 + n2 − 3

n1 − 1

)
. (4.21)

We can now determine the mean ofk−1, or better yet2(k−1). From this it is trivial to determine
the mean of2k. Specifically

Lemma 4.4. ∑n2−1
k=1 2(k − 1) · 2

(
n1−1
k−1

)(
n2−1
k−1

)
2
(
n1+n2−2

n1−1

) = 2
n1n2 − n1 − n2 + 1

n1 + n2 − 3
. (4.22)

Proof. The denominator comes from Lemma 4.1, where we showed this is the number of strings with
n1 heads,n2 tails and an even number of runs. We cancel two of the factors of2 and are left with
one factor of2 in the numerator, and then use Lemma 4.3 to evaluate the numerator. The proof is
completed by expanding out the binomial coefficients. Letµu−2,evendenote the mean of two less than
evenu (in other words, the expected value of2(k − 1) whenu = 2k). Then

µu−2,even =
2(n1 − 1)

(
n1+n2−3

n1−1

)(
n1+n2−2

n1−1

)
= 2(n1 − 1)

(
n1 + n2 − 3

n1 − 1

)
·
(

n1 + n2 − 2
n1 − 1

)−1

=
2(n1 − 1)(n1 + n2 − 3)!

(n1 − 1)!(n2 − 2)!
· (n1 − 1)!(n2 − 1)!

(n1 + n2 − 2)!

=
2(n1 + n2 − 3)!

(n1 − 2)!(n2 − 2)!
· (n1 − 1)!(n2 − 1)!
(n1 + n2 − 2)(n1 + n2 − 3)!

=
2(n1 − 1)(n2 − 1)

n1 + n2 − 2

= 2
n1n2 − n1 − n2 + 1

n1 + n2 − 2
. (4.23)
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Note that as we write(n1 + n2 − 2)! as(n1 + n2 − 2) · (n1 + n2 − 3)!, we are implicitly assuming
thatn1 + n2 − 2 ≥ 1. If this fails, i.e. if n1 + n2 ≤ 2, then the above algebra could be wrong and
those cases should be investigated separately (though if interpreted properly, our formulas will still be
correct in these cases).

By adding2 we get the mean ofu = 2k for evenu.

Theorem 4.5.Assume we haven1 heads,n2 tails,u = 2k runs and all strings are equally likely. Then
the expected number of runs is

µu,even = 2
[
n1n2 − n1 − n2 + 1

n1 + n2 − 2
+ 1
]

= 2
n1n2 − 1

n1 + n2 − 2
. (4.24)

Whenever one derives a complicated formula, it is a good idea to test it in extreme cases and see if
it is reasonable. For example, the formula does not make sense ifn1 + n2 − 2 = 0. However, the only
way that could happen, sincen1 andn2 are non-negative integers, is if either both equal1 or one is0
and the other2. If one is0 and the other is2 then we have anoddnumber of runs, and this formula is
only for the case of an even number of runs. We are left with the case whenn1 = n2 = 1. We have
two runs, eitherHT or TH. In this case we have2 n1n2−1

n1+n2−2 = 20
0 ; it is not unreasonable to think00

should be interpreted as1 in this instance, and we would then get2 (the correct answer). However,
some care is needed in using this formula whenn1 + n2 = 2, but this case can be handled directly.

Another good extreme to consider is whenn1 is much larger thann2 (or vice-versa, but we have
assumed without loss of generality earlier thatn1 ≥ n2). In this case, the mean for sequences with
an even number of runs is approximately2n1n2

n1
or about2n2. This is the correct behavior for such

n1 andn2. Why? Imagine we have millions of time more heads (n1) than tails (n2). In that case it
is extremely unlikely that any two tails will be adjacent. Thus there will be strings of varying lengths
between the tails. As there aren2 tails, this gives us2n2 runs (the heads before a tail, a tail, another
string of heads, a tail, another string of heads, a tail, and so on).

While such sanity checks are not proofs, they help us see if our formulas are reasonable, as well as
possibly catching missing factors. For example, if we had dropped a factor of2 earlier we would have
found the mean wasn1n2−1

n1+n2−2 , and this would not have the right behavior forn1 significantly larger
thann2. We also saw that the−2 in the denominator is reasonable.

We can also try a special case, for examplen1 = 2, n2 = 1. In this case if we want an even number
of runs we must haveHHT or THH. Thus all strings with an even number of runs have2 runs, and
our formula does give2 whenn1 = 2 andn2 = 1. This helps check the−1 factor.

Thus, while it is still possible that we have made an algebra error somewhere, we should have a
high degree of confidence in the result.

4.3 Determining the variance ofu for strings with u = 2k runs

Theorem 4.6.Assume we haven1 heads,n2 tails,u = 2k runs and all strings are equally likely. Then
the variance in the number of runs is

σ2
u,even = 4

(n1 − 1)2(n2 − 1)2

(n1 + n2 − 2)2(n1 + n2 − 3)
. (4.25)
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Proof. As u = 2k is even, we need to find Var(2k) = E[(2k)2] − E[2k]2. We can simplify the
calculations by noting that the variance ofu = 2k is the same as the variance ofu − 2 = 2(k − 1).
While we know the mean of bothu = 2k andu−2 = 2(k−1), it will turn out to be easier to calculate
E[(2k − 2)2] thanE[(2k)2].

Thus we must evaluate∑n2−1
k=1 [2(k − 1)]2 · 2

(
n1−1
k−1

)(
n2−1
k−1

)
2
(
n1+n2−2

n1−1

) = 4

∑n2−1
k=1 (k − 1)2 ·

(
n1−1
k−1

)(
n2−1
k−1

)(
n1+n2−2

n1−1

) . (4.26)

As before, the starting point is (4.6):

(x1 + y1)n1−1(x2 + y2)n2−1 =

 n1∑
k1=1

(
n1 − 1
k1 − 1

)
xn1−k1

1 yk1−1
1

 ·
 n2∑

k2=1

(
n2 − 1
k2 − 1

)
xk2−1

2 yn2−k2
2

 .

(4.27)

We apply the operatorx2y1
∂2

∂x2∂y1
. The reason for this choice is that the two derivatives bring down a

factor of (k1 − 1)(k2 − 1); the presence ofx2y1 means the degree of each term is unchanged (in all
four variablesx1, x2, y1, y2). Settingx1 = x2 = x andy1 = y2 = y and matching coefficients will
complete the proof, as looking at the coefficient ofxn1−1yn1−1 will causek1 = k2, and this will give
us the sum we desire.

Specifically, after applyingx2y1
∂2

∂x2∂y1
the left hand side of (4.27) is

(n1 − 1)(n2 − 1)x2y1(x1 + y1)n1−2(x2 + y2)n2−2, (4.28)

while the right hand side of (4.27) is n1∑
k1=1

(k1 − 1)
(

n1 − 1
k1 − 1

)
xn1−k1

1 yk1−1
1

 ·
 n2∑

k2=1

(k2 − 1)
(

n2 − 1
k2 − 1

)
xk2−1

2 yn2−k2
2

 . (4.29)

Settingx1 = x2 = x andy1 = y2 = y, (4.28) and (4.29) give

(n1 − 1)(n2 − 1)xy(x + y)n2+n2−4 =

 n1∑
k1=1

(k1 − 1)
(

n1 − 1
k1 − 1

)
xn1−k1yk1−1


·

 n2∑
k2=1

(k2 − 1)
(

n2 − 1
k2 − 1

)
xk2−1yn2−k2

 . (4.30)

We match thexn1−1yn1−1 term on both sides. The left hand side is easy. As we have anxy outside,
we see we need to choosen1 − 2 morex’s andn2 − 2 morey’s. The right hand side is just the sum
overk1 = k2. Denoting this common value byk we find

(n1 − 1)(n2 − 1)
(

n1 + n2 − 4
n1 − 2

)
xn1−1yn2−1 =

n2∑
k=1

(k − 1)2
(

n1 − 1
k − 1

)(
n2 − 1
k − 1

)
xn1−1yn2−1,

(4.31)
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or equivalently

n2∑
k=1

(k − 1)2
(

n1 − 1
k − 1

)(
n2 − 1
k − 1

)
= (n1 − 1)(n2 − 1)

(
n1 + n2 − 4

n1 − 2

)
. (4.32)

Therefore we have

E[(2k − 2)2] =
4(n1 − 1)(n2 − 1)

(
n1+n2−4

n1−2

)(
n1+n2−2

n1−1

) . (4.33)

We can simplify the above expression to make it easier to subtractE[(2k − 2)]2:

E[(2k − 2)2] = 4(n1 − 1)(n2 − 1)
(n1 + n2 − 4)!

(n1 − 2)!(n2 − 2)!
· (n1 − 1)!(n2 − 1)!

(n1 + n2 − 2)!

= 4(n1 − 1)(n2 − 1)
(n1 + n2 − 4)!

(n1 − 2)!(n2 − 2)!
· (n1 − 1)(n1 − 2)!(n2 − 1)(n2 − 2)!
(n1 + n2 − 2)(n1 + n2 − 3)(n1 + n2 − 4)!

= 4
(n1 − 1)2(n2 − 1)2

(n1 + n2 − 2)(n1 + n2 − 3)

= 4
(n1 − 1)2(n2 − 1)2

(n1 + n2 − 2)2
· n1 + n2 − 2
n1 + n2 − 3

. (4.34)

We must now subtractE[(2k − 2)]2. It is easiest algebraically to use the expression forE[(2k − 2)]2

from the second to last line of (4.23). This yields

Var(2k − 2) = 4
(n1 − 1)2(n2 − 1)2

(n1 + n2 − 2)2
· n1 + n2 − 2
n1 + n2 − 3

−
[
2(n1 − 1)(n2 − 1)

n1 + n2 − 2

]2

= 4
(n1 − 1)2(n2 − 1)2

(n1 + n2 − 2)2

[
n1 + n2 − 2
n1 + n2 − 3

− 1
]

= 4
(n1 − 1)2(n2 − 1)2

(n1 + n2 − 2)2
· 1
n1 + n2 − 3

= 4
(n1 − 1)2(n2 − 1)2

(n1 + n2 − 2)2(n1 + n2 − 3)
, (4.35)

and Var(2k − 2) = Var(2k).

For largen1 andn2,

Var(2k) ∼ 4
n2

1n
2
2

(n1 + n2)3
. (4.36)

If n1 is much larger thann2, the mean is approximately2n2 and the variance is approximately4n2
2

n1
.

4.4 Behavior for all u

We briefly describe what happens if we don’t restrict to the case whenu, the number of runs, is even.
The main result is that

16



Theorem 4.7. Assume we haven1 heads,n2 tails, u runs and all strings are equally likely;u may be
either even or odd and we assumen1, n2 ≥ 1. Then the expected number of runsu is 2n1n2

n1+n2
+1 and the

variance is2n1n2(2n1n2−n1−n2)
(n1+n2)2(n1+n2−1)

. For n1 andn2 large, the expected number of runs is approximately

2 n1n2
n1+n2

and the variance is approximately4 n2
1n2

2
(n1+n2)3

.

Note our results on the expected number and variance ofu (whenu is forced to be even) are
consistent with the above, at least whenn1 andn2 are large. This isn’t surprising, as whenn1 andn2

are large it is reasonable to think that there are about as many strings with an odd number of runs as
an even number of runs.

Sketch of the proof.To prove Theorem 4.7 we would need to investigate the case whenu = 2k + 1.
The starting point is the second part of (3.2), which tells us how many ways there are to haveu = 2k+1
runs. We need to know how many strings there are withn1 heads andn2 tails so that we can find the
probabilities of havingu = 2k or u = 2k+1 runs. This is just

(
n1+n2

n1

)
as we choosen1 of then1 +n2

positions to be heads.
In determining the mean and variance whenu = 2k − 2 we divided the number of strings with

2k runs by2
(
n1+n2−2

n1−1

)
, which is the number of strings withn1 heads,n2 tails and an even number of

runs. What we can do is multiply our results on the mean and variance in this case by

2
(
n1+n2−2

n1−1

)(
n1+n2

n1

) , (4.37)

which now divides the contribution by the total number of strings and not just the total number of
strings with an even number of runs.

The proof is completed by determining the contributions to the mean and the variance from the
u = 2k +1 terms. These contributions are found in a similar manner (i.e. by differentiating identities)
as theu = 2k terms. We leave the details to the reader.

For completeness, we sketch the key steps in the algebra to finish the proof. We need to find the
mean. For the terms with an even number of runs we need to average2k and for the terms with an odd
number of runs we average2k + 1.

For the even terms, we showed that there are2
(
n1+n2−2

n−1

)
strings, and there are

(
n1+n2

n1

)
total

strings. We multiply the mean in Theorem 4.5 by
2(n1+n2−2

n−1 )
(n1+n2

n2
) .

For the odd terms, from (3.2) we have two sums to study. To analyze the contribution from∑
k

(
n1 − 1

k

)(
n2 − 1
k − 1

)
(4.38)

we see this can be interpreted by looking at thexn2−2yn2 term of∑
k1

(
n1 − 1

k1

)
xn1−1−k1

1 yk1
1

∑
k2

(
n2 − 1
k − 1

)
xk2−1

2 yn2−k2
2 (4.39)

when we setx1 = x2 = x andy1 = y2 = y. We see this term is thexn2−2yn2 term of

(x1 + y1)n1−1(x2 + y2)n2−1 (4.40)
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when we setx1 = x2 = x andy1 = y2 = y, and that term is just
(
n1+n2−2

n1−2

)
xn1−2yn2 . Note this

allows us to determine the sum of these binomial coefficients. We need to evaluate the sum with a
factor of2k + 1. To evaluate the sum with a factor ofk we apply the operatory1

∂
∂y1

; to handle the+1
in 2k + 1 we just need to count the number of terms, which from above is

(
n1+n2−2

n1−2

)
. Therefore, the

contribution from these terms with oddu from (3.2) to the mean is just

2(n1 − 1)
(

n1 + n2 − 3
n1 − 2

)
+
(

n1 + n2 − 2
n1 − 2

)
(4.41)

while the other terms with oddu in (3.2) give (by a similar argument or by symmetry) a contribution
of (

n1 + n2 − 3
n2 − 2

)
+
(

n1 + n2 − 2
n2 − 2

)
. (4.42)

We then must go through a lot of algebra - after adding all of these contributions we divide by the
number of strings,

(
n1+n2

n1

)
. In adding the various terms it is often convenient to pull out factors of

(n1+n2−3)!
(n1−2)!(n2−2)! . In the end we show the mean is2n1n2

n1+n2
+ 1. It is convenient to notice that

(n1 +n2)(n1 +n2−1)(n1 +n2−2) = n3
1 +n3

2 +3n2
1n2 +3n1n

2
2−3n2

1−3n2
2−6n1n2 +2n1 +2n2.

(4.43)

Exercise 4.8.Calculate the contributions from theu = 2k + 1 terms and rescale the contributions
from theu = 2k terms to complete the proof of Theorem 4.7.

4.5 Expected Number of Runs with Arbitrary Numbers of Heads and Tails

So far we assumed that there weren1 heads,n2 tails and all strings were equally likely. Let us assume
now that we haveN coin tosses where each toss has probabilityp of being a head andq = 1 − p of
being a tail. Thus,n2 = N − n1. For eachn1 there are

(
N
n1

)
strings; all of these strings are equally

likely, each occurring with probabilitypn1qN−n1 . Our main result is

Theorem 4.9. Assume we toss a coin with probabilityp of heads a total ofN times. The expected
number of runsµu(p) is 2p(1 − p)(N − 1) + 1. In particular, if the coin is fair (sop = q = 1

2) then
the expected number of runs isN+1

2 .

Proof. If there aren1 heads then the expected number of runs is2n1(N−n1)
N + 1, and there are

(
N
n1

)
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such strings, each occurring with probabilitypn1qN−n1 . Thus the expected number of runsµu(p) is

µu =
N∑

n1=0

[
2n1(N − n1)

N
+ 1
]
·
(

N

n1

)
pn1qN−n1

= 2
N∑

n1=0

n1(N − n1)
N

N !
n1!(N − n1)!

pn1qN−n1 +
N∑

n1=0

(
N

n1

)
pn1qN−n1

= 2pq
N−1∑
n1=1

(N − 1)!
(n! − 1)!(N − n1 − 1)!

pn1−1qN−n1−1 + (p + q)N

= 2pq(N − 1)
N−1∑
n1=1

(N − 2)!
(n1 − 1)!(N − n1 − 1)!

pn1−1qN−n1−1 + (p + q)N

= 2p(1− p)(N − 1)(p + q)N−2 + (p + q)N . (4.44)

As q = 1− p the above becomes

µu(p) = 2pq(N − 1) + 1. (4.45)

In the special case thatp = q = 1
2 we have

µu

(
1
2

)
=

N + 1
2

. (4.46)

Exercise 4.10.Calculate the variance ofµu(p).

A Proofs by Induction

Assume for each positive integern we have a statementP (n) which we desire to show is true.P (n)
is true for all positive integersn if the following two statements hold:

• Basis Step:P (1) is true;

• Inductive Step: wheneverP (n) is true,P (n + 1) is true.

This technique is calledProof by Induction , and is a very useful method for proving results. The
reason the method works follows from basic logic. We assume the following two sentences are true:

P (1) is true

∀n ≥ 1, P (n) is true impliesP (n + 1) is true. (A.1)

Setn = 1 in the second statement. AsP (1) is true, andP (1) impliesP (2), P (2) must be true. Now
setn = 2 in the second statement. AsP (2) is true, andP (2) impliesP (3), P (3) must be true. And so
on, completing the proof. Verifying the first statement thebasis stepand the second theinductive step.
In verifying the inductive step, note we assumeP (n) is true; this is called theinductive assumption.
Sometimes instead of starting atn = 1 we start atn = 0, although in general we could start at anyn0

and then prove for alln ≥ n0, P (n) is true.
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Theorem A.1. For n a non-negative integer,

n∑
k=1

k =
n(n + 1)

2
. (A.2)

Proof. Let P (n) be the statement
n∑

k=1

k =
n(n + 1)

2
. (A.3)

Basis Step:P (1) is true, as both sides equal1.

Inductive Step:AssumingP (n) is true, we must showP (n + 1) is true. By the inductive assumption,∑n
k=1 k = n(n+1)

2 . Thus

n+1∑
k=1

k = (n + 1) +
n∑

k=1

k

= (n + 1) +
n(n + 1)

2

=
(n + 1)(n + 1 + 1)

2
. (A.4)

Thus, givenP (n) is true, thenP (n + 1) is true.

Exercise A.2. Prove
n∑

k=1

k2 =
n(n + 1)(2n + 1)

6
. (A.5)

Find a similar formula for the sum ofk3. See also Remark A.3.

Remark A.3. In general,
∑n

k=0 kp = fp(n), wherefp(x) is a polynomial of degreep+1 with leading

term xp+1

p+1 ; one can find the coefficients by evaluating the sums forn = 0, 1, . . . , p because specifying
the values of a polynomial of degreep at p + 1 points uniquely determines the polynomial.

Exercise A.4. Notation as in Remark A.3, assumingfp(n) is a polynomial inn, use the integral test

from calculus to show the leading term isnp+1

p+1 .

Exercise A.5. Show the sum of the firstn odd numbers isn2, i.e.,

n∑
k=1

(2k − 1) = n2. (A.6)
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B The Binomial Theorem

We prove the Binomial Theorem. First, recall that

Definition B.1 (Binomial Coefficients). Letn andk be integers with0 ≤ k ≤ n. We set(
n

k

)
=

n!
k!(n− k)!

. (B.1)

Note that0! = 1 and
(
n
k

)
is the number of ways to choosek objects fromn (with order not counting).

Lemma B.2. We have(
n

k

)
=
(

n

n− k

)
,

(
n

k

)
+
(

n

k − 1

)
=
(

n + 1
k

)
. (B.2)

Exercise B.3.Prove Lemma B.2.

Theorem B.4(The Binomial Theorem). For all positive integersn we have

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk. (B.3)

Proof. We proceed by induction.

Basis Step:Forn = 1 we have

1∑
k=0

(
1
k

)
x1−kyk =

(
1
0

)
x +

(
1
1

)
y = (x + y)1. (B.4)

Inductive Step:Suppose

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk. (B.5)

Then using Lemma B.2 we find that

(x + y)n+1 = (x + y)(x + y)n

= (x + y)
n∑

k=0

(
n

k

)
xn−kyk

=
n∑

k=0

(
n

k

)
xn+1−kyk +

(
n

k

)
xn−kyk+1

= xn+1 +
n∑

k=1

{(
n

k

)
+
(

n

k − 1

)}
xn+1−kyk + yn+1

=
n+1∑
k=0

(
n + 1

k

)
xn+1−kyk.

(B.6)

This establishes the induction step, and hence the theorem.
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C Summingpth powers of integers

Using Induction (Appendix A), it is possible to prove results such as

Theorem C.1. For p a positive integer
n∑

k=1

kp = fp(n), (C.1)

wherefp(x) is a polynomial of degreep + 1 in x with rational coefficients, and the leading term is
xp+1

p+1 .

See Remark A.3 for more details. It is also possible to prove these resultswithout resorting to
induction! Namely, we can prove these results by differentiating identities. We need the following
result about finite geometric series:

Lemma C.2. For anyx ∈ R,

1 + x + x2 + · · ·+ xn =
xn+1 − 1

x− 1
. (C.2)

Proof. If x = 1 we evaluate the right hand side by L’Hospital’s Rule, which givesn+1
1 = n + 1. For

otherx, let S = 1 + x + · · ·+ xn. Then

S = 1 + x + x2 + · · ·+ xn

xS = x + x2 + · · ·+ xn + xn+1. (C.3)

Therefore
xS − S = xn+1 − 1 (C.4)

or

S =
xn+1 − 1

x− 1
. (C.5)

We now show how to sum thepth powers of the firstn integers. We first investigate the case when
p = 1 and provide an alternate proof of Theorem A.1. Consider the identity

n∑
k=0

xk =
xn+1 − 1

x− 1
. (C.6)

We apply the operatorx d
dx to each side and obtain

x
d

dx

n∑
k=0

xk = x
d

dx

xn+1 − 1
x− 1

n∑
k=0

kxk = x
(n + 1)xn · (x− 1)− 1 · (xn+1 − 1)

(x− 1)2

n∑
k=0

kxk = x
nxn+1 − (n + 1)xn + 1

(x− 1)2
. (C.7)
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If we setx = 1, the left hand side becomes the sum of the firstn integers. To evaluate the right hand
side we use L’Hospital’s rule, as whenx = 1 we get1 · 0

0 . As long as one of the factors has a limit, the
limit of a product is the product of the limits. Asx → 1, the factor ofx becomes just1 and we must

studylimx→1
nxn+1−(n+1)xn+1

(x−1)2
. We find

lim
x→1

nxn+1 − (n + 1)xn + 1
(x− 1)2

= lim
x→1

n(n + 1)xn − n(n + 1)xn−1

2(x− 1)
. (C.8)

As the right hand side is00 whenx = 1 we apply L’Hospital again and find

lim
x→1

nxn+1 − (n + 1)xn + 1
(x− 1)2

= lim
x→1

n2(n + 1)xn−1 − n(n + 1)(n− 1)xn−1

2

=
n(n + 1)

2
. (C.9)

Therefore, by differentiating the finite geometric series and using L’Hospital’s rule we were able
to prove the formula for the sum of integerswithout resorting to induction. The reason we used the
operatorx d

dx and not d
dx is this leaves the power ofx unchanged. While this flexibility is not needed

to compute sums of first powers of integers, if we want to calculate sums ofkp for p > 1, this will
simplify the formulas.

Theorem C.3. For n a positive integer,

n∑
k=0

k2xk =
n(n + 1)(2n + 1)

6
. (C.10)

Proof. To find the sum ofk2 we applyx d
dx twice to (C.6) and get

x
d

dx

[
x

d

dx

n∑
k=0

xk

]
= x

d

dx

[
x

d

dx

xn+1 − 1
x− 1

]

x
d

dx

n∑
k=0

kxk = x
d

dx

[
x

nxn+1 − (n + 1)xn + 1
(x− 1)2

]
n∑

k=0

k2xk = x
d

dx

[
nxn+2 − (n + 1)xn+1 + x

(x− 1)2

]
n∑

k=0

k2xk = x

[
n(n + 2)xn+1 − (n + 1)2xn + 1

]
· (x− 1)2

(x− 1)4

−x

[
nxn+2 − (n + 1)xn+1 + x

]
· 2(x− 1)

(x− 1)4
. (C.11)

Simple algebra (multiply everything out on the right hand side and collect terms) yields

n∑
k=0

k2xk = x
n2xn+2 − (2n2 + 2n− 1)xn+1 + (n2 + 2n + 1)xn − x− 1

(x− 1)3
. (C.12)
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The left hand side is the sum we want to evaluate; however, the right hand side is0
0 for x = 1. As

the denominator is(x− 1)3 it is reasonable to expect that we will need to apply L’Hospital’s rule three
times; we provide a proof of this in Remark C.4.

Applying L’Hospital’s rule three times to the right hand side we find the right hand side is

n2(n + 2)(n + 1)nxn−1 − (2n2 + 2n− 1)(n + 1)n(n− 1)xn−2 + (n2 + 2n + 1)n(n− 1)(n− 2)xn−3

3 · 2 · 1
.

(C.13)
Taking the limit asx → 1 we obtain

n∑
k=0

k2xk =
n2(n + 2)(n + 1)n− (2n2 + 2n− 1)(n + 1)n(n− 1) + (n2 + 2n + 1)n(n− 1)(n− 2)

6

=
n(n + 1)(2n + 1)

6
, (C.14)

where the last line follows from simple algebra.

Remark C.4. While we are able to obtain the correct formula for the sum of squares without resorting
to induction, the algebra is starting to become tedious, and will get more so for sums of higher powers.
After applyingx d

dx twice we had g(x)
(x−1)3

, whereg(x) is a polynomial of degreen + 2 andg(1) = 0.
It is natural to suppose that we need to apply L’Hospital’s rule three times as we have a factor of
(x− 1)3 in the denominator. However, ifg′(1) or g′′(1) is not zero, then we do not apply L’Hospital’s
rule three times but rather only once or twice. Thus we really need to check and make sure that
g′(1) = g′′(1) = 0. While a straightforward calculation will show this, a moment’s reflection shows
us that both of these derivatives must vanish. If one of them was non-zero, say equal toa, then we
would havea

0 which is undefined; however, clearly the sum of the firstn squares is finite. Therefore
these derivatives will be zero and we do have to apply L’Hospital’s rule three times.

Remark C.5. For those concerned about the legitimacy of applying L’Hospital’s rule and these for-
mulas whenx = 1, we can consider a sequence ofx’s, sayxN = 1− 1

N with N →∞. Everything is

then well-defined, and it is of course natural to use L’Hospital’s rule to evaluatelimN→∞
g(xN )

(xN−1)3
.

D Divergence of the Harmonic Series

Instead of considering (1.3):

∞∑
n=1

n · xn−1 = 1 + 2x + 3x2 + 4x3 + · · · , (D.1)

let us consider
∞∑

n=1

xn

n
=

x

1
+

x2

2
+

x3

3
+

x4

4
+ · · · . (D.2)

Takingx = 1 yields the famous harmonic series

1 +
1
2

+
1
3

+
1
4

+ · · · . (D.3)
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There are many proofs of the divergence of the harmonic series (one simple one is to group terms2k

through2k+1− 1 together, note each term is at least1
2k so their sum is at least1; another is to multiply

by 1
2 and subtract and note that the sum of the reciprocals of the odd numbers is greater than the

sum of the reciprocals of the even numbers); we present a proof based on differentiating (or actually
integrating) identities. Let

F (x) =
∞∑

n=1

xn

n
=

x

1
+

x2

2
+

x3

3
+

x4

4
+ · · · . (D.4)

If |x| < 1 then the above series converges. We now differentiate and note that if|x| < 1 then we can
interchange differentiation and summation, and we find

f(x) = F ′(x) =
∞∑

n=1

xn−1 = 1 + x + x2 + x3 + · · · =
1

1− x
, (D.5)

where the last equality follows by the geometric series formula. We now integrate the above from0 to
u for u ∈ (0, 1) (so we may interchange integration and summation). We find

F (u) =
∞∑

n=1

un

n
=
∫ u

0

dx

1− x
= − log(1− u). (D.6)

We have therefore shown that foru ∈ (0, 1) that

u

1
+

u2

2
+

u3

3
+

u4

4
+ · · · = − log(1− u). (D.7)

We now take the limit asu → 1 from below; let us writeu asu = 1− e−t with t positive andt →∞.
Then the left hand side of (D.7) ast →∞ is just the harmonic sum,

1 +
1
2

+
1
3

+
1
4

+ · · · . (D.8)

For a fixedt, the right hand side is− log(e−t) = t. Thus asu → 1 from below t → ∞ and
− log(1− u) →∞. Thus the harmonic series diverges.

Exercise D.1. Use the above arguments to show that the sum of the firstN terms of the harmonic
series is of sizelog N .

E Interchanging Differentiation and Summation

We first recall Fubini’s Theorem, which states when we may interchange orders of integration.

Theorem E.1(Fubini). Assumef is continuous and∫ b

a

∫ d

c
|f(x, y)|dxdy < ∞. (E.1)
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Then ∫ b

a

[∫ d

c
f(x, y)dy

]
dx =

∫ d

c

[∫ b

a
f(x, y)dx

]
dy. (E.2)

Similar statements hold if we instead have

N1∑
n=N0

∫ d

c
f(xn, y)dy,

N1∑
n=N0

M1∑
m=M0

f(xn, ym). (E.3)

For a proof in special cases, see [BL, VG]; an advanced, complete proof is given in [Fol]. One
cannot always interchange orders of integration. For simplicity, we give a sequenceamn such that∑

m(
∑

n am,n) 6=
∑

n(
∑

m am,n) (although it is trivial to modify this to an example involving inte-
grals).

Exercise E.2.For m,n ≥ 0 let

am,n =

{ 1 if n = m
−1 if n = m + 1

0 otherwise.
(E.4)

Show that the two different orders of summation yield different answers.

We now study when we can justify interchanging orders of differentiation and summation. We
know the geometric series formula gives

∞∑
n=0

xn =
1

1− x
, |x| < 1. (E.5)

We show that we may interchange differentiation and summation above. The derivative of the right
hand side (with respect tox) is just(1− x)−2. We want to say the derivative of the left hand side is

∞∑
n=0

nxn−1, (E.6)

but do to so requires us to justify
d

dx

∞∑
n=0

xn =
∞∑

n=0

d

dx
xn. (E.7)

A standard way to justify statements like this is as follows. We note that
∑∞

n=0 nxn−1 converges for
|x| < 1; if we can show that for anyε > 0 that this is withinε of (1−x)−2, then we will have justified
the interchange.

To see this, fix anε > 0. For eachN , we may write

∞∑
n=0

xn =
N∑

n=0

xn +
∞∑

n=N+1

xn

=
N∑

n=0

xn +
xN+1

1− x
=

1
1− x

. (E.8)
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We can differentiate each side, and we can justify interchanging the differentiation and the summation
because we havefinite sums. Specifically, there are onlyN + 2 terms (N + 1 from the sum and then
one more,x

N+1

1−x ). Therefore we have

d

dx

N∑
n=0

xn +
d

dx

xN+1

1− x
=

d

dx

1
1− x

N∑
n=0

nxn−1 +
(N + 1)xN (1− x)− xN+1(−1)

(1− x)2
=

1
(1− x)2

N∑
n=0

nxn−1 +
(N + 1)(1− x) + x

(1− x)2
xN =

1
(1− x)2

(E.9)

As |x| < 1, given anyε > 0 we can find anN0 such that for allN ≥ N0,∣∣∣∣(N + 1)(1− x) + x

(1− x)2
xN

∣∣∣∣ ≤ ε

2
. (E.10)

Similarly we can find anN1 such that for allN ≥ N1 we have∣∣∣∣∣
∞∑

n=N+1

nxn−1

∣∣∣∣∣ ≤ ε

2
. (E.11)

Therefore we have shown that for everyε > 0 we have∣∣∣∣∣ 1
(1− x)2

−
∞∑

n=0

nxn−1

∣∣∣∣∣ ≤ ε, (E.12)

proving the claim. Instead of studying these sums for a specificx, we can considerx ∈ [a, b] with
−1 < a ≤ b < 1, andN0, N1 will just depend ona, b andε.

One situation where we cannot interchange differentiation and summation is when we have se-
ries that are conditionally convergent but not absolutely convergent. This means

∑
an converges but∑

|an| does not. For example, consider
∞∑

n=0

xn

n
. (E.13)

If x = −1 this series conditionally converges but not absolutely; in fact, as

− log(1− x) = x +
x2

2
+

x3

3
+ · · · =

∞∑
n=1

xn

n
, (E.14)

then (E.13) withx = −1 is just− log 2. What happens if we try to differentiate? We have

d

dx
[− log(1− x)] =

d

dx

[ ∞∑
n=1

xn

n

]
. (E.15)
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The left hand side is easy to differentiate forx ∈ [−1, 0], giving 1
1−x . But if we interchange the

differentiation and summation we would have

d

dx

[ ∞∑
n=1

xn

n

]
=

∞∑
n=1

xn−1, (E.16)

and this does not converge whenx = −1 (aside: the sum oscillates between1 and0; in some sense it
can be interpreted as12 , which is what 1

1−x equals whenx = −1!).
Sometimes, however, conditionally convergent but absolutely divergent series can be managed.

Consider
∞∑

n=1

xn

n log n
. (E.17)

This series converges conditionally whenx = −1 but diverges upon inserting absolute values. If we
interchange differentiation and summation we get

∞∑
n=1

xn−1

log n
, (E.18)

and this sum does converge (conditionally, not absolutely) whenx = −1.
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