BEYOND THE PIGEON-HOLE PRINCIPLE:
MANY PIGEONS IN THE SAME BOX

STEVEN J. MILLER

ABSTRACT. ConsiderN boxes andn balls, with each ball equally likely to be in each
box. For fixedk, we bound the probability of at leaktballs being in the same box, &6

andm tend to infinity. In particular, we show thatif = N% then this probability is

atleasty; — 54 + O (N~'/%) and at most}; + O (N~!/*). We then investigate

what happens wheh grows with N andm, and show there is negligible probability of
having at leastV balls in the same box when = N2—¢,

1. INTRODUCTION

Dirichlet’s Pigeon Hole Principle states that¥f + 1 balls are placed itV boxes, then
at least one box must contain at least two balls. We can instead ask how many balls we
need (as a function d¥) to ensure a 50% (or at least a positive percent independéif of
chance that one box has two balls. This is the classic birthday problem; the probability that
m < N balls are placed im different boxes is just
N N-1 N-(m-1) _ N! . 1.1)
N N N (N —m)IN™
Hence the probability that at least one box has at least two badlls-i®’y ,,,. To obtain a
positive percent we neelly ,, bounded away from; this occurs whemn ~ V/N. One
way to see this is to use Stirling’s formula, which says

PN,'rn =

n! = n"e "V2mn (1+0(n™")), (1.2)
as well as
z 7 T\
e’ = nlingo (1 + n) . (1.3)
Thus we find
NNeNorN

PN m
’ (N —m)N-me=(N=m), /27(N —m) - N™

o g e =

N

the above is bounded away franwhenm ~ v/N.
We consider the more general situation, namely, how many balls are needed to ensure
a positive probability of having at leastballs in a box. Here we considérfixed and
1 < m < N, withm andN tending to infinity.
Let |E| denote the probability of an eveht, and letEy, x ,,, be the event that at leakst
of them balls are in one of thé/ boxes. Our main result is
1
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Theorem 1.1. Letk be fixed. lfm = N%, then asN — oo we have

BRSO (N < vl < O (V). as

2. PROOF OFTHEOREM1.1

We first establish some notation before proving Theorem 1.1. We fix &§ain) with
1 < m < N; N andm will tend to infinity. Let E}, ;. n ,», denote the event of at lealst
balls in boxi (with N boxes andn balls), and letEy, x ., denote the event of at leakst
balls in a box (with\V boxes andn balls). Clearly

N
Ek;N,m = U Ek,i;N,m- (26)
=1
However, forN andm even modestly sized, the everfis 1. m, - . . , £k, n;N,m are not

independent. Thus we obtain an upper bound for the probability of atdedshem balls
in one of theN boxes:
N

|Bknm| < Y 1 EkiNml = N - B inml, 2.7)

i=1

where the last follows from symmetry.

Proof of the Upper Bound i(l.5). Let F;, 1,n,,» denote the event aéxactlyn of the m
balls being in the first of th&/ boxes. Then

m\ 1 (m—n 1\
|Fn,1;N,m| = (n)N”(mn) <1 — N) . (28)

We first analyze the case when= k, the main term. Fom > k, we find

1 mk —m/N -1
|Fk,1;N,m‘ = Em € + O(N ) (29)

For alln we can boundF,, 1. | by -5 %, and thus

m
|Exanml = D 1Feivml
n==k

= |Fk,1;N,m+O< > |Fn,1;N,m|>

n=k+1

1mk AN n
- a3 ()

n=k+1

1 mk —m/N mk+1

Substituting into (2.7) yields

‘Ek;N,m‘ S N - |Ek,1;N,'rn|

1 mk: /N mk+1
< awrae ™ +0( N > (2.11)
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If we takern = N then the main term is of sizg (ase /N = e UNYE — 1 4
O(N~/k)) and the error term i® (N ~/*). Thus we have shown fdr fixed andm =
N that .

[Brvan| < 5 +0 (N*l/k), (2.12)
completing the proof of the upper bound. |

Let ., i, ns.in;N,m DE the event of at least; balls in boxi; and at leash, balls in
box i, (with m balls in all, N boxes). By inclusion-exclusion we have

N N-1 N

| Ek;Nm| > Z | Ek,i;nm| — Z Z | Bk iy ki Nml - (2.13)
=1 i1=119=191+1

The left hand side|Ey ;.v,m|, counts how many times at least one box has at lkast

balls. If this happens, then there must be at least one indexch that it is counted in

an Ey ;. n . If there are two such indices, it is counted twice, but then we subtract it

once from anFy ;, 1.i,.N,m term. If exactly? > 2 boxes contain at leagtballs, then we

have counted thig times from theE, ;. n ., terms and subtracted (ﬁ) times from the

Ek iy kin:N,m terms. Thus (2.13) is a lower bound &, 7 1, |-

Proof of the Lower Bound iiL.5). Thus by the above arguments and symmetry, we need
only compute a good estimate iy, 1 x.2.n,m|, 8S

N(N -1
% ' |Ek7l,k,2;N,m|~ (214)

Let F, 1,n0,2;N,m D€ the event of exactly, balls in the first box and exactly, balls
in the second box (withn balls andN boxes). Then forn > max(n, ns),

m\ 1 /fm—n1\ 1 /m—ny—ne 1\™mTmT 1
F . = 1—— O(N7).
Frsmanol = () ("0 (o ) (1= ) o

|Er;Nom| > N - |Eg1;8,m| —

(2.15)
The main term is when; = ny = k, which gives
1 m2k .
‘Fk,l,k,2;N,m‘ ~ WW (& /N‘ (216)

We bound the contribution from terms with each > k andn; + ny > 2k + 1. If
ny + ne = ¢, there are clearly only — 1 pairs of positive integerén;, ny) that sum to?
(of course, there are fewer pairs for us, as each must be atdeass ¢ — 1 < ning, we
have

m 1 mh ¢ m2k+1
Z |Fn1,1,n2,2;N}m| = O( Z =2y (N) ) =0 (]\kaH) . (217)
ni,ng>k 0=2k+1 LTJ
n14ng>2k+1
Therefore, we have
1 m2k o m2k+1
|Ek,1,k,2;N,m| = WW € /N +0 <]V2k+1> . (218)

Substituting into (2.14) and using (2.10) for the size®©f 1. ,,,| yields

1 k k+1
| Binm| > N~["35WN+OC”N
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Again takingm = N "% (s0 1%+ = 1), we find that

2.kl —1 _
Brvm| > S 40 (N Uk), (2.20)

completing the proof of the lower bound. O

Remark 2.1. Using the lower bound, we can bootstrap and ensure a high probability of
having at least one box with at ledsballs. The probability ohot having at leask balls
in one of the boxes is at most

1—W+0(N ) (2.21)

remembering of course that = N*%". Consider now independent sets of = N5
balls. The probability thahoneof theseu sets has at least one box wittballs is

2. k-1 )
<1W+0(N )) (2.22)

By choosinga sufficiently large, we can make this probability as close to zero as we like,
or equivalently make the probability that if we take at leadt =" balls then at least one
box has at leagt balls. By takinga to be a small power oV, we can make the probability

1 plus a smaller term.

Remark 2.2. Note in Remark 2.1 that we consideredndependent sets of, balls. In
finding our bounds of having at leaktballs in a box we do not allow (say) — & balls
in box 1 from the first set and’ balls in box1 from the second set; thus thewve take is
almost surely much larger than needed.

3. LETTING kK DEPEND ONN

We discuss what happens if we try to use these argumentsiwgttowing with N.
Specifically, if we haven = N27¢, then is there a positive probability (&6 — oo) of
having at least one box with at ledst= N balls in it? We use Stirling’s formula, which
gives us the approximation

n! ~ n"e "

2mn. (3.23)

Let us first consider the probability of having at ledéballs in the first box. The proba-
bility of exactly n balls in the first box is

‘P | B m L m—n . i m—n
n,1l;N,m - n)N*\m—n N

1 m"
- —(m—n)/N
— : (3.24)
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We first bound the contribution whene {N?72¢/... m}, wherem = N?~¢. These
contribute
N276 N275 1
m
P, 1NN — e (mm)/N
n:;*% Pt n:%,;k nte~"/2mn N"
N275

We consider the contribution from terms withe {N,..., N272¢}; noten

<
< e—(1—e)N2*2f log N+N?724(1- %) log N

< Y (2m)73 (%)ne*(m*’”m

N2—e n
1 [eN?~¢
9 _1
< E (27n)~2 ( - >

) e N2-2¢
< Z no? (lee)

N27e

< Z n—%eN2’2e log(e/N1~¢)

n=N2-2¢

Nl—ée—(l—e)N2’2€ log N4+ N272¢

N2=<, For suchn we have § a positive constant below) that

N2—2¢
E |P)n,1;N,N2*E
n=N

<

<

<

<

<

<

<
<

N272€ n
3 b N
= nte ™/ 2mn N7
N272€ em "
1
9n) % (7) —(m—n)/N
n;\[( ™) —~) ¢

N2—25 9—e n
I i
n

n=N

N2—25 B n
_% —(5N17€
2" (N%n/N)) ‘

n=N
N2—2€

n=N
N2—2s
1 ey _spl—e
E n 26Nlog(e/N )6 N
n=N

N2—2€
Z n- 3o €Nlog N+N—6N'"¢

n=N
. _sal—e
Nl e eNlog N+ N—6N

o €N log N+N—-6N'"“4(1—€)log N

(3.25)

<m =

(3.26)
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Thus from (3.25) and (3.26) we have

2—¢
Nz: |Pn’1;N,N2_€ < e—eNlogN+N—5N1*f+(1—e)1ogN
n=N
+e—(l—e)NZ*%1ogN+N2*25+(1—g)1ogN_ (3.27)
Form = N27¢, as
N N2
Exnne— € |J U Poinvave-e (3.28)
i=1 n=N

we finally obtain that

|En. N N2 & N.e Nlog N+N—§N'"“+(1—¢)log N
+N- e~ (1= N* "2 log N+ N7+ (1~ 5) log N
& e N1ogN+N—-ON'"“+(2—c)log N
2-2e 2—2¢ e
4 e~ (ImONT" " log N¥-N""+(2—5) log N (3.29)
which yields

Theorem 3.1. There is negligible probability of having at leadt balls in one of NV boxes
when there areV2—< balls.

Remark 3.2. As ¢ € (0, 1], even if we were to take

0
€ = og N (3.30)
in the above arguments (for sorfie> 1), we would still have|E .y y2-«
suchm.

= o(1) for

4., MOMENT ARGUMENTS

Let's analyze the mean and standard deviations whendependent balls are tossed
into NV boxes (each box equally likely). Let; ; be the binary indicator variable for balll
and boxl. Thusw;; is 1 with probabilityp = - and0 with probabilityq = 1 — . Note
the mean otv; ; is % and the standard deviation jggq, which is approximateIW*%.

If we letw; = 1", w; 1, then the mean is simpl: and the standard deviation is

mpq.

If we fix k&, we've seen we need to take ~ N*%. Such a choice leads to the expected
number of balls in the first box o = N~!/*, with a standard deviation qf/mpg ~
N—1/2k Thus we need to be on the orderid¥!/2* standard deviations from the mean;
of course, we havéV boxes and need this just fonebox. We can look at this in terms of
m —we need on the order &fm!/2(k—1) standard deviations.

If we let k = N andm = N27¢, then the expected number of balls in the first box is
m — N'-¢ and the standard deviation j&mpg ~ Nz~3. Thus we would need on the
order of N2~ % standard deviations from the mean (we need to get up,teach standard
deviation adds abou¥z~5 so we needVz*s such steps); of course, we haeboxes
and this is just foonebox. We can look at this in terms af — we need on the order of
mi+< standard deviations.
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The above arguments are meant to try and provide some insight as to what breaks down
when we considek = N andm = N2~¢. These are just some quick thoughts.
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