
BEYOND THE PIGEON-HOLE PRINCIPLE:
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STEVEN J. MILLER

ABSTRACT. ConsiderN boxes andm balls, with each ball equally likely to be in each
box. For fixedk, we bound the probability of at leastk balls being in the same box, asN

andm tend to infinity. In particular, we show that ifm = N
k−1

k then this probability is
at least 1

k!
− 1

2·k!2
+ O

�
N−1/k

�
and at most1

k!
+ O

�
N−1/k

�
. We then investigate

what happens whenk grows withN andm, and show there is negligible probability of
having at leastN balls in the same box whenm = N2−ε.

1. INTRODUCTION

Dirichlet’s Pigeon Hole Principle states that ifN + 1 balls are placed inN boxes, then
at least one box must contain at least two balls. We can instead ask how many balls we
need (as a function ofN ) to ensure a 50% (or at least a positive percent independent ofN )
chance that one box has two balls. This is the classic birthday problem; the probability that
m ≤ N balls are placed inm different boxes is just

PN,m =
N

N
· N − 1

N
· · · N − (m− 1)

N
=

N !
(N −m)!Nm

. (1.1)

Hence the probability that at least one box has at least two balls is1 − PN,m. To obtain a
positive percent we needPN,m bounded away from1; this occurs whenm ∼

√
N . One

way to see this is to use Stirling’s formula, which says

n! = nne−n
√

2πn
(
1 + O(n−1)

)
, (1.2)

as well as

ex = lim
n→∞

(
1 +

x

n

)n

. (1.3)

Thus we find

PN,m ∼ NNe−N
√

2πN

(N −m)N−me−(N−m)
√

2π(N −m) ·Nm

∼
√

N

N −m

(
1− m

N

)−(N−m)

e−m (1.4)

the above is bounded away from1 whenm ∼
√

N .
We consider the more general situation, namely, how many balls are needed to ensure

a positive probability of having at leastk balls in a box. Here we considerk fixed and
1 � m � N , with m andN tending to infinity.

Let |E| denote the probability of an eventE, and letEk;N,m be the event that at leastk
of them balls are in one of theN boxes. Our main result is
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Theorem 1.1. Letk be fixed. Ifm = N
k−1

k , then asN →∞ we have

2 · k!− 1
2 · k!2

+ O
(
N−1/k

)
< |Ek;N,m| <

1
k!

+ O
(
N−1/k

)
. (1.5)

2. PROOF OFTHEOREM 1.1

We first establish some notation before proving Theorem 1.1. We fix a pair(N,m) with
1 � m � N ; N andm will tend to infinity. LetEk,i;N,m denote the event of at leastk
balls in boxi (with N boxes andm balls), and letEk;N,m denote the event of at leastk
balls in a box (withN boxes andm balls). Clearly

Ek;N,m =
N⋃

i=1

Ek,i;N,m. (2.6)

However, forN andm even modestly sized, the eventsEk,1;N,m, . . . , Ek,N ;N,m are not
independent. Thus we obtain an upper bound for the probability of at leastk of them balls
in one of theN boxes:

|Ek;N,m| <
N∑

i=1

|Ek,i;N,m| = N · |Ek,1;N,m|, (2.7)

where the last follows from symmetry.

Proof of the Upper Bound in(1.5). Let Fn,1;N,m denote the event ofexactlyn of the m
balls being in the first of theN boxes. Then

|Fn,1;N,m| =
(

m

n

)
1

Nn

(
m− n

m− n

)(
1− 1

N

)m−n

. (2.8)

We first analyze the case whenn = k, the main term. Form � k, we find

|Fk,1;N,m| =
1
k!

mk

Nk
e−m/N + O(N−1). (2.9)

For alln we can bound|Fn,1;N,m| by 1
n!

mn

Nn , and thus

|Ek,1;N,m| =
m∑

n=k

|Fk,1;N,m|

= |Fk,1;N,m|+ O

(
m∑

n=k+1

|Fn,1;N,m|

)

=
1
k!

mk

Nk
e−m/N + O

(
m∑

n=k+1

1
n!

(m

N

)n
)

=
1
k!

mk

Nk
e−m/N + O

(
mk+1

Nk+1

)
. (2.10)

Substituting into (2.7) yields

|Ek;N,m| ≤ N · |Ek,1;N,m|

≤ 1
k!

mk

Nk−1
e−m/N + O

(
mk+1

Nk

)
. (2.11)
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If we takem = N
k−1

k then the main term is of size1k! (ase−m/N = e−1/N1/k

= 1 +
O(N−1/k)) and the error term isO

(
N−1/k

)
. Thus we have shown fork fixed andm =

N
k−1

k that

|Ek;N,m| ≤
1
k!

+ O
(
N−1/k

)
, (2.12)

completing the proof of the upper bound. �

Let En1,i1,n2,i2;N,m be the event of at leastn1 balls in boxi1 and at leastn2 balls in
box i2 (with m balls in all,N boxes). By inclusion-exclusion we have

|Ek;N,m| >
N∑

i=1

|Ek,i;N,m| −
N−1∑
i1=1

N∑
i2=i1+1

|Ek,i1,k,i2;N,m|. (2.13)

The left hand side,|Ek,i;N,m|, counts how many times at least one box has at leastk
balls. If this happens, then there must be at least one indexi such that it is counted in
an Ek,i;N,m. If there are two such indices, it is counted twice, but then we subtract it
once from anEk,i1,k,i2;N,m term. If exactly` ≥ 2 boxes contain at leastk balls, then we
have counted this̀ times from theEk,i;N,m terms and subtracted it

(
`
2

)
times from the

Ek,i1,k,i2;N,m terms. Thus (2.13) is a lower bound for|Ek;N,m|.

Proof of the Lower Bound in(1.5). Thus by the above arguments and symmetry, we need
only compute a good estimate for|Ek,1,k,2;N,m|, as

|Ek;N,m| ≥ N · |Ek,1;N,m| −
N(N − 1)

2
· |Ek,1,k,2;N,m|. (2.14)

Let Fn1,1,n2,2;N,m be the event of exactlyn1 balls in the first box and exactlyn2 balls
in the second box (withm balls andN boxes). Then form � max(n1, n2),

|Fn1,1,n2,2;N,m| =
(

m

n1

)
1

Nn1

(
m− n1

n2

)
1

Nn2

(
m− n1 − n2

m− n1 − n2

)(
1− 1

N

)m−n1−n2

+O(N−1).

(2.15)
The main term is whenn1 = n2 = k, which gives

|Fk,1,k,2;N,m| ∼
1

k!k!
m2k

N2k
e−m/N . (2.16)

We bound the contribution from terms with eachni ≥ k andn1 + n2 ≥ 2k + 1. If
n1 + n2 = `, there are clearly onlỳ− 1 pairs of positive integers(n1, n2) that sum tò
(of course, there are fewer pairs for us, as each must be at leastk). As ` − 1 ≤ n1n2, we
have∑

n1,n2≥k
n1+n2≥2k+1

|Fn1,1,n2,2;N,m| = O

(
m∑

`=2k+1

1⌊
`−2
2

⌋
!

(m

N

)`
)

= O

(
m2k+1

N2k+1

)
. (2.17)

Therefore, we have

|Ek,1,k,2;N,m| =
1

k!k!
m2k

N2k
e−m/N + O

(
m2k+1

N2k+1

)
. (2.18)

Substituting into (2.14) and using (2.10) for the size of|Ek,1;N,m| yields

|Ek;N,m| > N ·
[

1
k!

mk

Nk
e−m/N + O

(
mk+1

Nk+1

)]
− N2

2
·
[

1
k!k!

m2k

N2k
e−m/N + O

(
m2k+1

N2k+1

)]
. (2.19)
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Again takingm = N
k−1

k (so mk

Nk−1 = 1), we find that

|Ek;N,m| >
2 · k!− 1
2 · k!2

+ O
(
N−1/k

)
, (2.20)

completing the proof of the lower bound. �

Remark 2.1. Using the lower bound, we can bootstrap and ensure a high probability of
having at least one box with at leastk balls. The probability ofnot having at leastk balls
in one of the boxes is at most

1− 2 · k!− 1
2 · k!2

+ O
(
N−1/k

)
, (2.21)

remembering of course thatm = N
k−1

k . Consider nowa independent sets ofm = N
k−1

k

balls. The probability thatnoneof thesea sets has at least one box withk balls is(
1− 2 · k!− 1

2 · k!2
+ O

(
N−1/k

))a

. (2.22)

By choosinga sufficiently large, we can make this probability as close to zero as we like,
or equivalently make the probability that if we take at leastaN

k−1
k balls then at least one

box has at leastk balls. By takinga to be a small power ofN , we can make the probability
1 plus a smaller term.

Remark 2.2. Note in Remark 2.1 that we considereda independent sets ofm balls. In
finding our bounds of having at leastk balls in a box we do not allow (say)k − k′ balls
in box 1 from the first set andk′ balls in box1 from the second set; thus thea we take is
almost surely much larger than needed.

3. LETTING k DEPEND ONN

We discuss what happens if we try to use these arguments withk growing with N .
Specifically, if we havem = N2−ε, then is there a positive probability (asN → ∞) of
having at least one box with at leastk = N balls in it? We use Stirling’s formula, which
gives us the approximation

n! ∼ nne−n
√

2πn. (3.23)

Let us first consider the probability of having at leastN balls in the first box. The proba-
bility of exactlyn balls in the first box is

|Pn,1;N,m| =
(

m

n

)
1

Nn

(
m− n

m− n

)(
1− 1

N

)m−n

≤ 1
n!

mn

Nn
e−(m−n)/N . (3.24)
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We first bound the contribution whenn ∈ {N2−2ε, . . . ,m}, wherem = N2−ε. These
contribute

N2−ε∑
n=N2−2ε

|Pn,1;N,N2−ε | ≤
N2−ε∑

n=N2−2ε

1
nne−n

√
2πn

mn

Nn
e−(m−n)/N

�
N2−ε∑

n=N2−2ε

(2πn)−
1
2

( em

nN

)n

e−(m−n)/N

�
N2−ε∑

n=N2−2ε

(2πn)−
1
2

(
eN2−ε

nN

)n

�
N2−ε∑

n=N2−2ε

n−
1
2

( e

N1−ε

)N2−2ε

�
N2−ε∑

n=N2−2ε

n−
1
2 eN2−2ε log(e/N1−ε)

� N1− ε
2 e−(1−ε)N2−2ε log N+N2−2ε

� e−(1−ε)N2−2ε log N+N2−2ε+(1− ε
2 ) log N . (3.25)

We consider the contribution from terms withn ∈ {N, . . . , N2−2ε}; noten ≤ m =
N2−ε. For suchn we have (δ a positive constant below) that

N2−2ε∑
n=N

|Pn,1;N,N2−ε | ≤
N2−2ε∑
n=N

1
nne−n

√
2πn

mn

Nn
e−(m−n)/N

�
N2−2ε∑
n=N

(2πn)−
1
2

( em

nN

)n

e−(m−n)/N

�
N2−2ε∑
n=N

(2πn)−
1
2

(
eN2−ε

nN

)n

e−(N2−ε−n)/N

�
N2−2ε∑
n=N

n−
1
2

(
e

N ε(n/N)

)n

e−δN1−ε

�
N2−2ε∑
n=N

n−
1
2

( e

N ε

)N

e−δN1−ε

�
N2−2ε∑
n=N

n−
1
2 eN log(e/Nε)e−δN1−ε

�
N2−2ε∑
n=N

n−
1
2 e−εN log N+N−δN1−ε

� N1−εe−εN log N+N−δN1−ε

� e−εN log N+N−δN1−ε+(1−ε) log N . (3.26)
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Thus from (3.25) and (3.26) we have

N2−ε∑
n=N

|Pn,1;N,N2−ε | � e−εN log N+N−δN1−ε+(1−ε) log N

+ e−(1−ε)N2−2ε log N+N2−2ε+(1− ε
2 ) log N . (3.27)

Form = N2−ε, as

EN ;N,N2−ε ⊂
N⋃

i=1

N2−ε⋃
n=N

Pn,i;N,N2−ε , (3.28)

we finally obtain that

|EN ;N,N2−ε | � N · e−εN log N+N−δN1−ε+(1−ε) log N

+ N · e−(1−ε)N2−2ε log N+N2−2ε+(1− ε
2 ) log N

� e−εN log N+N−δN1−ε+(2−ε) log N

+ e−(1−ε)N2−2ε log N+N2−2ε+(2− ε
2 ) log N , (3.29)

which yields

Theorem 3.1. There is negligible probability of having at leastN balls in one ofN boxes
when there areN2−ε balls.

Remark 3.2. As δ ∈ (0, 1], even if we were to take

ε =
θ

log N
(3.30)

in the above arguments (for someθ > 1), we would still have|EN ;N,N2−ε | = o(1) for
suchm.

4. MOMENT ARGUMENTS

Let’s analyze the mean and standard deviations whenm independent balls are tossed
into N boxes (each box equally likely). Letwi,1 be the binary indicator variable for balli
and box1. Thuswi,1 is 1 with probabilityp = 1

N and0 with probabilityq = 1− 1
N . Note

the mean ofwi,1 is 1
N and the standard deviation is

√
pq, which is approximatelyN− 1

2 .
If we let w1 =

∑m
i=1 wi,1, then the mean is simplymN and the standard deviation is√

mpq.

If we fix k, we’ve seen we need to takem ∼ N
k−1

k . Such a choice leads to the expected
number of balls in the first box ofmN = N−1/k, with a standard deviation of

√
mpq ∼

N−1/2k. Thus we need to be on the order ofkN1/2k standard deviations from the mean;
of course, we haveN boxes and need this just foronebox. We can look at this in terms of
m – we need on the order ofk m1/2(k−1) standard deviations.

If we let k = N andm = N2−ε, then the expected number of balls in the first box is
m
N = N1−ε, and the standard deviation is

√
mpq ∼ N

1
2−

ε
2 . Thus we would need on the

order ofN
1
2−

ε
2 standard deviations from the mean (we need to get up toN , each standard

deviation adds aboutN
1
2−

ε
2 so we needN

1
2+ ε

2 such steps); of course, we haveN boxes
and this is just foronebox. We can look at this in terms ofm – we need on the order of
m

1
4+ε′ standard deviations.
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The above arguments are meant to try and provide some insight as to what breaks down
when we considerk = N andm = N2−ε. These are just some quick thoughts.
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