
The moment problem

Let I ⊆ R be an interval. For a positive measure µ on I the nth moment is defined as
∫
I
xndµ(x)

– provided the integral exists. If we suppose that (sn)n≥0 is a sequence of real numbers, the moment
problem on I consists of solving the following three problems:

(I) Does there exist a positive measure on I with moments (sn)n≥0 ?

In the affirmative,

(II) is this positive measure uniquely determined by the moments (sn)n≥0 ?

If this is not the case,

(III) how can one describe all positive measures on I with moments (sn)n≥0 ?

Without loss of generality we can always assume that s0 = 1. This is just a question of normalizing the
involved measures to be probability measures.

When µ is a positive measure with moments (sn)n≥0, we say that µ is a solution to the moment problem.
If the solution to the moment problem is unique, the moment problem is called determinate. Otherwise
the moment problem is said to be indeterminate.

On the following pages we give an introduction to the classical moment problem on the real line with
special focus on the indeterminate case. For a more detailed discussion the reader is referred to Akhiezer
[1], Berg [3] or Shohat and Tamarkin [23].

There are three essentially different types of (closed) intervals. Either two end-points are finite, one end-
point is finite, or no end-points are finite. In the last case the interval is simply R and in the first two
cases one can think of [0, 1] and [0,∞). For historical reasons the moment problem on [0,∞) is called
the Stieltjes moment problem and the moment problem on R is called the Hamburger moment problem.
Moreover, the moment problem on [0, 1] is referred to as the Hausdorff moment problem.

It is elementary linear algebra to verify that a positive measure with finite support is uniquely determ-
ined by its moments. Applying the approximation theorem of Weierstrass and the Riesz representation
theorem, one can extend this result to hold for positive measures with compact support. The Hausdorff
moment problem is therefore always determinate. As regards existence, Hausdorff [13] proved in 1923 that
the moment problem has a solution on [0, 1] if and only if the sequence (sn)n≥0 is completely monotonic.

Stieltjes introduced the moment problem on [0,∞) and solved the problems about existence and unique-
ness in his famous memoir “Recherches sur les fractions continues” from 1894-95, see [24]. The memoir
is devoted to the study of continued fractions of the form

1

m1z +
1

l1 +
1

m2z +
1

l2 + · · ·

(1)

where mn, ln > 0 and z ∈ C. We denote by Tn(z)/Un(z) the nth convergent (or nth approximant) and
observe that Tn(z) and Un(z) are polynomials in z. To be precise, T2n(z) and T2n−1(z) are polynomials
of degree n− 1 whereas U2n(z) and U2n−1(z) are polynomials of degree n. Moreover,

T2n(0) = l1 + . . .+ ln, U2n(0) = T2n−1(0) = 1 and U2n−1(0) = 0.
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The moment sequence (sn)n≥0 comes in via the asymptotic expansion

Tn(z)
Un(z)

=
s0
z
− s1
z2

+
s3
z3
− . . .+ (−1)n−1 sn−1

zn
+O

( 1
zn+1

)
, |z| → ∞.

In this way the nth convergent uniquely determines the real numbers s0, s1, . . . , sn−1. The condition
mn, ln > 0 is equivalent to assuming that∣∣∣∣∣∣∣∣∣

s0 s1 . . . sn−1

s1 s2 . . . sn
...

...
...

sn−1 sn . . . s2n−2

∣∣∣∣∣∣∣∣∣ > 0 and

∣∣∣∣∣∣∣∣∣
s1 s2 . . . sn
s2 s3 . . . sn+1

...
...

...
sn sn+1 . . . s2n−1

∣∣∣∣∣∣∣∣∣ > 0,

which is necessary and sufficient for the moment problem to have a solution on [0,∞) with infinite
support.

Stieltjes pointed out that one has to distinguish between two cases:

∞∑
n=1

(
mn + ln

)
<∞ and

∞∑
n=1

(
mn + ln

)
= ∞.

In the first case – the indeterminate case – the continued fraction diverges for all z ∈ C. However, the
even convergents and the odd convergents each have a limit as n → ∞ for z ∈ C \ (−∞, 0]. The limits
are different and of the form

lim
n→∞

T2n(z)
U2n(z)

=
∫ ∞

0

dν1(t)
z + t

and lim
n→∞

T2n−1(z)
U2n−1(z)

=
∫ ∞

0

dν2(t)
z + t

,

where ν1 and ν2 are different positive (and discrete) measures on [0,∞) with moments (sn)n≥0. In fact, the
polynomials T2n(z), U2n(z), T2n−1(z), U2n−1(z) converge uniformly on compact subsets of C as n→∞:

lim
n→∞

T2n(z) = P (z), lim
n→∞

T2n−1(z) = R(z),

lim
n→∞

U2n(z) = Q(z), lim
n→∞

U2n−1(z) = S(z).
(2)

The entire functions P , Q, R, S satisfy the relation

Q(z)R(z)− P (z)S(z) = 1, z ∈ C,

and admit only simple zeros which are ≤ 0. As we shall see later on, these four functions play an important
role in the description of the set of solutions to an indeterminate Stieltjes moment problem.

In the second case – the determinate case – the continued fraction converges uniformly on compact subsets
of C \ (−∞, 0] even though the polynomials Tn(z) and Un(z) diverge as n → ∞. The limit of the nth
convergent has the form

lim
n→∞

Tn(z)
Un(z)

=
∫ ∞

0

dν(t)
z + t

,

where ν is a positive measure on [0,∞) with moments (sn)n≥0. In fact, ν is the only positive measure on
[0,∞) with moments (sn)n≥0.

Hamburger continued the work of Stieltjes in the series of papers “Über eine Erweiterung des Stieltjesschen
Momentenproblems” from 1920-21, see [12]. He was the first to treat the moment problem as a theory
of its own and considered more general continued fractions than the one in (1). The role of [0,∞) in
Stieltjes’ work is taken over by the real line in Hamburger’s work. A key result – often referred to as
Hamburger’s theorem – says that (sn)n≥0 is a moment sequence if and only if it is positive definite. But
besides the question about existence, Hamburger was also interested in the question about uniqueness.

To avoid confusion at this point we emphasize that if (sn)n≥0 is a sequence of Stieltjes moments, then one
has to distinguish between determinacy and indeterminacy in the sense of Stieltjes and in the sense of
Hamburger. Obviously, an indeterminate Stieltjes moment problem is also indeterminate in the sense of
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Hamburger and if the solution to a determinate Hamburger moment problem is supported within [0,∞),
the moment problem is also determinate in the sense of Stieltjes. But a determinate Stieltjes moment
problem can just as well be determinate as indeterminate in the sense of Hamburger. In the following we
let the words determinate and indeterminate refer to the Hamburger moment problem unless otherwise
stated.

It is desirable to be able to tell whether the moment problem is determinate or indeterminate just by
looking at the moment sequence (sn)n≥0. Hamburger came up with a solution to this problem by pointing
out that the moment problem is determinate if and only if

lim
n→∞

∣∣∣∣∣∣∣∣∣
s0 s1 . . . sn−1

s1 s2 . . . sn
...

...
...

sn−1 sn . . . s2n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
s4 s5 . . . sn+1

s5 s6 . . . sn+2

...
...

...
sn+1 sn+2 . . . s2n−2

∣∣∣∣∣∣∣∣∣

= 0.

More recently, Berg, Chen and Ismail [4] have proved that the moment problem is determinate if and
only if the smallest eigenvalue of the Hankel matrix

(
(si+j)0≤i,j≤n

)
tends to 0 as n → ∞. A simpler

criterion, however, was given by Carleman in his treatise of quasi-analytic functions from 1926, see [8].
He proved that if

∞∑
n=1

1
2n
√
s2n

= ∞, (3)

then the moment problem is determinate. Carleman’s criterion has the disadvantage that it only gives a
sufficient condition for the moment problem to be determinate. There are moment sequences (sn)n≥0 for
which the series in (3) converges although the moment problem is determinate. But Carleman’s criterion
tells us that the moment problem is determinate unless the even moments tend to infinity quite rapidly.
On the other hand, we cannot conclude that the moment problem is indeterminate just because the
moment sequence increases very rapidly.

Given a positive measure µ with moments (sn)n≥0, the orthonormal polynomials (Pn) are characterized
by Pn(x) being a polynomial of degree n with positive leading coefficient such that∫

R
Pn(x)Pm(x) dµ(x) = δmn, n,m ≥ 0.

The polynomials (Pn) only depend on the moment sequence (sn)n≥0 and they can be obtained from the
formula

Pn(x) =
1√

Dn−1Dn

∣∣∣∣∣∣∣∣∣∣∣

s0 s1 . . . sn
s1 s2 . . . sn+1

...
...

...
sn−1 sn . . . s2n−1

1 x . . . xn

∣∣∣∣∣∣∣∣∣∣∣
, (4)

where Dn = det
(
(si+j)0≤i,j≤n

)
denotes the Hankel determinant. It is well-known that (Pn) satisfy a

three-term recurrence relation of the form

xPn(x) = bnPn+1(x) + anPn(x) + bn−1Pn−1(x), n ≥ 1, (5)

where an ∈ R and bn > 0. The initial conditions are P0(x) = 1 and P1(x) = 1
b0

(x−a0). Vice versa, if (Pn)
satisfy the above three-term recurrence relation (including the initial conditions) for some real sequences
(an) and (bn) with bn > 0, then it follows by Favard’s theorem that there exists a positive measure µ on
R such that the polynomials (Pn) are orthonormal with respect to µ.

3



As can be read of from (5), the leading coefficient of Pn(x) is given by (b0b1 · · · bn−1)−1. The polynomials
pn(x) := (b0b1 · · · bn−1)Pn(x) are therefore monic and they satisfy the three-term recurrence relation

xpn(x) = pn+1(x) + cnpn(x) + λnpn−1(x), n ≥ 1, (6)

where cn = an ∈ R and λn = b2n−1 > 0.

The recurrence coefficients in (5) and (6) contain useful information about the moment problem. Carleman
proved in 1922 that the moment problem is determinate if

∞∑
n=0

1
bn

= ∞. (7)

This condition is clearly satisfied if the sequence (bn) is bounded and if the sequence (an) is bounded too,
the unique solution has compact support. Just like Carleman’s condition (3), the condition (7) is only
sufficient for the moment problem to be determinate. The moment problem may be determinate even
though the series in (7) converges.

In the set-up of Stieltjes the recurrence coefficients from (5) are given by

an =
1

mn+1

( 1
ln

+
1

ln+1

)
and bn =

1
ln+1

√
mn+1mn+2

with the convention that a0 = 1
m1

1
l1

. After a few computations we see that the moment problem is
determinate in the sense of Stieltjes if (but not only if)

∞∑
n=0

1√
bn

= ∞.

Using the concept of chain sequences, Chihara proved the following result in [10]. On the assumption that

cn →∞ and
λn+1

cncn+1
→ L <

1
4

as n→∞,

the moment problem is determinate if

lim inf
n→∞

c1/nn <
1 +

√
1− 4L

1−
√

1− 4L

and indeterminate if the opposite (strict) inequality holds. In particular, if cn has the form

cn = fnq
−n,

where 0 < q < 1 and (fn) is both bounded and bounded away from 0, then the moment problem is
determinate if

L <
q

(1 + q)2

and indeterminate if the opposite (strict) inequality holds.

Just like the orthonormal polynomials (Pn), the polynomials of the second kind (Qn) are generated
by the three-term recurrence relation (5) – but with initial conditions Q0(x) = 0 and Q1(x) = 1/b0.
Consequently, (Pn) and (Qn) are linearly independent solutions to (5) and together they span the solution
space. Notice that Qn(x) is a polynomial of degree n− 1 and when µ is a positive measure with moments
(sn)n≥0, we have

Qn(x) =
∫

R

Pn(x)− Pn(y)
x− y

dµ(y).

The orthonormal polynomials (Pn) and the polynomials of the second kind (Qn) play a crucial role for
the moment problem. Hamburger proved that the moment problem is indeterminate if and only if

∞∑
n=0

(
P 2
n(0) +Q2

n(0)
)
<∞. (8)
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Actually, it is necessary and sufficient that there exists an x ∈ R such that (8) is fulfilled with x instead
of 0. It is even necessary and sufficient that there exists a z ∈ C \ R such that either (Pn(z)) or (Qn(z))
belong to `2. In any case, when the moment problem is indeterminate the series

∞∑
n=0

|Pn(z)|2 and
∞∑
n=0

|Qn(z)|2

converge uniformly on compact subsets of C.

Hamburger pointed out that in the set-up of Stieltjes the condition (8) is equivalent to

∞∑
n=1

mn+1(l1 + . . .+ ln)2 <∞. (9)

This simply follows from the fact that

Pn(z) = (−1)n
√
mn+1/m1U2n(−z)

and
Qn(z) = (−1)n−1√mn+1m1T2n(−z).

The condition (9) enables us to determine whether a determinate Stieltjes moment problem is determinate
or indeterminate in the sense of Hamburger.

Sometimes the natural starting point is not the orthogonal polynomials but a density w(t) with moments
(sn)n≥0. In this situation Krein [14] proved that the moment problem is indeterminate if

1
π

∫
R

logw(t)
1 + t2

dt > −∞. (10)

Krein’s condition (10) is only sufficient and not necessary for the moment problem to be indeterminate.

We shall now take a closer look at the set of solutions to an indeterminate Hamburger moment problem.
Such a set – which we will denote by VH – is clearly convex and therefore infinite. In fact, it is infinite
dimensional. Equipped with the vague topology, VH is a compact set in which the subsets of absolutely
continuous, discrete and continuous singular solutions each are dense, see Berg and Christensen [5].
Moreover, Naimark [17] proved that µ is an extreme point in VH if and only if the polynomials C[x] are
dense in L1(R, µ).

The problem about describing VH was solved by Nevanlinna in 1922 using complex function theory,
see [18]. We call a function ϕ a Pick function if it is holomorphic in the upper half-plane Im z > 0
and Imϕ(z) ≥ 0 for Im z > 0. By reflection in the real line any such function can be extended to a
holomorphic function in C \ R. Nevanlinna proved that VH can be parametrized by the space P of Pick
functions augmented with the point ∞. The space P inherits the topology of the holomorphic functions
on C \ R and one can think of P ∪ {∞} as a one-point compactification of P. The parametrization is
established via the homeomorphism ϕ 7→ µϕ of P ∪ {∞} onto VH given by∫

R

dµϕ(t)
t− z

= −A(z)ϕ(z)− C(z)
B(z)ϕ(z)−D(z)

, z ∈ C \ R,

where A, B, C, D are certain entire functions defined in terms of the orthonormal polynomials (Pn) and
the polynomials of the second kind (Qn). More precisely, A, B, C, D are the uniform limits (on compact
subsets of C) of the polynomials

An(z) = bn
(
Qn(0)Qn+1(z)−Qn+1(0)Qn(z)

)
,

Bn(z) = bn
(
Qn(0)Pn+1(z)−Qn+1(0)Pn(z)

)
,

Cn(z) = bn
(
Pn(0)Qn+1(z)− Pn+1(0)Qn(z)

)
,

Dn(z) = bn
(
Pn(0)Pn+1(z)− Pn+1(0)Pn(z)

)
,

(11)
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as n→∞. In a more compact form, we have

A(z) = z
∞∑
k=0

Qk(0)Qk(z), C(z) = 1 + z
∞∑
k=0

Pk(0)Qk(z),

B(z) = −1 + z
∞∑
k=0

Qk(0)Pk(z), D(z) = z
∞∑
k=0

Pk(0)Pk(z),

(12)

and the so-called Nevanlinna matrix
(
A C
B D

)
has determinant one for all z ∈ C.

M. Riesz proved in 1923 that the entire functions A, B, C, D are of minimal exponential type, see [22].
In particular, their order is ≤ 1 (and if the order is 1, then the type is 0). Berg and Pedersen [6] have
later proved that A, B, C, D have the same order, type and Phragmén–Lindelöf indicator function.

In some sense, to solve an indeterminate Hamburger moment problem means to find the Nevanlinna
matrix. If one can express A, B, C, D – but in particular B and D – in terms of well-known functions,
it may be possible to obtain solutions to the moment problem in a systematic way. With A, B, C, D
at hand one can use the Stieltjes–Perron inversion formula to find the solution µϕ corresponding to the
Pick function ϕ. In particular, if

ϕ(z) = t, Im z 6= 0

for t ∈ R ∪ {∞}, then µϕ is a discrete measure of the form

µt =
∑
x∈Λt

ρ(x)εx, (13)

where Λt denotes the set of zeros of x 7→ B(x)t − D(x) (or x 7→ B(x) if t = ∞) and ρ : R → (0, 1) is
given by

1
ρ(x)

=
∞∑
n=0

P 2
n(x) = B′(x)D(x)−B(x)D′(x), x ∈ R. (14)

As usual, we denote by εx the unit mass at the point x. Moreover, if we set

ϕ(z) =

{
β + iγ, Im z > 0
β − iγ, Im z < 0

for β ∈ R and γ > 0, then µϕ is absolutely continuous with density

dµβ,γ
dx

=
γ/π(

βB(x)−D(x)
)2 +

(
γB(x)

)2 , x ∈ R. (15)

The solutions in (13) and (15) are interesting in different ways. The discrete measures in (13) are charac-
terized by M. Riesz [21] to be the only solutions µ for which the polynomials C[x] are dense in L2(R, µ)
or, equivalently, for which the polynomials (Pn) form an orthonormal basis for the Hilbert space L2(R, µ).
They are called N -extremal solutions and are indeed extreme points in VH – just not the only ones. As
regards the densities in (15), the polynomials C[x] are not even dense in L1(R, µβ,γ). But among all the
absolutely continuous measures in VH with density, say w(t), the solution µ0,1 is the one that maximizes
the entropy integral in (10). More generally, Gabardo [11] proved that for fixed λ = x+ iy in the upper
half-plane, the integral

1
π

∫
R

y logw(t)
(x− t)2 + y2

dt

obtains its maximum value among all densities in VH when

w(t) =
dµβ,γ
dt

and
D(λ)
B(λ)

= β − iγ.

Since VH is convex, we notice that given ϕ,ψ ∈ P ∪ {∞} and s ∈ [0, 1] there exists a unique function
χ ∈ P ∪ {∞} such that

sµϕ + (1− s)µψ = µχ.
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In fact, χ is given by

χ =
ϕψB −

(
sϕ+ (1− s)ψ

)
D(

(1− s)ϕ+ sψ
)
B −D

and this in particular means that

1
2 (µ1 + µ−1) = µB/D and 1

2 (µ0 + µ∞) = µ−D/B .

Therefore, B/D and −D/B are Pick functions.

The solutions in (13) are also called canonical. More generally, a solution µϕ is called m-canonical or
canonical of order m if the Pick function ϕ is a real rational function of degree m. Such solutions are
discrete measures and if ϕ = P/Q – assuming that P and Q are polynomials with real coefficients and
no common zeros – then µϕ is supported on the zeros of x 7→ B(x)P (x) −D(x)Q(x). For fixed m0, the
subset of canonical solutions of order m ≥ m0 is dense in VH . Moreover, if µ is canonical of order m ≥ 1
then the polynomials C[x] are dense in Lp(R, µ) for 1 ≤ p < 2 but not for p ≥ 2. In particular, the
m-canonical solutions are extreme points in VH and we see that VH is one of those special convex sets in
which the extreme points are dense.

Buchwalter and Cassier proved in [7] that a solution µ is m-canonical if and only if the closure of the
polynomials C[x] has codimension m in L2(R, µ). In fact, if µ is a discrete solution of the form

µ =
∑
n

mnεxn
,

then the codimension of the closure of C[x] in L2(R, µ) can be computed as the sum of the series∑
n

(
1− mn

ρ(xn)

)
,

where ρ is defined in (14). See Bakan [2] for details. The above series converges if and only if µ is canonical
of some order m ≥ 0. At this point we stress that

µ({x}) ≤ ρ(x), x ∈ R

for all µ ∈ VH and equality only holds when µ = µt is N -extremal and B(x)t−D(x) = 0.

Suppose now that (sn)n≥0 is a sequence of Stieltjes moments such that the moment problem is inde-
terminate in the sense of Hamburger. In order to describe the set VS of solutions to the Stieltjes moment
problem, one can still use the Nevanlinna parametrization and just restrict oneself to consider only the
Pick functions ϕ which have an analytic continuation to C \ [0,∞) such that α ≤ ϕ(x) ≤ 0 for x < 0, see
Pedersen [20]. The quantity α ≤ 0 is defined by

− 1
α

= m1

∞∑
n=1

ln

or as the limit

α = lim
n→∞

Pn(0)
Qn(0)

,

and the moment problem is determinate in the sense of Stieltjes if and only if α = 0.

For the indeterminate Stieltjes moment problem a slightly more elegant way to describe VS is the Krein
parametrization, see Krein [15] or Krein and Nudel’man [16, p. 199]. We denote by S the subspace of P
consisting of those Pick functions σ which have an analytic continuation to C \ [0,∞) such that σ(x) ≥ 0
for x < 0. In addition to this, S ∪ {∞} is a one-point compactification of S in the topology inherited
from the holomorphic functions on C\ [0,∞). The parametrization is established via the homeomorphism
σ 7→ νσ of S ∪ {∞} onto VS given by∫ ∞

0

dνσ(t)
t− z

=
P (−z) + σ(z)R(−z)
Q(−z) + σ(z)S(−z)

, z ∈ C \ [0,∞),
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where P , Q, R, S are the entire functions from (2). In fact,
(
P R
Q S

)
is related to the Nevanlinna matrix

by

P (z) = A(−z)− 1
α
C(−z), R(z) = C(−z),

Q(z) = −
(
B(−z)− 1

α
D(−z)

)
, S(z) = −D(−z),

(16)

and we see that νσ = µϕ exactly when

σ(z) =
ϕ(z)− α

αϕ(z)
.

In particular, this means that
ν0 = µα, ν∞ = µ0

and the only N -extremal solutions supported within [0,∞) are µt with α ≤ t ≤ 0 or νs with 0 ≤ s ≤ ∞.

We end by explaining the connection between Stieltjes moment problems and symmetric Hamburger
moment problems. A moment problem is said to be symmetric if all moments of odd order are 0. In
terms of the orthonormal polynomials (Pn) this is equivalent to

Pn(−x) = (−1)nPn(x) for all n ≥ 0

or equivalent to an = 0, where (an) is the sequence from the three-term recurrence relation (5). If we
suppose that (sn)n≥0 is a sequence of Stieltjes moments, then the sequence (s0, 0, s1, 0, s2, . . .) gives rise to
a symmetric Hamburger moment problem which is indeterminate if and only if the original Stieltjes mo-
ment problem is indeterminate. Notice that Carleman’s criterion (3) thus says that the Stieltjes moment
problem is determinate if

∞∑
n=1

1
2n
√
sn

= ∞.

There is a one-to-one correspondence between solutions to the Stieltjes moment problem and sym-
metric solutions to the corresponding symmetric Hamburger moment problem, cf. [19, Prop. 4.1]. In
fact, if the density w(t), t > 0, has moments (sn)n≥0 then the density |t|w(t2), t ∈ R, has moments
(s0, 0, s1, 0, s2, . . .). So the criterion (10) of Krein tells us that the Stieltjes moment problem is indeterm-
inate if ∫ ∞

0

logw(t)√
t(1 + t)

dt > −∞. (17)

However, as we explain now, an indeterminate symmetric Hamburger moment problem also has non-
symmetric solutions. The set of solutions to an indeterminate Hamburger moment problem is described
via the Nevanlinna parametrization. When the moment problem is symmetric, Pedersen [19] proved that
the solution µϕ is symmetric if and only if the Pick function ϕ is odd (with the convention that ∞ is odd).
Obviously, there are quite a few odd Pick functions but even more are certainly not odd. In particular,
the only symmetric N -extremal solutions are µ0 and µ∞. Moreover, the absolutely continuous solutions
in (15) are symmetric exactly when β = 0.

The Nevanlinna matrix
(
A C
B D

)
for the symmetric Hamburger moment problem can be obtained from the

Nevanlinna matrix for the original Stieltjes moment problem, see Chihara [9]. But A, B, C, D are closer
related to the entire functions P , Q, R, S of Stieltjes which appear in the Krein parametrization. In fact,
we have

A(z) = zP (−z2), C(z) = R(−z2),

B(z) = −Q(−z2), D(z) = −S(−z2)/z,
(18)

and the Stieltjes solution νσ thus corresponds to the symmetric solution µϕ if and only if

ϕ(z) = − 1
zσ(z2)

.

In particular, ν0 corresponds to µ∞ and ν∞ corresponds to µ0 whereas all other N -extremal Stieltjes
solutions correspond to (symmetric) canonical solutions of order 1.
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