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Abstract

In this paper, I will reconstruct Khintchine’s presentation of Kuzmin’s Theo-
rem but with vastly more details and explanations. I will then use this formulation
to give a method of approximating the absolute positive constantsA and λ in
Levy’s error term:∣∣∣∣∣µ(E

(
n
k

)
)−

ln
{

1 + 1
k(k+2)

}
ln 2

∣∣∣∣∣ < A

k(k + 1)
e−λ(n−1).

I conducted a numerical experiment to estimate these constants given certain con-
ditions and will present the results in this paper.

Finally, there exists some guiding theory to describe the zero measure set of
α ∈ [0, 1] that does not obey Kuzmin’s Theorem, but the existing theory has never
been fully summarized in a single exposition. I will provide this summary, and
I will present two additional sets, for which theory suggests Kuzmin’s Theorem
does not hold.



Chapter 1

Preliminaries

1.1 Notation

A continued fraction is the representation of a numberα ∈ R and is of the
form:

α = a0 +
1

a1 +
1

a2 +
1

... +
1

an

(1.1.1)

If the continued fraction is infinite, then the expansion will not terminate with
an like the expansion above does. Throughout this thesis we will also represent
a finite continued fraction with[a0; a1, . . . , an] and an infinite continued fraction
with [a0; a1, . . .].

Where appropriate, I will make the following notational distinctions:x =
[a0; a1, . . .] is the value of the continued fraction of arbitrary length, butα is
the actual number being represented by the continued fraction, or the number
to which the continued fractionx converges. In other words, we attempt to rep-
resentα by a rational number,x = [a0; a1, . . .]. For example, ifα = π, then
x = [3; 7, 15, 1, 292, 1, . . .] is the value of the continued fraction expansion of
arbitrary length that ultimately converges toπ.
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1.2 Definitions

Many of the following definitions are found in [MT]:

Definition 1.2.1. Coefficients of a Continued Fraction:If x = [a0; a1, . . .], then
theai are the digits or coefficients.

Definition 1.2.2. Positive Continued Fraction:A continued fraction[a0; a1, . . .]
is positive if eachai > 0.

Definition 1.2.3. Simple Continued Fraction:A continued fraction is simple if
all ai are positive integers.

Definition 1.2.4. Convergents of a Continued Fraction:Let x = [a0; a1, . . .],
and ifxn = [a0; a1, . . . , an] = pn

qn
, thenpn

qn
is thenth quotient or convergent.

Property 1.2.5. Letk ≥ 2, then the following is an increasing sequence for even
values ofk and a decreasing for odd values ofk:

pk−2

qk−2

,
pk−2 + pk−1

qk−2 + qk−1

,
pk−2 + 2pk−1

qk−2 + 2qk−1

, . . . ,
pk−2 + akpk−1

qk−2 + akqk−1

=
pk

qk

(1.2.2)

Definition 1.2.6. Intermediate Fractions: The fractions standing betweenpk−2

qk−2

and pk

qk
are called intermediate fractions.

Let us define:
sk = [a0; a1, . . . , ak], (1.2.3)

or a section comprised of the firstk coefficients of a continued fraction. Cor-
respondingly,rk is the remainder of the continued fraction beginning with the
coefficientak:

rk = [ak; ak+1, . . .], (1.2.4)

whererk terminates atan if the continued fraction expansion is finite, orx =
[a0; a1, . . . , an] = [a0; a1, . . . , ak−1, rk]. If rk exists, thenrk ≥ 1 becauseak ≥ 1
for all k.

1.3 Finding the Quotients of a Continued Fraction
and Uniqueness

Although there exist other methods to determine a continued fraction’s coef-
ficient values, these algorithms build on the same idea behind the Lang-Trotter
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method [LT]. However, the “old-fashioned” method utilizes the Euclidean algo-
rithm and implementing this method yieldsx’s unique continued fraction expan-
sion [MT].
Assume thatx is represented by a simple continued fraction:

x = a0 +
1

a1 +
1

a2 +
1

...

(1.3.5)

To find a0, we take the greatest integer less thanx (denoted by[x]) to bea0’s
value. Hence, the remainder of the continued fraction expansion represents the
valuex− [x]:

x− [x] =
1

a1 +
1

a2 +
1

...

, (1.3.6)

where by taking the reciprocal, we determinea1’s value:

x1 =
1

x− [x]
= a1 +

1

a2 +
1

a3 +
1

...

⇒ [x1] = a1. (1.3.7)

We repeat this process forx2

(
i.e. x2 = 1

x1−[x1]

)
and all subsequentxi until our

expansion repeats, terminates, or a desiredn is reached.
Since we assumed thatx’s continued fraction representation was simple, the

only modification needed ifx < 0 is to allowa0 < 0, then every other coefficient
value is a natural number. Assuming that a continued fraction possesses at least
m coefficients, it is also important to reiterate thatai ≥ 1 for 1 ≤ i ≤ m because
0 ≤ xi − [xi] < 1. If xi − [xi] = 0 then the remainder is0 and the expansion
terminates.

From this traditional method of finding coefficients, we note a very important
property:
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Property 1.3.1. Let α be a rational number with a finite continued fraction ex-
pansion of lengthn, thenα = [a0; a1, . . . , an] = [a0; a1, . . . , ak−1] + 1

rk
, whereai

is a positive integer for alli ≤ n.

For expositions on this see [MT]. We will now show that ifx has an infinite
continued fraction expansion, then the expansion is unique.

Theorem 1.3.2.Letx = [a0; a1, a2, a3, . . .] = [a
′
0; a

′
1, a

′
2, a

′
3, . . .] be two continued

fraction expansions forx, thenai = a
′
i for all i. Thus, a continued fraction

expansion is unique.

Proof: This proof is found in [Ki]. Let the conditions of the theorem hold,
namelyx = [a0; a1, a2, a3, . . .] = [a

′
0; a

′
1, a

′
2, a

′
3, . . .], where the expansions can be

finite or infinite. Leti = 0, then since both expansions representx, we havea0 =
[x] anda′0 = [x], which impliesa0 = a

′
0. Assumeai = a

′
i for all i ≤ n. Then

by Theorem 1.4.2, we havepi = p
′
i andqi = q

′
i for all i ≤ n. From the definition

of rk and Theorem 1.4.8, we havex = [a0; a1, . . . , an] = [a0; a1, . . . , ak−1, rk],
which implies:

x =
pnrn+1 + pn−1

qnrn+1 + qn−1

=
p
′
nr

′
n+1 + p

′
n−1

q′nr
′
n+1 + q

′
n−1

=
pnr

′
n+1 + pn−1

qnr
′
n+1 + qn−1

; (1.3.8)

therefore,rn+1 = r
′
n+1. But we know thatan+1 = [rn+1] anda

′
n+1 = [r

′
n+1] so

an+1 = a
′
n+1, and the two expansions are identical.2

From this proof we conclude ifα’s continued fraction expansion terminates
with a coefficientan = 1, then two possible continued fraction representations
exist forα: one representation ends withan = 1 and the other ends witha

′
n−1 =

an−1+1. Only in this case is it possible for a number to have two distinct continued
fraction representations.

1.4 Properties of Convergents

Property 1.4.1. Let [a0; a1, . . . , an] be a continued fraction, then [MT]:

1. [a0; a1, . . . , an] = [a0; a1, . . . , an−1 +
1

an

]

2. [a0; a1, . . . , an] = [a0; a1, . . . , am−1, [am, . . . , an]]. (1.4.9)
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The following theorem will be integral in answering certain questions involv-
ing measure and continued fractions, especially with regard to a continued frac-
tion’s tail or interval of uncertainty.

Theorem 1.4.2.For anym ∈ {2, . . . , n} andam a positive integer, we have

1. p0 = a0, p1 = a0a1 + 1, and pm = ampm−1 + pm−2

2. q0 = 1, q1 = a1, and qm = amqm−1 + qm−2. (1.4.10)

Proof: Use induction (see [MT]). Notepn andqn are positive integers, and we
shall assume this when referencing them hereinafter.

This theorem provides a closed form expression for the denominator, the nu-
merator, and the convergents of the continued fraction expansion ofα ∈ R. In
fact, we will soon understand that this formula allows us to estimate how wellx
approximatesα givenN coefficients.

Lemma 1.4.3.For all k ≥ 0 we havepnqn−1 − pn−1qn = (−1)n−1.

Lemma 1.4.4.For all k ≥ 1 we havepnqn−2 − pn−2qn = (−1)nan.

The next theorem is presented only to justify later the assumption(p, q) = 1:

Theorem 1.4.5. If a continued fraction expansion possesses annth convergent
pn

qn
, thenpn

qn
is reduced.

Proof: From Lemma 1.4.3 any common factorc of both pn andqn is also a
factor ofpnqn−1 − pn−1qn = (−1)n−1. Soc|(−1)n−1 which impliesc = 1. 2

This theorem implies the reduced value ofx = [a0; a1, . . . , ak] is given by the
kth convergentpk

qk
. In the case the continued fraction expansion is finite, there

exist somen, for whichα = pn

qn
= x.

Lemma 1.4.6.For all k ≥ 2 we have

pn

qn

− pn−1

qn−1

=
(−1)n−1

qnqn−1

(1.4.11)

pn

qn

− pn−2

qn−2

=
(−1)nan

qnqn−2

. (1.4.12)
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Proof: We know from Theorem 1.4.2 thatqi > 0 for all i, otherwise the con-
vergent would be undefined. Moreover,ai > 0 for all i, otherwise the expansion
would terminate. Therefore, we can divide Lemma 1.4.3 byqnqn−1, by which the
first relation of Lemma 1.4.6 follows. To obtain the second relation, we divide
Lemma 1.4.4 byqnqn−2. 2

Given a continued fraction representation of lengthn, there exsits aninter-
val of uncertainty, which is the absolute difference betweenpn

qn
andα. Lemma

1.4.6 offers a closed form expression for the measure (or length) of the interval of
uncertainty given a continued fraction expansion of lengthn. Additionally, this
lemma, combined with Theorem 1.4.2, allows us to determine how fast the mea-
sure of the interval of uncertainty|pn

qn
− pn−1

qn−1
| falls asn becomes large. The next

theorem will show the measure of the interval of uncertainty decreases after each
coefficient.

Theorem 1.4.7. If the coefficientsa0 to an are positive, then the sequencex2m

is an increasing sequence, the sequencex2m+1 is a decreasing sequence, and for
everym, x2m < α < x2m+1 (if n 6= 2m or 2m + 1) and wherexm = pm

qm
.

Proof: This proof is adapted from [MT]. We will prove this theorem forα
irrational. By Lemma 1.4.6 we know that

x2m+2 − x2m =
(−1)2ma2m

q2mq2m+2

> 0. (1.4.13)

This equation holds for allm becauseam > 0 and the continued fraction ex-
pansion of an irrational number is infinite. Since the right hand side is always
positive, this implies thatx2m+2 > x2m. A similar relationship can be proved for
the odd indexed terms but the right hand side of Equation 1.4.13 will have the
factor (−1)2m+1 instead of(−1)2m. Since−1 is raised to an odd power for the
odd indexed terms, the differencex2m+3 − x2m+1 < 0 ⇒ x2m+1 > x2m+3. We
must show now thatx2m+1−x2m > 0, which is just another application of Lemma
1.4.6 takingn

′
= 2m + 1. If n

′
is odd, thenxn′ =

p
n
′

q
n
′

is less than all the preceed-

ing odd indexed convergents. Ifn
′
is even, thenxn′ =

p
n
′

q
n
′

is greater than all the

preceeding even indexed convergents. Sincexn ≥ x2m for evenn, xn ≤ x2m+1

for oddn, andx2m+1 > x2m for all m, we concludexn = pn

qn
(n ≥ 2m + 1) will

always be in the interval[x2m, x2m+1] for all n. 2

The next few theorems will be used extensively in later chapters.
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Theorem 1.4.8.For anyk (1 ≤ k ≤ n) we have:

α = [a0; a1, . . . , an] =
pk−1rk + pk−2

qk−1rk + qk−2

. (1.4.14)

Proof: Recall our definition ofrk implied[a0; a1, . . . , an] = [a0; a1, . . . , ak−1, rk],
where we assume thatpk−1

qk−1
is the(k − 1)th convergent of the continued fraction

on the right hand side of Equation 1.4.14, but this continued fraction’skth order
convergent’s value isα and given by Theorem 1.4.2:

pk = pk−1rk + pk−2 and qk = qk−1rk + qk−2. 2 (1.4.15)

Theorem 1.4.9.Let[a0; a1, . . . , an] be a positive, simple continued fraction. Then:

1. qn ≥ qn−1 for all n ≥ 1, and qn > qn−1 if n > 1.

2. qn ≥ n, with strict inequality if n > 3. (1.4.16)

Note, a similar statement can be made for the numerators (pn’s) of the conver-
gents.

Proof: From Theorem 1.4.2 we knowq0 = 1, q1 = a1 ≥ 1, andqn = anqn−1 +
qn−2. For alln, we havean ≥ 1 andan ∈ N. Thus,anqn−1 + qn−2 = qn ≥ qn−1.
If n > 1 andqn−2 > 0, then the inequality is strict.

The second claim is proved by induction. Forn = 0, the claim is clearly
satisfied asq0 = 1 > 0. Assumeqn−1 ≥ n− 1 for all i < n. Then from Equation
1.4.2, we haveqn = anqn−1 + qn−2 ≥ qn−1 + qn−2 ≥ (n − 1) + 1 = n, where
the last inequality is given by the inductive step. If at any point the inequality is
strict, then it is strict from that point onward. By inspection, it is easy to see that
qn > n for n > 3 becauseqn = anqn−1 + qn−2; lettingn = 4 andan = 1, we have
q4 = 3 + 2 = 5 > 4 = n. 2

The ratio qk

qk−1
is often needed in establishing convergence properties of con-

tinued fractions.

Theorem 1.4.10.For anyk ≥ 1, x = [a0; a1, . . . , ak, . . .], and when convergents
pk−1

qk−1
, pk

qk
exist, we have:

qk

qk−1

= [ak; ak−1, . . . , a1]. (1.4.17)
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Proof: This theorem is easily proved by induction. Letk = 1, then the theorem
is trivially true becauseq1

q0
= a1

1
= a1. Now assumeqk−1

qk−2
= [ak−1; ak−2, . . . , a1]

holds for alli < k. By combining the relationqk = akqk−1 + qk−2 established in
Theorem 1.4.2 with Property 1.3.1, we reason:

qk

qk−1

= ak +
qk−2

qk−1

= [ak;
qk−1

qk−2

], (1.4.18)

whereqk−2

qk−1
is equivalent to term1

r
in Property 1.3.1. By Definition 1.2.4 and our

inductive assumption, we conclude:

[ak;
qk−1

qk−2

] = ak + [0; ak−1, . . . , a1]

⇒ qk

qk−1

= [ak; ak−1, . . . , a1]. 2 (1.4.19)

We note relationship in Theorem 1.4.10 is simply the reverse ofx = [a0; a1, . . . , ak]
excluding the coefficienta0.

1.5 Infinite Continued Fractions

We previously defined an infinite continued fraction asx = [a0; a1, . . .], where
the expansion never terminates. An infinite continued fraction converges to a
valueα only if the following limit exists:

lim
n→∞

pn

qn

= α < ∞ (1.5.20)

In other words, associated with each coefficientan in the above continued fraction
is a convergentpn

qn
, and if the sequence of convergentsp0

q0
, . . . , pn

qn
, . . . converges,

then the infinite continued fraction converges to valueα. However, if the sequence
diverges, then the expansion does not converge to a value.

An analog of Theorem 1.4.8 exists for infinite continued fractions, in that we
can representα as follows:

α =
pn−1rn + pn−2

qn−1rn + qn−2

(1.5.21)

assuming bothrn converges ask →∞ andqi, pi are positive integers for alli ≥ 0.
Recalling our definition ofrk and Theorem 1.4.8 we can write for irrationalα:

α = [a0; a1, . . . , rk] =
pk−1

p
′
k

q
′
k

− pk−2

qk−1
p
′
k

q
′
k

− qk−2

, (1.5.22)
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where the right hand side of the equation is thekth order convergent andrk =
p
′
k

q
′
k

.

If lim
k→∞

p
′
k

q
′
k

exists, thenrk converges.

We proved in Theorem 1.4.7 that the value of a convergent of an infinite con-
tinued fraction is greater than that of any even order convergent and less than
that of any odd order convergent. This result will help us to prove later that the

convergents of an infinite continued fraction satisfy
∣∣∣α − pk

qk

∣∣∣ < 1
qkqk−1

. For the

time being, let us assume this inequality (the proof will come shortly) in order to
present the following theorem, which is powerful because it justifies using contin-
ued fractions to represent uniquely anyα ∈ R.

Theorem 1.5.1.To every real numberα there corresponds, uniquely, a simple
continued fraction whose value is this number. This continued fraction terminates
if α is rational, or is infinite ifα is irrational [Ki].

Proof: We establishedα = [a0; r1] = [a0; a1, . . . , an, rn+1] in Equation 1.2.4,
whereri is not assumed to be an integer. Leta0 = [α], where[x] denotes the
largest integer not exceedingx. Then by the discussion on finding coefficients,
we haveα = a0 + 1

r1
, wherer1 = [a1; a2, . . .] > 1 (equality is not possible unless

[α] = a0 + 1). So we have1
r1

= α − a0 < 1; therefore,an is the largest integer
not exceedingrn:

rn = an +
1

rn+1

(1.5.23)

This process can be repeated indefinitely or until the expansion terminates.
If α ∈ Q, thenrn ∈ Q for all n, and our process will eventually terminate after

a finite number of steps. To see this, consider the following: assume thatα ∈ Q,
which implies thatrn = a

b
, then we have

rn − an =
a− ban

b
=

c

b
(1.5.24)

wherec < b is a strict inequality becausern − an < 1. Equation 1.5.23 yields
rn+1 = b

c
, but if c = 0 thenrn is an integer, in which case the expansion would

terminate; so assume thatc 6= 0. Thenc < b andrn+1 has a smaller denominator
thanrn; as a result, after a finite number of steps in the sequencer1, r2, . . ., we
must arrive eventually atrn = an. Hence, the continued fraction expansion ter-
minates withan = rn > 1, where the inequality is strict becausec < b. By the
fact thatα = [a0; r1] = [a0; a1, . . . , an, rn+1], we can conclude thatα is indeed

9



represented by a terminating continued fraction. Uniqueness of the terminating
continued fraction was proved in Theorem 1.3.2.

If α is irrational, thenrn is irrational for all n, and the process delineated
in Equation 1.5.24 never terminates. We write[a0; a1, . . . , an] = pn

qn
, where by

Theorem 1.4.5,(pn, qn) = 1. From Theorem 1.4.8 for irrationalα, we have:

α =
pn−1rn + pn−2

qn−1rn + qn−2

but
pn

qn

=
pn−1an + pn−2

qn−1an + qn−2

whence α− pn

qn

=
(pn−1qn−2 − qn−1pn−2)(rn − an)

(qn−1rn + qn−2)(qn−1an + qn−2)

⇒
∣∣∣α− pn

qn

∣∣∣ <
1

(qn−1rn + qn−2)(qn−1an + qn−2)
<

1

q2
n

. (1.5.25)

Because 1
q2
n
→ 0 as n → ∞, we havepn

qn
→ α, which implies the value of

the infinite continued fraction isα. Again, we previously showed uniqueness in
Theorem 1.3.2.2

This theorem is important because it enables us to distinguish rational num-
bers from irrational numbers simply by examing the lengths of the their continued
fraction expansions. We concluded in Theorem 1.3.2 that the continued fraction
expansion of an irrational number is unique. Therefore, when empirically analyz-
ing properties of a continued fraction expansion, we need not worry other possible
results exist.

In summary, every numberα can be represented uniquely as a continued frac-
tion. If α ∈ Q, then the continued fraction expansion terminates; on the other
hand, ifα is irrational, then the continued fraction expansion is infinite.

The next theorem is a natural consequence of the definition of an infinite con-
tinued fraction’s value.

Theorem 1.5.2.If an infinite continued fraction converges, then all its remainders
converge. Conversely, if at least one remainder of the infinited continued fraction
converges, then the continued fraction itself converges.

Proof: This proof is an application of Equation 1.5.20 coupled with Theorems
1.4.2 and 1.4.8. For details see [Ki].

A final result will be sufficient to build a strong intuition for infinite continued
fractions.
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Theorem 1.5.3.For a simple infinite continued fraction[a0; a1, . . .] to converge,
it is necessary and sufficient that the series

∑∞
n=1 an should diverge.

I will present the proof of this theorem but will not consider the question of
convergence of an infinite continued fraction when the series

∑∞
n=1 an converges;

however, the argument is worth reading in Khintchine’s exposition [Ki].

Proof: As a result of Theorem 1.4.7 and Equation 1.5.20, we note:

lim
m→∞

p2m

q2m

= lim
m→∞

p2m+1

q2m+1

= α (1.5.26)

is a necessary and sufficient condition to guarantee convergence of an infinite
continued fraction toα. Recall from Lemma 1.4.6 that for allk ≥ 1, we had
pk−1

qk−1
− pk

qk
= (−1)k

qkqk−1
; thus, an infinite continued fraction converges if:

qkqk−1 →∞ ask →∞. (1.5.27)

This condition is both necessary and sufficient to guarantee an infinite continued
fraction’s convergence. Now, we will show if the series

∑∞
n=1 an diverges, Equa-

tion 1.5.27 is satisfied. We labelc = min[q0, q1], which impliesqk ≥ c for all
nonnegativek becauseqk > qk−2 for all k ≥ 2 by Theorem 1.4.9, and recall
qk = qk−1ak + qk−2 by Theorem 1.4.2. Collecting our results yields:

qk ≥ qk−2 + cak (k ≥ 2)

⇒ q2k ≥ q0 + c
k∑

n=1

a2n

and q2k+1 ≥ q1 + c

k∑
n=1

a2n+1

⇒ q2k + q2k+1 ≥ q0 + q1 + c

2k+1∑
n=1

an

⇒ qk + qk−1 > c
k∑

n=1

an, (1.5.28)

where the last inequality holds for allk ≥ 0. Line 2 is a repeated application
of line 1, and line 4 is the sum of lines 2 and 3. Finally, line 5 results from
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recognizingq0, q1 > 0. From this last equation, we note at least one of the factors
in the productqkqk−1 is greater thanc

2

∑k
n=1 an, but by line 1 of Equation 1.5.28

the other factor cannot be less thanc; so we have for allk,

qkqk−1 >
c2

2

k∑
n=1

an (1.5.29)

Therefore, so long as the series diverges, we have thatqkqk−1 →∞ ask →∞. 2

1.6 Advantages and Disadvantages of Continued Frac-
tions

The power and utility of continued fractions is best explained by Khintchine
[Ki], and I will summarize some of his key points. First, we can represent every
numberα ∈ (0, 1) as a continued fraction, and we can computeα’s value to any
desired precision; this property is especially useful in the caseα /∈ Q. In the next
chapter, we will develop upper and lower bounds on a continued fraction’s ability
to approximateα, given the expansion has lengthN .

Many properties ofα are revealed in its continued fraction expansion. For
example, if a number is irrational, then the continued fraction never terminates.
Moreover, Khintchine [Ki] comments: “Whilst every systematic fraction is cou-
pled to a definite radix system (i.e. the base of a number system) and therefore
unavoidably reflects more the interaction of the radix system and the number than
the absolute properties of the number itself. The continued fraction is completely
independent of any radix system and reproduces in pure form the properties of the
number which it represents.” Its independence of a radix system and the property
that we can computeα’s value to any desired precision make continued fractions
extremely practical in both theoretical and practical settings. In fact, we will see
shortly that a continued fraction gives the best possible rational approximation of
an arbitraryα ∈ (0, 1).

There does exist one major disadvantage that was partially mentioned at the
beginning of this section. Large expansions require considerable computational
capital relative to decimal expansions. Furthermore, continued fractions do not
lend themselves easily to arithmetical operations. For instance, the difficulty in
adding, subtracting, multiplying, and dividing two or more continued fractions is
often prohibitive, especially for large expansions.

12



Therefore, as a theoretical construct, continued fractions are extremely impor-
tant, and computations involving a single continued fraction are usually cheap.
But even basic manipulations of multiple continued fractions are too difficult to
justify their use in such applications.
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Chapter 2

Convergence and Approximation

2.1 Discussion and Bounds

The power of a continued fraction lies in its convergents ability to provide the
best possible rational approximation to an irrational numberα given denominator
q. Assuming thatx = [a0; a1, a2, . . .] converges to a valueα, the best rational ap-
proximations are provided by evaluating the convergentspn

qn
of x. By understand-

ing how quickly the convergents ofx converge toα, we can give exact answers
to many questions involving measure and continued fractions. For example, what
is the measure of the interval of uncertainty given a continued fraction expansion
of lengthN? The answer to this question was given by Lemma 1.4.6, and the

measure of the interval of uncertainty isµ
(
[pn−1

qn−1
, pn

qn
]
)

, wheren is assumed to be

odd andµ denotes the Lebesgue measure. Hereinafter, I will assume the reader
has a working knowledge of Lebesgue measure theory.

In chapter 4, we try to explain and classify the behavior of continued fraction
expansions with a large valued digit (i.e.ai = ki, whereki � 0). A large coeffi-
cient valueki directly affects the convergence rate ofx = [a0; a1, . . .] to its value
α; therefore, only through a proper understanding of continued fraction conver-
gence will we understand the implications of observing a large coefficient value
ki. With our knowledge of convergence, we can address questions such as: do
continued fractions converge toα faster than Kuzmin predicts? Finally, an un-
derstanding of convergence is necessary in order to follow the proof of Kuzmin’s
Theorem.

Our first theorem will present upper and lower bounds for
∣∣∣α− pk

qk

∣∣∣.
14



Theorem 2.1.1.For all k ≥ 0 and for an irrational numberα, we have:

1

qk(qk + qk+1)
<
∣∣∣α− pk

qk

∣∣∣ < 1

qkqk+1

(2.1.1)

Proof: First we derive the lower bound. A consequence of Definition 1.2.6 is
the intermediate fractionpk+pk+1

qk+qk+1
is enclosed betweenpk

qk
andα (see [Ki]). There-

fore: ∣∣∣α− pk

qk

∣∣∣ > ∣∣∣pk + pk+1

qk + qk+1

− pk

qk

∣∣∣ =
1

qk(qk + qk+1)
. (2.1.2)

An equality sign is not possible because thenα = pk+pk+1

qk+qk+1
= pk+2

qk+2
, which im-

plies thatak+2 = 1; in this case,α would have a terminating continued fraction
expansion, but we assumedα to be irrational.

Now we develop the upper bound by following the exposition in [MT]. Con-
sider the continued fractionα = [a0; a1, . . . , an, an+1, . . .] = [a0; a1, . . . , an, a

′
n+1],

wherea
′
n+1 > an+1 and is irrational. So we write:∣∣∣α− pn

qn

∣∣∣ =
∣∣∣a′

n+1pn + pn−1

a
′
n+1qn + qn−1

− pn

qn

∣∣∣ =
∣∣∣ (−1)n

qnq
′
n+1

∣∣∣, (2.1.3)

whence,q
′
n+1 = a

′
n+1qn + qn−1 > an+1qn + qn−1 = qn+1. Therefore:

∣∣∣α− pn

qn

∣∣∣ =
∣∣∣ (−1)n

qnq
′
n+1

∣∣∣
but q

′

n+1 > qn+1

so
∣∣∣α− pn

qn

∣∣∣ <
1

qnqn+1

. 2 (2.1.4)

2.2 Convergents as Best Approximations

Definition 2.2.1. The rational numbera
b

(b > 0) is a best approximation toα ∈
(0, 1) if every other rational fraction having the same or smaller denominator
differs fromα more thana

b
, or formally for0 < d ≤ b, and a

b
6= c

d
, we have:∣∣∣α− c

d

∣∣∣ > ∣∣∣α− a

b

∣∣∣. (2.2.5)

We call a
b

a best approximation of the first kind. [Ki]
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Definition 2.2.2. The rational numbera
b
, (b > 0) is a best approximation of the

second kind toα ∈ (0, 1) if for 0 < d ≤ b and for a
b
6= c

d
, we have: [Ki]

|dα− c| > |bα− a|. (2.2.6)

Every best approximation of the second kind is also a best approximation of
the first kind, but the converse does not hold. To see that the converse does not
hold, consider that1

3
is a best approximation of the first kind to1

5
, but 0

1
is the best

approximation of the second kind.
We will merely state the following theorems, all of which justify our exclu-

sive focus on convergents as the means, by which unbounded coefficients affect a
continued fraction’s valuex.

Theorem 2.2.3.Every best approximation of the first kind to the numberα is
either a convergent or an intermediate fraction of the continued fraction which
represents this number. [Ki]

Theorem 2.2.4.Every best approximation of the second kind is a convergent.
[Ki]

The converse of the previous theorem is also true:

Theorem 2.2.5.Every convergent is a best approximation of the second kind. The
only trivial exception is given by: [Ki]

α = a0 +
1

2
. (2.2.7)

2.3 Absolute Difference Approximation

We will now attempt to refine our estimate of the difference
∣∣∣α − pn

qn

∣∣∣. Recall

from Theorem 2.1.1 that
∣∣∣α − pn

qn

∣∣∣ < 1
q2
n
, where we use the factqn < qn+1. This

section will answer if we can replace the right hand side of this inequality by
some other function ofqn, which would result in a smaller upper bound than1

q2
n
.

Whatever refinement we consider, it must apply to allα and hold for mostn. As
Khintchine [Ki] described the problem, how small canε be such that we cannot

find anα ∈ (0, 1) satisfying
∣∣∣α− pn

qn

∣∣∣ < 1−ε
q2
n

for only a finite number ofn. In other

words, the inequality
∣∣∣α − pn

qn

∣∣∣ < 1−ε
q2
k

must hold without exception for anyα and

for infinitely manyn.
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Theorem 2.3.1.If the numberα possesses a convergent of ordern > 0, then at
least one of the two inequalities:∣∣∣α− pn

qn

∣∣∣ <
1

2q2
n∣∣∣α− pn−1

qn−1

∣∣∣ <
1

2q2
n−1

(2.3.8)

holds. [Ki]

Proof: We showed as a consequence of Theorem 1.4.7 thatα ∈ [pn−1

qn−1
, pn

qn
]

for odd n, but whenn is even, the endpoints of the interval are switched. Now
consider the sum:

∣∣∣α− pn

qn

∣∣∣+ ∣∣∣α− pn−1

qn−1

∣∣∣ =
∣∣∣pn

qn

− pn−1

qn−1

∣∣∣ =
1

qnqn−1

<
1

2q2
n

+
1

2q2
n−1

(2.3.9)

The last inequality holds because the geometric mean of1
q2
n

and 1
q2
n−1

(i.e. 1
qnqn−1

)

is less than their arithmetic mean (i.e.1
2q2

n
+ 1

2q2
n−1

). Equality would be possible

only if qn = qn−1. 2

The following theorem is in a sense the converse of the theorem just proved.

Theorem 2.3.2.Every irreducible fractiona
b

satisfying the inequality
∣∣∣α − a

b

∣∣∣ <
1

2b2
is a convergent of the numberα. [Ki]

Proof: I will not provide the proof because we do not need this theorem’s
results, but the proof is found in [Ki].

In Theorem 2.3.1, the smallest constant we could find wasε = 1
2
, which is

better than our starting bound by a factor of one-half, but this choice ofε does
not hold for alln. The next two theorems along with Liouville’s Theorem will

provide the “supremum” for the difference
∣∣∣α− pn

qn

∣∣∣.
The following theorem is very important, but the proof will not shed much

light on our discussion so I refer the reader to [Ki].
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Theorem 2.3.3.If α possesses a convergent of ordern > 1, then at least one of
the three inequalities below will be satisfied:∣∣∣α− pn

qn

∣∣∣ <
1√
5q2

n∣∣∣α− pn−1

qn−1

∣∣∣ <
1√

5q2
n−1∣∣∣α− pn−2

qn−2

∣∣∣ <
1√

5q2
n−2

. (2.3.10)

The results of this theorem are profound because they will be used to prove

ε = 1√
5

is the smallest constant, such that
∣∣∣α− pn

qn

∣∣∣ < ε
q2
n

holds for allα and for an

infinite number ofn (but not alln). This claim is valid because for any constantc

smaller thanε = 1√
5
, we can find anα such that

∣∣∣α− pn

qn

∣∣∣ > c
q2
n
, namelyα = 1+

√
5

2

or α = [1; 1, 1, 1, . . .]. For thisα we have
∣∣∣α − pn

qn

∣∣∣ = 1
q2
n(
√

5+ε′n)
, whereε

′
n is the

uncertainty in any approximationpn

qn
of α ∈ R, andε → 0 asn → ∞. Thus, if

c < 1√
5
, then

∣∣∣α− pn

qn

∣∣∣ > c
q2
n

for α = 1+
√

5
2

.

Theorem 2.3.4.For anyα ∈ R the inequality
∣∣∣α − p

q

∣∣∣ < c
q2 has infinitely many

solutionsp, q ∈ Z (q > 0) if c ≥ 1√
5
. On the other hand, ifc < 1√

5
, then it is

possible to find anα, such that
∣∣∣α − p

q

∣∣∣ < c
q2 has no more than a finite number of

solutions. [Ki]

Proof: This proof is taken from Khintchine’s exposition [Ki]. We showed the
second statement of the theorem by noting for anyc < 1√

5
we can takeα =

[1; 1, 1, 1, 1, . . .] = 1+
√

5
2

, which satisfies
∣∣∣α − p

q

∣∣∣ > c
q2 . The proof of the first

statement relies on Theorem 2.3.3. Letα be irrational, which implies an infinite

continued fraction expansion. From Theorem 2.3.3, we know
∣∣∣α− pn

qn

∣∣∣ < 1√
5q2

n
is

satisfied at least once in every three convergents for everyα ∈ R, but sinceα /∈ Q,
this inequality is satisfied infinitely often. Thus the first statement is proved for
irrational α. Now let α ∈ Q, thenα can be represented asα = c

d
. Assuming

the expansion ofα at least has digitsa1, a2, a3, then this expansion possesses
at least three convergents. From Theorem 2.3.3, we know at least one in every
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three convergents satisfies|α− p
q
| < c

q2 , so letp
q

be the convergent satisfying this
inequality and takeq = nd, p = nc, (n = 1, 2, . . .). 2

The previous theorem states rigorously that we cannot find an approximating
constantc smaller than 1√

5
such that∣∣∣α− p

q

∣∣∣ < c

q2
(2.3.11)

holds for allα and allq. However, we will see in the next theorem that no matter
how smallc may be, we can always find anα ∈ R, such that the inequality in
Equation 2.3.11 is satisfied.

Theorem 2.3.5.Define a function ofq such that for allq, f(q) > 0. Then regard-
less of the behavior off(q), we can find an irrationalα, such that the inequality:∣∣∣α− p

q

∣∣∣ < f(q) (2.3.12)

should possess infinitely many solutionsp, q ∈ Z, (q > 0).

Proof: By controling the behavior of the coefficients of a continued fraction
expansion, we can construct anα, such that the claim of the theorem is satisfied.
We assumeα is irrational, and we impose the following restriction onan for all
n = (1, 2, . . .):

an+1 >
1

q2
nf(qn)

. (2.3.13)

Note that we can find infinitely manyα satisfying Inequality 2.3.13. Therefore,
for anyn ≥ 0, we have the following:

∣∣∣α− pn

qn

∣∣∣ <
1

qnqn+1

=
1

qn(an+1qn + qn−1)

≤ 1

an+1q2
n

< f(qn), (2.3.14)

where the last step is justified by Inequality 2.3.13.2

The next argument will help us understand the effects of a large valued coef-
ficient onx’s convergence toα (see Chapter 4). Forα irrational, we proved in
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Theorem 2.1.1:

1

qn(qn + qn+1)
<

∣∣∣α− pn

qn

∣∣∣ <
1

qnqn+1

⇒ 1

q2
n(an+1 + 1 + qn−1

qn
)

<
∣∣∣α− pn

qn

∣∣∣ <
1

q2
n(an+1 + qn−1

qn
)

⇒ 1

q2
n(an+1 + 2)

<
∣∣∣α− pn

qn

∣∣∣ <
1

q2
nan+1

, (2.3.15)

where the left hand side of the second line is a result of expanding line 1, factoring
qn out of the denominator, and then utilizing the definition ofqn+1

qn
from Equation

1.4.10. The right hand side of line 2 is a consequence of lettingqn+1 = qn−1 +
qnan+1, expanding, and then factoringq2

n out of the denominator. The last step is
basic algebra.

If an+1 = kn+1 for kn+1 arbitrarily large, then the convergentpn

qn
becomes very

close toα in Equation 2.3.15. This large value ofkn+1 will increase the precision
of x’s approximation ofα because all convergents subsequent topn

qn
are closer

to α than pn

qn
is (see Theorem 1.4.7). In other words, the result of observing a

large coefficient valuekn+1 is a large reduction in the measure of the interval of
uncertainty.

Extending our analysis, irrationals, whose continued fraction expansions are
characterized by the frequent occurrence of large valued digits, are approximated
well by rationals because the convergentspn

qn
converge toα very quickly. How-

ever, it may be the case thatα, whose expansion has only a few extremely large
valued coefficients and also is replete with small valued coefficients, is not ap-
proximated by rationals better thanα

′
, whose expansion has no extremely large

valued coefficients and far fewer small valued coefficients. The worst approxi-
mated irrational is obviouslyα = [1; 1, 1, . . .], which explains why this irrational
is always the limiting case for making generalized statments about continued frac-
tion convergence.

The next theorem extends our previous results, in that irrationals with bounded
coefficients cannot be approximated to a degree better than1

q2 ; however, the set
of suchα has zero measure (see Chapter 4). On the other hand, irrationals with
unbounded coefficients can be approximated to a degree far better than1

q2

Theorem 2.3.6.For every irrational numberα with bounded elements, the in-
equality: ∣∣∣α− p

q

∣∣∣ < c

q2
(2.3.16)
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has for sufficiently smallc no solution inp, q ∈ Z (q > 0). Conversely, for every
α with unbounded elements, the above inequality is satisfied for arbitraryc > 0,
by infinitely many integersp, q. [Ki]

Proof: The proof of this theorem is found in [Ki]. First, we will prove the
second assertion. Letc > 0 be arbitrary. Since the continued fraction expansion
of an irrationalα is infinite and we assume the coefficients are unbounded, then
we can find an infinite number of values ofn such thatan+1 > 1

c
. Thus, from the

last inequality in Equation 2.3.15, we have for infinitely manyn:∣∣∣α− pn

qn

∣∣∣ < c

q2
n

. (2.3.17)

Now, we prove the first assertion by finding a sufficiently smallc, such that
there exists nop, q ∈ Z satisfying Equation 2.3.16 for an irrationalα with bounded
coefficients. Becauseα has bounded coefficients, there existM > 0, such that
an < M for all n ∈ N. SubstitutingM for an in Equation 2.3.15, we observe:

1

q2
n(M + 2)

<
∣∣∣α− pn

qn

∣∣∣ (2.3.18)

for anyn ≥ 0. Now, letp, q be arbitrary integers and set the indexn according
to the conditionqn−1 < q < qn. By Theorem 2.2.5 and by the fact that all best
approximations of the second kind are also best approximations of the first kind,
we conclude all convergents are best approximations of the first kind. Therefore,∣∣∣α− pn

qn

∣∣∣ ≤ ∣∣∣α− p
q

∣∣∣ for all q ≤ qn, and we argue:

∣∣∣α− p

q

∣∣∣ ≥
∣∣∣α− pn

qn

∣∣∣ > 1

q2
n(M + 2)

=
1

q2(M + 2)

( q

qn

)2

>
1

q2(M + 2)

(qn−1

qn

)2

=
1

q2(M + 2)

( qn−1

anqn−1 + qn−2

)2

>
1

q2(M + 2)

1

(an + 1)2
>

1

(M + 2)(M + 1)2q2

⇒ choose c <
1

(M + 2)(M + 1)2
. (2.3.19)
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The first equation is justified by Theorem 2.2.5 and Equation 2.3.18. The inequal-
ity in the second line is justified by our construction of the indexn. The third step
is simply expandingqn according to Theorem 1.4.2. The fourth line is obtained
by multiplying the numerator and the denominator of the second factor in line 3
by 1

qn−1
⇒ 1

an+
qn−2
qn−1

and by recognizing Theorem 1.4.2 givesqn−2

qn−1
< 1. To arrive

at the last inequality in line 4, we notean < M . Thus, forc satisfying the final

inequality, there does not existp, q ∈ Z, such that
∣∣∣α− p

q

∣∣∣ < c
q2 is satisfied. 2

We foundc = 1√
5

is the smallest constant such that Equation 2.3.11 holds for
all α and for mostn, but can we improve the degree ofq2

n in this same equation (i.e.
can we find a bound in Equation 2.3.11 of the formc

q2+ε )? The answer happens to
be no.

Theorem 2.3.7.Let C, ε be positive constants. LetS be the set of all points
α ∈ [0, 1], such that there exist infinitely many coprime integersp, q satisfying:∣∣∣α− p

q

∣∣∣ ≤ C

q2+ε
. (2.3.20)

Then the measure of S is zero, denoted byµ(S) = 0. [MT]

Proof: This proof is an excerpt from [MT]. LetN > 0 and defineSN to be
the set consisting of all theα ∈ [0, 1], such that there existsp, q ∈ Z andq > N ,
for which: ∣∣∣α− p

q

∣∣∣ ≤ C

q2+ε
. (2.3.21)

Since we definedS to be the set ofα for which there exists an infinite number
of coprime pairs ofp, q satisfying Inequality 2.3.21, we have ifα ∈ S thenα ∈
SN for all N . Otherwise,α has only a finite numberN of denominators, for
which the inequality can be made to hold, and because there are at mostq + 1
choices ofp for each denominatorq, the maximum number of coprime pairs of
p, q satisfying Inequality 2.3.21 is finite. Therefore, it suffices to show that as
N →∞, µ(SN) → 0.

We must estimate the size ofSN . Let p
q

be given, and consider the measure of

the set of allα within C
q2+ε of p

q
. This set is an interval:

Ip,q =
(p

q
− C

q2+ε
,
p

q
+

C

q2+ε

)
, (2.3.22)
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and the measure of this interval is2C
q2+ε . Now, let Iq be the set of allα ∈ [0, 1]

within C
q2+ε of all rational numbers with denominatorq; this set will be the sum of

at mostq intervals. Then we have:

Iq ⊆
q⋃

p=0

Ip,q

⇒ µ(Iq) ≤
q∑

p=0

µ(Ip,q) = (q + 1)
2C

q2+ε

=
q + 1

q

2C

q1+ε
≤ 4C

q1+ε
(2.3.23)

where the last inequality holds becauseq ∈ Z and1 ≤ q. Now we can consider
µ(SN):

µ(SN) ≤
∞∑

q>N

µ(Iq)

≤
∞∑

q>N

4C

q1+ε

<
4C

ε
N−ε (2.3.24)

We know that the series converges becauseε > 0. The first step is justified by the
definitions ofSN andIq. Applying Equation 2.3.23 to line 1 yields line 2. The last

step is justified by recognizing
∞∑

q>N

1
q1+ε <

∞∫
q=N

1
q1+ε = 1

ε
N−ε. Thus asN → ∞,

µ(SN) → 0 ⇒ µ(S) → 0 becauseS ⊂ SN . 2

The previous theorem implies that except for a set of zero measure, one cannot
find a rational numberp

q
that approximatesα better thanC

q2 . See Theorem 2.4.1
for a more general result.

2.4 Liouville’s Theorem

In this section we present Lioville’s Theorem, which allows us to define fam-
ilies for the numbers examined in Chapters 3 and 4. In Chapter 3 we examine
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degree 3 algebraic irrational numbers, and in Chapter 4 we analyze algebraic num-
bers of degrees 3,5,7,11,13. Additionally, Liouville’s Theorem will provide one

final approximation of the difference
∣∣∣α− p

q

∣∣∣.
Theorem 2.4.1.Corresponding to every algebraic number of degreen, there ex-
ists a constantC > 0, such that for any integersp, q (q > 0), we have:∣∣∣α− p

q

∣∣∣ > C

qn
. [Ki] (2.4.25)

Proof: The proof is not included because it does not add any additional intu-
ition or insight into the properties of continued fractions, on which I am focusing.
See [Ki] or [MT] for the proof.

This theorem implies an algebraic numberα cannot be approximated by a
rational fraction to a degree of accuracy exceedingα’s algebraic degree. An inter-
esting result of Liouville’s Theorem is a method for constructing transcendental
numbers.

A summary of the method is as follows: letC > 0 be arbitrary and letm be
any positive integer. Ifα satisfies∣∣∣α− p

q

∣∣∣ < C

qm
(2.4.26)

for somep, q, thenα is transcendental. After the coefficientsa1, a2, . . . , an have
been chosen, takean+1 > qn−1

n . Then we have:∣∣∣α− pn

qn

∣∣∣ < 1

qnqn+1

<
1

q2
nan+1

<
1

qn+1
n

, (2.4.27)

where the first inequality is a result of Theorem 2.1.1. The second inequal-
ity is a result of Theorem 1.4.2, and the third inequality is from the condition
an+1 > qn−1

n . Thus, for sufficiently large values ofai, Inequality 2.4.26 is sat-
isfied for arbitraryC andm. Now, we can reason ifα’s continued fraction ex-
pansion possesses ‘too many’ extremely large valued coefficients, thenα may be
transcendental.
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Chapter 3

Kuzmin’s Theorem and Levy’s
Improved Bound

This chapter will provide the crux of the theory needed for this thesis. I
will present some necessary definitions and lemmas, Kuzmin’s Theorem, and
then Levy’s refinement of Kuzmin’s Theorem. However, the main focus of this
chapter will be to trace the derivation of not only the closed form expression for
Prob(an = kn), wherean is a function ofα but we will denotean(α) simply as
an, but also the error estimate for this expression. As we derive this expression,
we will obtain some results that can explain our empirical observations, which are
presented in this chapter and in Chapter 4.

3.1 The Gaussian Problem

Let l(α, N) denote the length of the continued fraction expansion of the num-
berα expanded toN coefficients. Because the expansion ofα ∈ Q is finite, we
can assumeα is irrational without any loss of generality. In a letter dated Jan-
uary 30, 1812, to Laplace, Gauss mentioned that he was unable to find a closed
form solution to the following problem: letM ∈ [0, 1] be an unknown, for which
all values are either equally possible or given according to some distribution law.
Then convertM into its simple continued fraction form:
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M =
1

a1 +
1

a2 +
1

...

. (3.1.1)

We ask what the probability is when stopping the expansion at a finite termaN

that the tail

M
′
=

1

an+1 +
1

an+2 +
1

...

(3.1.2)

will represent a numberB ∈ (0, x), wherex ≤ 1? We label this probability
P (N, x), and if all values ofM are equally probable, thenP (0, x) = x. Gauss
was able to prove asN →∞:

lim
N→∞

P (N, x) =
log(1 + x)

log 2
, (3.1.3)

but for largeN , Gauss wanted to find an explicit estimate for the difference:

P (N, x)− log(1 + x)

log 2
(3.1.4)

In 1928, Kuzmin was the first person to estimate this difference. In his proof,
Kuzmin assumedM is uniformly distributed on the interval[0, 1]. In 1929, Levy
used an entirely different approach to estimate the difference in Equation 3.1.4,
and he gave a better estimate of the difference than Kuzmin did.

3.2 Intervals of Rank n

3.2.1 Definition and Intuition

Recall we used the Euclidean algorithm to find the coefficients of a continued
fraction expansion. This method yieldeda1 = [ 1

α
], where[x] is the smallest integer

not greater thanx. Therefore, we notea1 = 1 for 1 ≤ 1
α

< 2 ⇒ 1
2

< α ≤ 1, where
the strict inequality is due to the greatest integer function[ ]. We can proceed in
this fashion, such that we arrive at the general case:
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a1 = k for k ≤ 1

α
< k + 1 ⇒ 1

k + 1
< α ≤ 1

k
(3.2.5)

A notable property abouta1 is it assumes a constant value on the interval
( 1

k+1
, 1

k
], and ifa1 = k, thenα ∈ ( 1

k+1
, 1

k
]. Secondly,a1 is discontinuous at every

integer. Lastly, the area under thea1 function is given by:

1∫
0

a1(α) dα = ∞. (3.2.6)

This result follows from recognizing each interval( 1
k+1

, 1
k
] is a rectangle of width

1
k
− 1

k+1
and heightk, so writing the divergent integral as an infinite series yields:

1∫
0

a1(α) dα = ∞ =
∞∑

k=1

k
(1

k
− 1

k + 1

)
=

∞∑
k=1

1

k + 1
. (3.2.7)

Definition 3.2.1. Let a1 = k, wherek is an interger, then( 1
k+1

, 1
k
] is an interval

of rank one, which impliesα ∈ ( 1
k+1

, 1
k
].

We can perform the same procedure fora2 by fixing a1 = k and takinga2 =
[r2], wherer2 can take any value in[1,∞). Lettinga1 = k anda2 = h, the interval
of rank two corresponding to numbers whose first two digits arek andh is given
by: ( 1

k + 1
h

,
1

k + 1
h+1

)
. (3.2.8)

Assuminga1 = k is given, the intuition of the equation above is that after the
value ofa2 is ascertained, we have “shortened” the interval, in whichα can reside(

i.e.α ∈
(

1
k+ 1

h

, 1
k+ 1

h+1

))
.

Comparing the interval of rank one with the interval of rank two, ask →∞ in
the interval of rank one, we haveα → 0. Thus, ask →∞, the rank one intervals
form a sequence proceeding from right to left and are indexed byk; this is the
case for all intervals of rankn, wheren is odd. On the other hand, leta1 = k be
fixed, then ash → ∞ in the intervals of rank two, we haveα → 1

k
, or the larger

endpoint of a rank two interval. This results implies that forn even, the intervals
of rank n form a sequence that runs from left to right. The formal expression
giving the directions of these sequences is provided by considering:
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α− pn

qn

=
(−1)n

qn(qnrn+1 + qn−1)
(3.2.9)

We now define an interval of rankn.

Definition 3.2.2. Let a1 = k1, a2 = k2, . . . , an = kn be given, then the corre-
sponding interval of rankn is

Jn =
(pn

qn

,
pn + pn−1

qn + qn−1

]
. (3.2.10)

This interval is the formal expression of the previously definedinterval of uncer-
tainty given a continued fraction expansion of lengthn.

The endpoints of a rankn interval are easily obtained. First, we recognize
α = [k1, . . . , kn, rn+1] ⇒ α = pnrn+1+pn−1

qnrn+1+qn−1
. Let 1 ≤ rn+1 < ∞. Substituting

in rn+1 = 1 givesα = pn+pn−1

qn+qn−1
, which is the larger endpoint ofJn. Now let

rn+1 →∞, and we obtain:

lim
rn+1→∞

pnrn+1 + pn−1

qnrn+1 + qn−1

=
pn

qn

, (3.2.11)

which is the smaller endpoint ofJn. Additionally, asrn+1 runs through the natural
numbers, the intervalJn is partitioned into a countable number of intervals of rank
n + 1; the sequence of rankn + 1 intervals runs from left to right forn odd, and
right to left forn even. Also,α is a monotonic function ofrn+1 for rn+1 ∈ [1,∞).

The next argument is extremely useful in forthcoming proofs, and the logic is
adopted from [MT].

Consider all continued fraction expansions of the formα = [0; a1, . . . , an] and
look at all n-tuples (i.e. all combinations ofall valueski for everyai). Given
a rankn intervalJn defined by the continued fraction expansion beginning with
[0; a1, . . . , an], we can find the enpoints ofJn by taking the infinite union over all
rankn− 1 subintervals comprisingJn:

Jn =
∞⋃

k=1

(pn(k + 1) + pn−1

qn(k + 1) + qn−1

,
pn(k) + pn−1

qn(k) + qn−1

]
=
(pn

qn

,
pn + pn−1

qn + qn−1

]
, (3.2.12)

where we letan+1 = k for k = 0, 1, 2, . . ., and the endpoints ofJn are given

by letting bothk = 1 andk → ∞. The length of each rankn interval is
∣∣∣pn

qn
−

pn+pn−1

qn+qn−1

∣∣∣.
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Eachpn

qn
corresponds to a unique, disjoint rankn subinterval of[0, 1], as each

possible continued fraction expansion of lengthn leads to a different interval of
rankn; this is easily seen by applying Theorem 1.4.2n times to Definition 3.2.2.
From [MT], we conclude:

[0, 1] =
⋃

(a1,...,an)∈Nn

(pn

qn

,
pn + pn−1

qn + qn−1

]
1 =

∑
(a1,...,an)∈Nn

∣∣∣pn

qn

− pn + pn−1

qn + qn−1

∣∣∣. (3.2.13)

Therefore, as argued previously, the union of all rankn intervals covers[0, 1].

3.2.2 Prob(an = k)

In this section we examine the set of pointsα ∈ [0, 1], such thatan = k.
From our analysis of Equation 3.2.12, we expect this set to be a union of rankn
intervals. The measure of this union will be equal to the measure of the set of
α ∈ [0, 1], such thatan = k. What is the length or measureµ of the union of these
intervals?

We denote byE

(
1 2 · · ·n
k1 k2 · · · kn

)
the set ofα ∈ [0, 1], such thata1 = k1, a2 =

k2, . . . , an = kn, which clearly defines an interval of rankn. If we let the values

of ki be arbitrary, thenE

(
1 2 · · ·n
k1 k2 · · · kn

)
defines an arbitrary rankn interval,Jn;

correspondingly we letJs
n+1 = E

(
1 2 · · ·n n + 1
k1 k2 · · · kn s

)
be an interval of rank

n + 1 contained inJn (s is used in order to show the expressionProb(an+1 =
kn+1)’s independence fromn and fromki for i ≤ n).

Recall thatα = pnrn+1+pn−1

qnrn+1+qn−1
, and ifan+1 = [rn+1] = s, thenrn+1 ∈ [s, s + 1).

Therefore:

α ∈

[
pns + pn−1

qns + qn−1

,
pn(s + 1) + pn−1

qn(s + 1) + qn−1

)
. (3.2.14)

This interval denotes the endpoints ofJs
n+1, and we haveJs

n+1 ⊂ Jn for some
Jn. Thus, we must estimateµ(Js

n+1) by using a conditional probability argument,
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whereµ denotes the Lebesgue measure, or in our case, the linear difference be-
tween the two endpoints.

From Definition 3.2.2 and Equation 3.2.14, we have:

µ(Jn) =

∣∣∣∣∣pn

qn

− pn + pn−1

qn + qn−1

∣∣∣∣∣ =
1

q2
n(1 + qn−1

qn
)

µ(Js
n+1) =

∣∣∣∣∣pns + pn−1

qns + qn−1

− pn(s + 1) + pn−1

qn(s + 1) + qn−1

∣∣∣∣∣ =
1

q2
ns

2(1 + qn−1

qn
)(1 + 1

s
+ qn−1

sqn
)
,

which implies
µ(Js

n+1)

µ(Jn)
=

1

s2

1 + qn−1

qn

(1 + qn−1

sqn
)(1 + 1

s
+ qn−1

sqn
)
, (3.2.15)

whereµ denotes the Lebesgue measure. The right hand sides of the above equa-
tions are obtained by simple algebraic manipulations.

In order to bound the last expression from above in Equation 3.2.15, we need
to make the numerator as large as possible and the denominator as small as pos-
sible. By Theorems 1.4.2 and 1.4.10, we haveqn−1

qn
< 1; so, let bothqn−1

qn
→ 1

ands → ∞ in the second factor
(

1+
qn−1

qn

(1+
qn−1
sqn

)(1+ 1
s
+

qn−1
sqn

)

)
on the right hand side of

Equation 3.2.15, and we obtain the upper bound1
s2

2
(1+ε)(1+ε′+ε)

= 2
s2 , whereε is

an arbitrarily small constant. To establish the lower bound, we let bothqn−1

qn
→ 1

ands = 1 in the second factor, and then we obtain the lower bound1
s2

2
(2)(3)

= 1
3s2 .

Collecting the results yields:

1

3s2
<

µ(Js
n+1)

µ(Jn)
<

2

s2
, (3.2.16)

where the inequalities are strict becauseqn−1

qn
< 1. The intuition behind the previ-

ous equation tells us in a rankn intervalJn, the(n + 1) rank interval determined
by an+1 = s occupies roughly a1

s2 part ofJn. Further, note the bounds are inde-
pendent ofn andki because the intervals of rankn cover[0, 1] by Equation 3.2.13.
We can now write:

µ(Jn)

3s2
< µ(Js

n+1) <
2µ(Jn)

s2
(3.2.17)
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but from Equation 3.2.13 we see

∞∑
n=1

µ(Jn) = 1 and
∞∑

n=1

µ(Js
n+1) = µ(E

(
n + 1

s

)
)

⇒ 1

3s2
< µ(E

(
n + 1

s

)
) <

2

s2
(3.2.18)

where the first step is justified by recognizing thatµ(Jn) > 0 for all n, thereby
permitting us to multiply all terms byµ(Jn). The second line is justified by rec-
ognizing the union of all rankn intervals covers[0, 1]. The second equality in line
2 expresses the measure of the union of all rankn + 1 intervals characterized by
an+1 = s. The third line is a consequence of collecting the results in lines 1 and
2.

Khintchine [Ki] writes that the “the measure of the set of points for which a
certain element has a given values, always lies between1

3s2 and 2
s2 ” or an interval

with magnitude of order1
s2 . Another important implication of this result is the

upper and lower bounds of the measure ofJs
n+1 are not dependent onn or onki

for i ≤ n, which is a consequence of Equation 3.2.13.

3.3 Kuzmin’s Theorem

Kuzmin’s Theorem states for almost all irrationalα ∈ [0, 1] and allk ∈ Z , the
following inequality holds:∣∣∣µ(E

(
n
k

)
)−

ln(1 + 1
k(k+2)

)

ln 2

∣∣∣ < A

k(k + 1)
e−λ

√
n−1, (3.3.19)

whereA andλ are absolute positive constants.
In this section, I will present the proof of Kuzmin’s Theorem, which requires a

bit of preliminary work. A very easy to follow proof of Kuzmin’s Theorem is pro-
vided in both [MT] and [De], both of which follow Khintchine’s exposition [Ki].
In addition, I will also present a summary of Levy’s results but will not provide a
full proof of his approach; however, the proof can be found in his original paper
[Le] or a good summary can be found in [De].

3.3.1 Notation and Definitions

Let us denote the following:
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α = [0; a1, a2, . . . , an, . . .],

rn = rn(α) = [an; an+1, . . .],

zn = zn(α) = rn − an = [0; an+1, an+2, . . .] ⇒ zn ∈ [0, 1),

mn(x) = µ
(
{α ∈ [0, 1] : zn(α) < x}

)
.

Property 3.3.1. Consider the sequence of positive functionsmi(x) as defined
above:

m0(x), m1(x), . . . ,mn(x), . . . (3.3.20)

then,

mn+1(x) =
∞∑

k=1

(
mn

(1

k

)
−mn

( 1

k + x

))
, (3.3.21)

where we assume0 ≤ x ≤ 1 and0 ≤ n.

Proof: zn = [0; an+1, . . .] = rn − an, wherern = an + 1
rn+1

, but sincezn+1 =

[0; an+2, . . .] = rn+1 − an+1 ⇒ rn+1 = an+1 + zn+1. Hence the equation:

zn = an +
1

rn+1

− an =
1

an+1 + zn+1

(3.3.22)

implies we must have forzn+1 < x:

1

k + x
< zn ≤

1

k
, (3.3.23)

which follows by direct substitution into Equation 3.3.22. The measure of the set
zn satisfying Equation 3.3.23 is:

mn

(1

k

)
−mn

( 1

k + x

)
. (3.3.24)

Thus, our recurrent relationship is shown. Note,an is specified in Equation 3.3.24,
while an remains undetermined in Equation 3.3.21.

Differentiating Equation 3.3.21 term by term with respect tox gives:

m
′

n+1(x) =
∞∑

k=1

1

(k + x)2
m

′

n

( 1

k + x

)
. (3.3.25)
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We must address why we can differentiate this series term by term. The proof
is by induction onn. Let α ∈ [0, 1], then we havez0(α) = α ⇒ m0(x) = x,
wherebym

′
0(x) = 1. Now assume thatm

′
n(x) is bounded and continuous for all

n < n + 1 and for allx ∈ [0, 1]. Then the right hand side of Equation 3.3.25
is bounded and continuous by our inductive assumption, which impliesm

′
n+1 is

also bounded and continuous for alln; thus, the series on the right hand side of
Equation 3.3.25 is bounded, continuous, and equal tom

′
n+1(x) for all n. Equation

3.3.25 has been shown by induction.
With Equation 3.3.21 in mind, we search for a recurrent function with similar

behavior. Gauss proposed the following function:

Lemma 3.3.2.LetC be an arbitrary constant, then

φ(x) = C ln(1 + x) (3.3.26)

satisfies

φ(x) =
∞∑

k=1

(
φ
(1

k

)
− φ
( 1

k + x

))
, (3.3.27)

wherek is a positive integer andx ∈ [0, 1].

Proof: Consider the following argument, noting bothd
dx

(
ln(1 + x)

)
= 1

1+x

and the first line in the following equation is a telescoping series:

1

1 + t
=

∞∑
k=1

1

(k + t)2(1 + 1
k+t

)

⇒
x∫

0

1

1 + t
dt =

∞∑
k=1

x∫
0

1

(k + t)2(1 + 1
k+t

)
dt

⇒ C log(1 + x) =
∞∑

k=1

log

(
1 + 1

k

1 + 1
k+x

)

⇒ log(1 + x) =
∞∑

k=1

(
log
(
1 +

1

k

)
− log

(
1 +

1

k + x

))
,

where we introducedt as a dummy variable to avoid a non-unique indefinite in-
tegral. In the second line, bringing the integral inside the sum is justified because
we know from line 1 and Equation 3.3.25 the sum is uniformly convergent for
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x ∈ [0, 1]. The third line is obtained by performing the required integration in line
2 and noting the result is unique up to a constantC. The final line is an application
of the logarithm propertylog a

b
= log a− log b. 2

3.3.2 Necessary Lemmas

In this section we will assume that a sequence of functionsfn satisfy a recurrent
functional relationship similar to Equation 3.3.25, and by assuming this recurrence
relationship, we will prove four main results governing the behavior of thefn.
These results will be crucial in showingfn is bounded above and below bya ±
Be−λ

√
n, whereB andλ are positive constants anda will be defined later in this

chapter. If we substitutem
′
n(x) in for fn(x) and integrate bothm

′
n(x) and the

bounds forfn(x), then Kuzmin’s Theorem will follow.
For the following lemmas, we assume that we have an infinite sequence of

real functionsf1(x), f2(x), . . . , fn(x), . . . defined onx ∈ [0, 1], satisfying the
following conditions:

fn+1(x) =
∞∑

k=1

1

(k + x)2
fn

( 1

k + x

)
, 0 ≤ n (3.3.28)

where clearly 1
k+x

is the argument offi; the sequence offi also satisfies:

0 < f0(x) < M and |f ′

0(x)| < τ. (3.3.29)

The series in Equation 3.3.28 is uniformly convergent due to our analysis of
Equation 3.3.25.

Lemma 3.3.3.For any0 ≤ n andx ∈ [0, 1], we have the following:

fn(x) =

(n)∑
f0

(pn + xpn−1

qn + xqn−1

) 1

(qn + xqn−1)2
, (3.3.30)

where(n) denotes the sum over all intervals of rankn,
(

pn

qn
, pn+pn−1

qn+qn−1

)
is an arbi-

trary interval of rankn, and pn+xpn−1

qn+xqn−1
is the argument off0.

Proof: This proof proceeds by induction. First we establish the base case:

let n = 0, thenf0(x) =
(0)∑

f0

(
p0+xp−1

q0+xq−1

)
1

(q0+xq−1)2
; the sum is over all rank0

intervals, which coincides the single interval[0, 1]. Thus, we havep0 = 0, q0 =
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1, p−1 = 1, q−1 = 0. Now, assume that this relationship holds for alli ≤ n. Then
we proceed from Equation 3.3.28:

fn+1(x) =
∞∑

k=1

1

(k + x)2
fn

( 1

k + x

)

=
∞∑

k=1

1

(k + x)2

(n)∑
f0

(
pn + 1

k+x
pn−1

qn + 1
k+x

qn−1

)
1

(qn + 1
k+x

qn−1)2

=

(n)∑ ∞∑
k=1

f0

((pnk + pn−1) + xpn

(qnk + qn−1) + xqn

) 1

{(qnk + qn−1) + xqn}2

=

(n+1)∑
f0

(pn+1 + xpn

qn+1 + xqn

) 1

(qn+1 + xqn)2
, (3.3.31)

where the second equation results from a substitution based on our inductive as-
sumption that the relationship in Equation 3.3.30 holds for alli ≤ n. The third line
is a result of multiplying the term 1

(qn+ 1
k+x

qn−1)2
by 1

(k+x)2
in line 2, expanding all

numerators and denominators, and then grouping the terms. We also switch the or-
der of summation because Equation 3.3.28 is uniformly convergent for0 ≤ x ≤ 1;
thus, extending the equality sign from the first line in Equation 3.3.31, we con-
clude that the series in line 3 is also uniformly convergent. Finally, taking the sum
in line 3 overk from 1 to∞, which results in an arbitrary interval of rankn + 1,
yields the fourth line. The sum in line 4 is over all intervals of rankn + 1 because
we previously summed over allk ∈ N , which yielded all possible intervals of
rankn + 1 within each interval of rankn. Since the union of all intervals of rank
n + 1 cover all the intervals of rankn, the sum in line 4 is justified.2

We will now present a lemma bounding|f ′
n(x)| beyond the initial condition in

Equation 3.3.29.

Lemma 3.3.4.Given Equations 3.3.28 and 3.3.29, we have

|f ′

n(x)| < τ

2n−3
+ 4M. (3.3.32)

Proof: We have from the last lemma that

fn(x) =

(n)∑
f0

(pn + xpn−1

qn + xqn−1

) 1

(qn + xqn−1)2
, (3.3.33)
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and we know from our argument above that this series is uniformly convergent for
0 ≤ x ≤ 1, so differentiating the series term by term resuls in:

f
′

n(x) =

(n)∑
f
′

0(u)
(−1)n−1

(qn + xqn−1)4
− 2

(n)∑
f0(u)

qn−1

(qn + xqn−1)3
(3.3.34)

where we letu = pn+xpn−1

qn+xqn−1
, and we note by Lemma 1.4.3 that (pnqn−1−pn−1qn =

(−1)n−1).
Following the analysis in both Deveaux [De] and Khintchine[Ki], we conclude

that ( qn−1

(qn+xqn−1)3
≤ qn−1

qn

1
q2
n

< 1
q2
n
) becauseqn−1 < qn. Also, we have as a conse-

quence of Theorem 1.4.2, (qn > qn−1 ⇒ qn > qn+qn−1

2
⇒ q2

n > qn(qn+qn−1)
2

)
(where we have multiplied each side byqn). Therefore, by substituting the appro-
priate inequality, we can bound the second term on the right hand side of Equation
3.3.34:∣∣∣∣∣2

(n)∑
f0(u)

qn−1

(qn + xqn−1)3

∣∣∣∣∣ <

∣∣∣∣∣2
(n)∑

f0(u)
1

(qn)2

∣∣∣∣∣
<

∣∣∣∣∣4
(n)∑

f0(u)
1

qn(qn + qn−1)

∣∣∣∣∣
<

∣∣∣∣∣4M
(n)∑ 1

qn(qn + qn−1)

∣∣∣∣∣ = 4M,

(3.3.35)

where last inequality results from our condition in Equation 3.3.29, namely (0 <

f0(x) < M ). The last step is a consequence of
(n)∑

1
qn(qn+qn−1)

=
(n)∑∣∣∣pn

qn
−

pn+pn−1

qn+qn−1

∣∣∣ = 1. This sum equals 1 because we are summing over all intervals

of rankn, which cover[0, 1], see Equation 3.2.13.
Now considering the second term in Equation 3.3.34, we note from Theorem

1.4.2 that (qn ≥ qn−1 + qn−2 ≥ 2qn−2) andq1 = 1; by repeated application of this
inequality, we have (qn(qn + qn−1) > q2

n > 2n−1) (by induction the denominators
of the convergents increase by at least a factor of 2 for eachn > 1). As a result,

36



(qn + xqn−1)
4 > q4

n >
(qn(qn + qn−1)

2

)2

=
qn(qn + qn−1)

4

(
qn(qn + qn−1)

)
> 2n−3qn(qn + qn−1)

⇒
∣∣∣ (n)∑

f
′

0(u)
−1

(qn + xqn−1)4

∣∣∣ <
τ

2n−3
. (3.3.36)

The second inequality is a result of the relationqn > qn+qn−1

2
. The last inequality

results from lines 1 and 2, Equation 3.2.13, and our condition in Equation 3.3.29,
which gives|f ′

0(x)| < τ . The lemma follows.2
The next two lemmas are relatively straightforward and require only a few

lines to prove.

Lemma 3.3.5.For (0 ≤ x ≤ 1), if

t

1 + x
< fn(x) <

T

1 + x
(3.3.37)

then we also have
t

1 + x
< fn+1(x) <

T

1 + x
(3.3.38)

[Ki].

Proof: By Equation 3.3.28 and the assumptiont
1+x

< fn(x) < T
1+x

from this
lemma, we reason that:

∞∑
k=1

t

1 + 1
k+x

1

(k + x)2
< fn+1(x) <

∞∑
k=1

T

1 + 1
k+x

1

(k + x)2

= t
∞∑

k=1

1

(k + x)(k + x + 1)
< fn+1(x) < T

∞∑
k=1

1

(k + x)(k + x + 1)

= t

∞∑
k=1

(
1

k + x
− 1

k + x + 1

)
< fn+1(x) < T

∞∑
k=1

(
1

k + x
− 1

k + x + 1

)

⇒ t

1 + x
< fn+1(x) <

T

1 + x
. (3.3.39)
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Line 1 is a direct result of our condition in Equation 3.3.28. The second line is
obtained by multiplying and expanding the sums in line 1. Separating the terms
being summed in line 2 into their partial fraction representations gives line 3.
Evaluating the telescoping series in line 3 yields line 4.2

We now present the final lemma.

Lemma 3.3.6.For all integer valuesn ≥ 0, we have:

1∫
0

fn(z) dz =

1∫
0

f0(z) dz [Ki]. (3.3.40)

Proof: This is proof follows by induction. Letn = 0, then we obtain
1∫
0

f0(z) dz =

1∫
0

f0(z) dz. Now, assume the relation in Equation 3.3.40 holds for alli < n. Then

we have:
1∫

0

fn(z) dz =
∞∑

k=1

1∫
0

fn−1

( 1

k + z

) dz

(k + z)2

=
∞∑

k=1

1
k∫

1
k+1

fn−1(u) du =

1∫
0

fn−1(u) du =

1∫
0

f0(z) dz, (3.3.41)

for all n > 0. The first line is basically a restatement of Equation 3.3.28, where
we switch the intergral and the sum because the sum is uniformly convergent. We

let u = 1
k+z

in order to proceed from line 1 to line 2. Summing

1
k∫
1

k+1

fn−1(u) du

over allk justifies the third equality (formally, we should writelim
b→0

1∫
b

fn−1(u) du).

Our inductive assumption justifies our final equality. Thus our lemma is proved.
2

3.3.3 Proof of Main Result

If a functionf is strictly positive and continuous in a closed interval[a, b], then
f possesses a positive minimumf(x) = m for somex ∈ [a, b]. We assumed in
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Equation 3.3.29 thatf
′
0(x) exists and0 < f0(x) < M for all x ∈ [0, 1]. Therefore,

since0 < f0(x) and differentiability implies continuity, we conclude thatf0(x)
possesses a positive minimumm for somex ∈ [0, 1]. Thus, we argue that for
x ∈ [0, 1]:

m ≤ f0(x) < M

m

2(1 + x)
< f0(x) <

2M

1 + x

g

1 + x
< f0(x) <

G

1 + x
, (3.3.42)

where the first step summarizes our assumptions. To obtain line 2, we notex > 0,
so we can divide line 1 by(1+x) and introduce a factor of1

2
and2 to ensure strict

inequalities because1 ≤ (1 + x) ≤ 2. In line 3 we letg = m
2

andG = 2M . It
is important to note we hinge the following line of analysis on the base function
f0(x) and notfn(x).

Now we define a function that is strictly positive, is defined for all non-negative
integer values ofn, and whose domain isx ∈ [0, 1]:

φn(x) = fn(x)− g

1 + x
(3.3.43)

Recall from Equation 3.3.27 that the functionθ(x) = C ln(1 + x) satisfied

the relationship
∞∑

k=1

(
θ
(

1
k

)
− θ

(
1

k+x

))
, which we know upon differentiation

satisfiesθ
′
(x) =

∞∑
k=1

1
(k+x)2

θ
′
(

1
k+x

)
. Motivated by these relationships, we define

F (x) = g
1+x

, which is the derivative ofg ln(1 + x); therefore:

F (x) =
∞∑

k=1

F

(
1

k + x

)
1

(k + x)2
. (3.3.44)

By the definition provided in Equation 3.3.28,fn satisfies the same functional
relationship asF (x) does in Equation 3.3.44, and as a result, the sequence of
functionsφ0(x), φ1(x), . . . , φn(x), . . . satisfies this same functional relationship.
Khintchine makes the astute observation that because the sequence of functions
φ0(x), φ1(x), . . . , φn(x), . . . satisfies the relationship in Equation 3.3.28, all the
lemmas presented in the subsection “Necessary Lemmas” hold for this sequence,
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and in particular, each functionφi(x) satisifies the relationship established in
Equation 3.3.30.

Our next goal is to boundφn(x) from above and below by functions ofn. If we
can find such bounding functions, then we can show the bounds for the sequence
of fn(x) converge to the same value.

Recalling thatu = pn+xpn−1

qn+xqn−1
, we can rewriteφn(x) with the aid of Lemma

3.3.3:

φn(x) =

(n)∑
φ0(u)

1

(qn + xqn−1)2
, (3.3.45)

and sincex ≤ 1 andqn ≥ qn−1 + qn−2 we have

qn + xqn−1 ≤ qn + qn−1 < 2qn. (3.3.46)

From Equation 3.3.42 and from the definition ofφ0(u) given in Equation 3.3.43, it
is clearφ0(u) > 0 becausef0(x) > g

1+x
; we can apply Lemma 3.3.5 to conclude

φn > 0 for all n, therefore

1

2

(n)∑
φ0(u)

1

qn(qn + qn−1)
< φn(x) (3.3.47)

Substituting Equation 3.3.45 in 3.3.46, namely(qn+xqn−1)
2 = (qn+xqn−1)(qn+

xqn−1) < 2qn(qn + qn−1), gives Equation 3.3.47.
The Mean Value Theorem from real analysis allows us to write:

pn+pn−1
qn+qn−1∫

pn
qn

φ0(z) dz = φ0(u
′

n)
1

qn(qn + qn−1)

⇒ 1

2

1∫
0

φ0(z) dz =
1

2

(n)∑
φ0(u

′

n)
1

qn(qn + qn−1)
. (3.3.48)

Here, we noteu
′
n ∈

(
pn

qn
, pn+pn−1

qn+qn−1

)
, and we apply the Mean Value Theorem to

every disjoint rankn interval (i.e. I(a1,...,an) = [pn

qn
, pn+pn−1

qn+qn−1
]). Because we apply

the Mean Value Theorem to every rankn interval,u
′
n is different for each rankn

40



interval, over which we integrateφ0. The second equation is a result of summing
both sides of the equality in line 1 over all possible intervals of rankn. The right
hand side of line 2 is an expression of the Riemann sum, where we haveφ0(u

′
n)

as the representative height in a particular interval of rankn and 1
qn(qn+qn−1)

is the
length of each rankn interval.

Combining Equations 3.3.47 and 3.3.48, we arrive at the inequality:

φn(x)− 1

2

1∫
0

φ0(z) dz >
1

2

(n)∑
{φ0(u)− φ0(u

′
)} 1

qn(qn + qn−1)
. (3.3.49)

Then if we differentiateφ(x) in Equation 3.3.43, while keeping in mind that

by Equation 3.3.29 we have|f ′
0(x)| < τ and that

∣∣∣( g
1+x

)
′
∣∣∣ =

∣∣∣ − g
(1+x)2

∣∣∣ ≤ g, we

conclude forx ∈ [0, 1]:

|φ′

0(x)| ≤ |f ′

0(x)|+ g < τ + g (3.3.50)

In Equation 3.3.48 we establishedu
′
n ∈

(
pn

qn
, pn+pn−1

qn+qn−1

)
, therefore:

|u− u
′| < 1

qn(qn + qn−1)
<

1

q2
n

<
1

2n−1
. (3.3.51)

Combining this equation with Equation 3.3.50, we infer:

|φ0(un)− φ0(u
′
n)|

|un − u′
n|

= φ
′

0(u
′

n) < τ + g

⇒ |φ0(un)− φ0(u
′

n)| < (τ + g)|un − u
′

n|

<
τ + g

qn(qn + qn−1)
<

τ + g

q2
n

<
τ + g

2n−1
. (3.3.52)

This argument is straightforward except for proceeding from line 2 to line 3; since

u
′
n ∈

(
pn

qn
, pn+pn−1

qn+qn−1

)
, which denotes a rankn interval having length 1

qn(qn+qn−1)
,

the inequality(τ + g)|un − u
′
n| < τ+g

qn(qn+qn−1)
holds for allu

′
n. Thus, combining

Equations 3.3.49 and 3.3.52, we have:
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φn(z) >
1

2

1∫
0

φ0(z) dz − τ + g

2n
= l − τ + g

2n
(3.3.53)

where,

l =
1

2

1∫
0

φ0(z) dz (3.3.54)

Collecting our results and recalling Equation 3.3.43, we conclude:

fn(x) >
g

1 + x
+ l − τ + g

2n
>

g + l − 2−n+1(τ + g)

1 + x
=

g1

1 + x
(3.3.55)

Now, consider a new sequence of functions defined for all non-negative inte-
gersn and for allx ∈ [0, 1]:

σn(x) =
G

1 + x
− fn(x), (3.3.56)

Applying the same logic used to obtain Equation3.3.55, we obtain an upper bound
for the sequence of functionsσ0, σ1, σ2, . . . defined in Equation 3.3.56:

fn(x) <
G− l

′
+ 2−n+1(τ + G)

1 + x
=

G1

1 + x
(3.3.57)

wherel
′
= 1

2

1∫
0

σ0(z) dz. We have thus established the upper and lower bounds of

fn as functions ofn (i.e. G1, g1 are functions ofn), which is what we initially set
out to find.

Subtracting Equation 3.3.55 from Equation 3.3.57 and realizingl, l
′
> 0, we

haveg < g1 < G1 < G. These inequalities apply for largen, or as lim
n→∞

2−n+1 =

0. As a result:

G1 − g1 < G− g − (l + l
′
) + 2−n+2(τ + G) (3.3.58)

Then using the definitions ofl andl
′
and the definitions ofφ andσ introduced in

Equations 3.3.43 and 3.3.56:

l + l
′
=

1

2

1∫
0

G− g

1 + z
dz = (G− g)

ln(2)

2
, (3.3.59)
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whereG andg are constants. Combining our previous result with Equation 3.3.58,
we infer:

G1 − g1 < (G− g)δ + 2−n+2(τ + G), (3.3.60)

whereδ = 1− ln(2)
2

< 1, which is a positive constant. In summary, we note from
Equation 3.3.42:

g

1 + x
< f0(x) <

G

1 + x
, (3.3.61)

and for large enoughn, we just concluded:

g1

1 + x
< fn(x) <

G1

1 + x
, (3.3.62)

where all the relations amongG, g,G1, g1 in Equation 3.3.58 still hold.
In the beginning of this line of analysis, we commented that our base function

wasf0. Suppose we consideredfn(x) as our starting function and reapplied the
same rigorous argument to this function, then it is evident:

g2

1 + x
< f2n(x) <

G2

1 + x
, (3.3.63)

where we haveG2− g2 < (G1− g1)δ + 2−n+2(τ1 + G1) andg1 < g2 < G2 < G1

(see Equation 3.3.60), andτ1 is defined in a similar fashion to Equation 3.3.29,
namely|f ′

n(x)| < τ1. Now, we can continue this process an infinite number of
times, which produces a general result:

gr

1 + x
< frn(x) <

Gr

1 + x
, (3.3.64)

which naturally implies a relationship amongGis andgis similar to Equation
3.3.60:

Gr − gr < (Gr−1 − gr−1)δ + 2−n+2(τr−1 + Gr−1), (3.3.65)

where this equation yields the relationshipgr−1 < gr < Gr < Gr−1. Again,τr−1

is defined in a similar fashion to Equation 3.3.29, namely|f ′

(r−1)n(x)| < τr−1.
The above inequalities hold forr ∈ N and x ∈ [0, 1].

By Lemma 3.3.4, we can writeτr < µ
2rn−3 + 4M for r ∈ N , from which we

see lim
n→∞

τ
2rn−3 = ∞; thusτr < 5M for largen andr ∈ N . We can repeat the

application of Equation 3.3.65 for allr ∈ [1, n]:
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Gn−gn < (G−g)δn+2−n+2{(µ+2M)δn−1+7Mδn−1+7Mδn−3+. . .+7Mδ+7M},
(3.3.66)

which expressesGn − gn in terms ofG andg. Because bothδ < 1 and2−n+2

decay very rapidly asn → ∞, we can bound this decay from above withe−n, in
particular:

Gn − gn < Be−λn. (3.3.67)

SinceGn − gn is a function ofτ andM , andG, g are functions ofM , B must
be a function of bothM andτ , formally B = B(M, τ). Since the expression
in Equation 3.3.66 is strictly positive,B > 0 for all M andτ . Finally, λ is an
absolute constant that does not change irrespective of the sequence of functions
fn satisfying Equation 3.3.28, andλ < 1 otherwise for anyB ∈ R asn → ∞,
we would haveBe−λn < 2−n+2, thereby violating the assumption needed for
Equation3.3.67.

From Equation 3.3.67, we complete our goal of showing the lower and upper
bounds offn converge to the same value asn →∞:

lim
n→∞

Gn = lim
n→∞

gn = a, (3.3.68)

where this limit exists becauselim
n→∞

Be−λn = 0. Now, let r = n in Equation

3.3.64, and we argue forx ∈ [0, 1]:∣∣∣∣∣fn2(x)− a

1 + x

∣∣∣∣∣ < Be−λn. (3.3.69)

If we considered this inequality asn → ∞, then it is clear the sequence offn

converges uniformly to a
1+x

. Using Equation 3.3.69 and a result in real analysis
that states if a sequence is uniformly convergent, then the limit of the integrals is
the integral of the limit, we reason:

lim
n→∞

fn2(x) =
a

1 + x

⇒ lim
n→∞

1∫
0

fn2(z) dz → a ln 2. (3.3.70)
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Hence, Lemma 3.3.6 givesa = 1
ln 2

1∫
0

f0(z) dz. If we now let N be such that

n2 ≤ N < (n+1)2, wheren2 is the index used in the sequencefn2, then dropping
the absolute value signs in Equation 3.3.69 yields:

a− 2Be−λn

1 + x
< fn2(x) <

a + 2Be−λn

1 + x

⇒ a− 2Be−λn

1 + x
< fN(x) <

a + 2Be−λn

1 + x

⇒

∣∣∣∣∣fN(x)− a

1 + x

∣∣∣∣∣ < 2Be−λn = Ae−λ(n+1) < Ae−λ
√

N , (3.3.71)

whereA = 2Beλ. Note, line 2 is the result of applying Lemma 3.3.5 tofn2 in line
1. The first inequality in line 3 is the consequence of introducing absolute value
into line 2, and the final inequality is due to our construction ofN < (n + 1)2.

Throughout this section, our results have held for sufficiently largeN , which
implies Equation 3.3.71 holds only for largeN , but if A can be made arbitrarily
large, then Equation 3.3.71 can be made to hold for allN ≥ 0. The arguments
presented in this section have proved the following theorem.

Theorem 3.3.7.Kuzmin’s Theorem -Let the conditions of Equations 3.3.28 and
3.3.29 hold, then

fn(x) =
a

1 + x
+ θAe−λ

√
n, (3.3.72)

wherex ∈ [0, 1], a = 1
ln 2

1∫
0

f0(z) dz, |θ| < 1, λ < 1 is an absolute positive

constant, andA is a positive function ofM andτ but not ofx [Ki].

A more detailed analysis of the constants in Kuzmin’s Theorem will be pro-
vided at the end of this chapter; however, we will findA andλ cannot be assigned
actual numerical values without losing some of the theoretical thrust of the theo-
rem. Kuzmin’s Theorem implies a result that is paramount to our analysis that is
presented at the end of this chapter.

3.3.4 Kuzmin’s Result

Recall the definition ofmn(x) and Equations 3.3.21 and 3.3.25, which show:
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mn+1(x) =
∞∑

k=1

(
mn

(1

k

)
−mn

( 1

k + x

))

m
′

n+1(x) =
∞∑

k=1

1

(k + x)2
m

′

n

( 1

k + x

)
. (3.3.73)

But in Equation 3.3.28, we definedfn+1(x) to satisfy:

fn+1(x) =
∞∑

k=1

1

(k + x)2
fn

( 1

k + x

)
, (3.3.74)

which is preciselym
′
n+1(x)’s functional relationship. Also note (

∫
m

′
n+1(x) dx =

mn+1(x)), which is the measure of the set of numbersα in the interval[0, 1] for
which zn(α) < x.

Gauss wanted to find a closed form expression formn(x) for largen. Moti-
vated by the similarities between Equations 3.3.73 and 3.3.74, we set:

fn(x) = m
′

n(x) (3.3.75)

for x ∈ [0, 1]. If we let f0(x) ≡ 1, then all the conditions of Theorem 3.3.7 are
satisfied. Now, we can appropriately apply Theorem 3.3.7 withfn(x) = m

′
n(x):∣∣∣∣∣m′

n(x)− 1

(1 + x) ln 2

∣∣∣∣∣ < Ae−λ
√

n (3.3.76)

integrating yields ∣∣∣∣∣mn(x)− ln(1 + x)

ln 2

∣∣∣ < Ae−λ
√

n, (3.3.77)

where these inequalities hold forx ∈ [0, 1]. Again,A andλ are absolute positive
constants. Note, the factor ofx, which should result from integrating the right
hand side with respect tox, is dropped. We drop thex in order to make the error
term independent ofx, and we notexAe−λ

√
n ≤ Ae−λ

√
n becausex ∈ [0, 1].

Gauss’s conjecture is thus proved.
We can apply these results to approximate the measure of the set of numbers

for whichan = k for largen.
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Recall from Equation 3.3.22zn = rn − an = [0; an+1, . . .], and as a result, if
an = k, then

1

k + 1
< zn−1(α) ≤ 1

k
; (3.3.78)

therefore

µ(E

(
n
k

)
) = mn−1

(
1

k

)
−mn−1

(
1

k + 1

)
=

1
k∫

1
k+1

m
′

n−1(x) dx. (3.3.79)

Now, we integrate Equation 3.3.77 from1
k+1

to 1
k

and use Equation 3.3.79:

∣∣∣∣∣µ(E

(
n
k

)
)−

ln
{

1 + 1
k(k+2)

}
ln 2

∣∣∣∣∣ < A

k(k + 1)
e−λ

√
n−1, (3.3.80)

where the power
√

n− 1 is a result Equation 3.3.78. The factorC 1
k(k+1)

is a

result of the integration=

1
k∫
1

k+1

C dx, whereC = Ae−λ
√

n−1 is not a function ofx.

Note, 1
k(k+1)

is the length of each interval characterized byan = k. Collecting our
results, we conclude this section with Kuzmin’s result:

µ(E

(
n
k

)
) →

ln
{

1 + 1
k(k+2)

}
ln 2

(3.3.81)

asn →∞.

3.4 Levy’s Refined Results

DeVeaux [De] provides an excellent summary of Levy’s proof, which DeVeaux
uses to critique Kuzmin’s approach. The major criticism of Kuzmin’s proof is the
reliance on the seemingly too restrictive condition in Equations 3.3.28, “which
shows convergence regardless of the distribution chosen forX [De].” Levy did
not rely on such heavy assumptions, which enabled him to solve Gauss’ problem
not only forx uniformly distributed in[0, 1], but also forx with a density in the
set of Lebesgue measurable functions (L1[0, 1]).
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Khintchine states: “The method of P. Levy allows a better estimate to be ob-
tained. The inequality ∣∣∣mn(x)− ln(1 + x)

ln 2

∣∣∣ < Ae−λn (3.4.82)

is shown to be satisfied [Ki].” If we substitute this error term into the inequality
in Equation 3.3.77 and follow the exact same argument used to obtain Equation
3.3.80, then we conclude:

⇒

∣∣∣∣∣µ(E

(
n
k

)
)−

ln
{

1 + 1
k(k+2)

}
ln 2

∣∣∣∣∣ < A

k(k + 1)
e−λ(n−1). (3.4.83)

Becausee−λ(n−1) → 0 much faster thane−λ
√

n−1 → 0 asn →∞, we conclude
Levy’s bounds are significantly better than Kuzmin’s, but still not necessarily op-
timal.

3.5 Experimental Results for Levy’s Constants

3.5.1 Motivation

Does there exists a more optimal bounding function for the difference
∣∣∣µ(E

(
n
k

)
)−

ln

{
1+ 1

k(k+2)

}
ln 2

∣∣∣ than Levy’s A
k(k+1)

e−λn? Formally, can we find a functioneg(n),

such thateg(n) < e−λn and
∣∣∣µ(E

(
n
k

)
)−

ln

{
1+ 1

k(k+2)

}
ln 2

∣∣∣ < CA(k)eg(n) = θ(n, k)

holds for alln or at least for largen? Intuitively, one may believe there exist a
more optimal bounding functionθ(n, k) for all n than Levy’s proposed function,
even if the order ofθ(n, k) is equal only toe−cn; or, g(n) has a higher order than
cn, which is the order of Levy’s bounding function (i.e.e−λ(n−1)).

This intuition results from two facts. First, Levy’s function does not bound
the difference in Equation 3.4.83 with equality, so perhaps there exists a bounding
function that does indeed bound this difference with equality. Secondly, in going
from line 1 to line 2 in Equations 3.3.77 and 3.4.83, we drop the factor ofx ≤ 1
from the right hand side. If this factor were included in Levy’s error term, then
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not only would the error term depend onx, but also asx ≤ 1 the resultant error
term would be more optimal that our current error term in Equation 3.4.83.

Suppose we set out to emprirically estimate the optimal error functionθ(n, k)
by considering the various length expansions of a set of irrationalα ∈ [0, 1].
Immediately, we note this test set has zero measure, so we could never be certain
θ(n, k) is the optimal error function for a set ofα ∈ [0, 1] with positive measaure.
However, if we just consider the various length expansions of our testα, then we
can find a functionθ(n, k) that approximates the difference in Equation 3.4.83 to
a better degree thane−n; θ(n, k) would preserve the inequality in Equation 3.4.83
only for those values ofn andα in out test set. Furthermore, if one uses Kuzmin’s
Theorem in an empirical analysis, then the bounding function does not need to
hold necessarily for alln, rather only over a range ofn; however, over this range
of n, θ(n, k) needs to preserve the inequality in Equation 3.4.83 for all examined
k andα.

Alternatively, we can assumeθ(n, k) has the same functional form as Levy’s
bounding function:

θ(n, k) =
C

k(k + 1)
e−λ

′
(n−1) (3.5.84)

By assumption,θ(n, k) now looks almost exactly like Levy’s bounding function.
While the constantsA and λ in Levy’s bounding function are supposed to be
absolute constants that preserve Inequality 3.4.83 for almost allα and for alln, we
can change these constants to suit our purposes. Rarely do we need our bounding
function to hold for alln, and rarely do we need this bounding function to hold for
all α ∈ K (whereK denotes the set for which Kuzmin’s/Levy’s Theorem holds).

It is extremely important to bear in mind that the “range ofn” is determined
by the demands of the empirical analysis; hereinafter, the previous statement will
be assumed when refering to the range ofn. We also define the “beginningn,”
which is the firstn in the range, over which the bounding function must satisfy
Inequality 3.5.86.

A very nice consequence of Equation 3.4.83 is:

Prob(an = k) ≤ log2

(
1 +

1

k(k + 2)

)
+ ε, (3.5.85)

whereε is either Kuzmin’s or Levy’s error term. In order to approximate the
constantsA andλ in Equation 3.4.83, we must empirically estimateµ(α ∈ [0, 1] :
an = k), or Prob(an = k). To perform this estimation we do the following:
computen coefficients of the continued fraction expansion of a givenα0 and count

49



the number of coefficientsai whose value isk; then we divide this number by the
total number of coefficients examined (i.e.n): call this procedure “Kuzmin Test
Procedure.” It is important to note Kuzmin’s Theorem gives us the probability
an = k for given n and k; however, we can test the expression in Kuzmin’s
Theorem by implementing the Kuzmin Test Procedure. Basically, the difference
between the Kuzmin Test Procedure and Kuzmin’s Theorem is the former tests
the expected number of digits equal tok givenn coefficients while the later gives
Prob(an = k). Both [MT] or [Mi] show the expected number of coefficients
equal tok given n coefficients isn log2(1 + 1

k(k+2)
) + ε(n, k), whereε(n, k) is

the error term that decreases asn →∞. Therefore, Kuzmin’s Theorem does lead
directly to an expectation of the number of digits equal tok givenn coefficients.

In the next few sections I will present a method for finding the optimal con-
stants (i.e.A andλ) of the bounding function, where “optimal” is in reference
to an arbitrary empirical analysis, and I will apply this method to a numerical
application.

3.5.2 Problems in EstimatingA and λ

Since Levy provides a more optimal bounding function than Kuzmin, we as-
sumeθ(n, k) has the same functional form as Levy’s bounding function (see the
condition presented in Equation 3.5.84). Then we have from Equation 3.4.83:∣∣∣∣∣µ(E

(
n
k

)
)−

ln
{

1 + 1
k(k+2)

}
ln 2

∣∣∣∣∣ < θ(n, k) =
A

k(k + 1)
eλ(n−1), (3.5.86)

where we relabeled the constants from Equation 3.5.84 (i.e.CA(k) = A
k(k+1)

and

λ
′
= λ).
We note an immediate problem in trying to estimate empirically the constants

A andλ. Although by formal construction our constantsA andλ are supposed
to be independent ofα, in any empirical analysis both constants will be functions
of the testedα’s. To see this dependence, consider an empirical test of Kuzmin’s
Theorem, where we perform Kuzmin Test Procedure for a predetermined set of
coefficient valuesk and a test set ofα. Sinceai(α) is a function ofα and the
expression ∣∣∣µ(α : ai = k)−

ln
{

1 + 1
k(k+2)

}
ln 2

∣∣∣ (3.5.87)
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is estimated by counting the number of coefficientsai with valuek, we observe
A andλ are functions ofα. Furthermore, both constants will also be functions of
the range ofn and the beginningn.

For example, suppose we choseα0 ∈ K, such thata1(α0) = 108 and the sub-
sequent digits are free to assume any values. Further suppose we are attempting
to determineA andλ in Equation 3.5.86 by utilizing the Kuzmin Test Procedure
over the first two digits ofα0. If we computed the constantsA andλ based only
on the coefficientsa1, a2 (i.e. the range ofn = 2 and the beginningn = 1), then
A andλ will be extremely large because immediately there is a large divergence
from Kuzmin’s Theorem. However, we assumed thatα0 ∈ K, which means that
asn → ∞ the divergence from Kuzmin’s Theoreom→ 0. The point of tracing
the effects of thisa1 = 108 problem (will also be referred to as the large digit
problem) is to show that any empirical analysis needs to consider manyα in its
test set and to be conducted over a large numbern of coefficients. Note: For con-
ciseness, when we refer to Kuzmin’s Theorem, we mean Kuzmin’s Theorem with
Levy’s bounding function

To understand this problem we note that Kuzmin’s expected value forµ(α :
an = 108) ≤ log2(1 + 1

108×(108+2)
) + ε, which for all practical purposes is0. But

since our empirical estimation ofµ(α : an = 108) was based on only one testα0

and on only two coefficients, we are led to believe by Kuzmin Test Procedure that
µ(α : an = 108) = 1

2
. Thus, we conclude the difference in Equation 3.4.83 is

approximated by:∣∣∣∣∣µ(E

(
n
k

)
)−

ln
{

1 + 1
108(108+2)

}
ln 2

∣∣∣∣∣ =
1

2
− ε (3.5.88)

This divergence1
2
−ε would yield a very large value ofA, although I acknowledge

the empirically estimated value ofA would be somewhat attenuated by ultimately
dividing A by k(k + 1) as in Equation 3.4.83. From Equations 3.3.80 and 3.4.83,
this A theoretically should remain constant for all tested values ofk, but we will
see empirical results indicate otherwise. Additionally, this divergence value im-
plies a larger value ofλ than would be the case if our test considered a longer
range ofn.

Reconsider oura1 = 108 problem over a longer range ofn instead of only
over a range of 2 coefficients as above; the effect of the coefficienta1 = 108

on the divergence value will be diluted, and our contantsA andλ will become
smaller (assuming that there are not frequent occurrences of the coefficient value
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108, which is a reasonable assumption given that we assumedα0 ∈ K). For
example, suppose that we recomputeµ(α : ai = 108) but letn = 100, 000. We
knowα0 ∈ K, so we can assume thatai 6= 108 for all 2 ≤ i ≤ 100, 000. Now the
divergence is given by:∣∣∣∣∣µ(E

(
n
k

)
)−

ln
{

1 + 1
108(108+2)

}
ln 2

∣∣∣∣∣ =
1

100, 000
− ε, (3.5.89)

which would yield more optimal values forA andλ than the values determined
whenn = 2.

Therefore, if we compute the constantsA andλ from an examination of only
the firstn (wheren is assumed to be small) coefficients of only one testα0 ∈ K,
then the bounding functionAe−λ(n−1) will be too great (i.e.∣∣∣µ(α : an = k)−

ln
{

1 + 1
k(k+2)

}
ln 2

∣∣∣� Ae−λ(n−1)) (3.5.90)

for most ranges ofn and most values ofk to be of any practical use. Khintchine
even notes if we chooseA andλ sufficiently large, then we can make our bounding
function hold for almost allα ∈ K, for all n, but these large valued constants are
of no practical use because they are not close to being optimal even for a small
range ofn, or for a small beginningn.

The natural follow up question to the previous discussion is what should be
our minimum range ofn and our lowest beginning value ofn for an empirical
analysis to approximate the optimal values ofA andλ? The answer to this ques-
tion depends on the problem that one wishes to solve. This paper will present a
method for estimating the values ofA andλ, such that∣∣∣∣∣µ(E

(
n
k

)
)−

ln
{

1 + 1
k(k+2)

}
ln 2

∣∣∣∣∣ < A

k(k + 1)
e−λ(n−1) (3.5.91)

holds for a given range ofn and for all testα, or more specifically for most val-
uesk over the given range ofn. The range ofn is determined by experimental
demands, but my method can be applied to all required ranges ofn and all test
values ofα andk.

3.5.3 Method

Again, given a test set ofα andn coefficients, I will present the method for
estimating the constantsA andλ appearing in Levy’s error term, which is a better
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approximation of the difference in Inequality 3.4.83 than Kuzmin’s error term. I
will often call the value of the difference in Inequality 3.4.83 the divergence from
Kuzmin’s Theorem.

In [Mi], the author computed the continued fraction expansions to then =
500, 000th coefficient of the cube roots of the first100 primes and the first100
primes greater than107. For each testedα andk, the divergence from Kuzmin’s
expectation was computed. This empirical study suggests these cube roots are
elements of the setK. The reason the author considered the two different sets of
testα was to ensure one set of numbers was independent of the other. I refer the
reader to [MT] for a more indepth analysis of this problem, but here I will offer
an excerpt:

“ If one studies sayx3 − p = 0, as we varyp the first few digits will often be
the same. For example, the continued fractions for 100000007, 100000037 and
100000039 all begin[179, 3, 1, 2, 5, 2]. Consider a large numbern0. Primes near
it can be written asn0 + x for x small. Then

(n0 + x)
1
3 = n

1
3
0 ·
(

1 +
x

n0

) 1
3

≈ n
1
3
0 ·
(

1 +
1

3

x

n0

)
= n

1
3
0 +

x

3n
2
3
0

. (3.5.92)

If n0 is a perfect cube, then for smallx relative ton0, these numbers will all have
the same first few digits (and the first digit should be somewhat large). Thus, if
we want to average over different roots, the first few digits are not independent; in
many of the experiments, digits 50,000 to 1,000,000 were investigated: for roots
of numbers of size1010, this was sufficient to see independent behavior (though
ideally one should look at autocorrelations to verify this claim. Also, Kuzmin’s
theorem describes the behavior forn large; thus, it is worthwhile to throw away
the first few digits so we only study regions where the error term is small.” [MT]

Motivated by the results in [Mi], I considered fiveαs from the first100 primes
and fiveαs from the second set of primes with the greatest divergence from
Kuzmin’s Theorem over all tested values ofk. The rationale for choosing only
five from each set is that I am mainly trying to illustrate a method. Addition-
ally, one could conjecture a numberα ∈ K that exhibited the greatest divergence
from Kuzmin’s Theorem over a given range ofn coefficients for a certaink would
yield constantsA andλ that bound from above the divergence of all other tested

53



values ofk for all the other testedαs over the same range. Note,α’s large di-
vergence from Kuzmin’s Theorem given a range ofn coefficients for a certaink,
does not imply thatα maintains a relatively large divergence asn → ∞ for the
samek, or even for other values ofk. In a sense, the continued fractions of the
low-divergenceαs exhibited a faster convergence rate toαs’ true value than theα
with the greatest divergence. According to this intuition, we are testing essentially
200 numbers. The moreα considered in an empirical analysis, the less dependent
A andλ are on any particularα (except for theα with the greatest divergence
from Kuzmin’s Theorem).

I examined the cube roots ofα = 79 , 167 , 223 , 251 , 307 , 10, 000, 357 ,
10, 001, 221 , 10, 001, 237 , 10, 001, 567 , 10, 001, 643 for n = 7, 070 , 50, 000 ,
100, 000 , 150, 000 , . . . , 2, 000, 000. I then computed the number of coefficients
that have valuesk = 1, 2, 3, 4, 5, 96, 97, 98, 99, 100 for eachα for each value of
n.

The rationale for choosingn in 50, 000 increments was to record the diver-
gence at multiple values ofn, but the lengths of the increments were arbitrary. The
beginningn = 7, 070 because according to Kuzmin’s Theorem, theProb(ai =
100) = log2(1 + 1

100×(100+2)
), which corresponds to observing one in every7, 070

coefficients whose value is100. Since we are fairly confident all the testedα ∈ K
[Mi], for smaller values ofn we expect to see a very low number of coefficients
with valuesk = 100; thus we face the problem presented in the discussion where
we assumed thata1 = 108. However, lettingn = 7, 070 will dilute most of the
effect of observing multiple occurrences ofai = 100 for i ≤ 7, 070.

For example, suppose that forα0 ∈ K we observed3 coefficients such that
ki = 100, then we empirically estimateµ(α : an = 100) = 3

7,070
≈ .0004 versus

Kuzmin’s expectation ofµ(α : an = 100) = 1
7,070

= .0001, yielding a divergence
of .0003, which is not so large as to limit severely the optimality of resultant values
of A andλ.

While all of the discussion about thea1 = 108 problem has been to provide
warning that the resultant bounding function will not be optimal if such a prob-
lem is not avoided, we also lose some of the true behavior ofα’s convergence
to Kuzmin’s Theorem if we do not include some values ofk andn such that the
bounding function captures the possibly large divergence caused by thea1 = 108

problem. It is important that our estimations include some form of this behavior
so that the obtained bounding function will preserve the inequality in Equation
3.4.83 for manyk. If we choosek large andn large, we can capture some of this
behavior but the largen will have enough of a dilutive effect so as to preclude
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impractical values ofA andλ. This approach differs from lettingn = 1 or n = 2
because there is absolutelynodilutive effect in this case fora1, a2 large.

Lastly, I chose to examine the valuesk = 1, 2, 3, 4, 5 because according to
Kuzmin’s Theorem, these values should occur with the highest frequency; there-
fore, any empirically estimated bounding function must bound Inequality 3.4.83
for these values ofk. I chose the rangeki = 95, . . . , 100 randomly, but wanted
numbers that were large enough, such that their Kuzmin expected frequencies
would be very small relative tok = 1, 2, 3, 4, 5s’ frequencies. Also, I wanted num-
bers small enough to capture the possibly large divergence caused by thea1 = 108

problem, but large enough so that the beginningn would dilute some of the er-
ratic behavior caused by this problem, which was accomplished by considering
n = 7, 070 andk = 100. Therefore, this experiment should caputure the behav-
ior of the bounding functionAe−λ(n−1) for mostk (or for mostk observed in the
expansions our test set ofα) over the rangen = [7, 070 , 2, 000, 000].

For each value ofn (useni to distinguish distinct values ofn) and for each
value ofk, I calculated the maximum divergence from Kuzmin’s Theorem over
all the examinedα (label this maximumy(n, k) = y(n), wherey is really only a
function ofn because we fixk to determine this maximum divergence over allα at
eachni). Then for eachk, I plotted the maximum divergence against the different
values ofni and found a best fit exponential decay functiond(n), which yielded
values forλ andA. However, the best fit function did not boundy(n) for all n
because it was a trend line. Therefore, I obtained a best fit functionh(n) for each
k, such thath(n) ≥ y(n) for 7, 070 ≤ n ≤ 2, 000, 000. Motivated by Equation
3.4.83, fork = k0, I assumedh(n) is of the form:

h(n) =
A

k0(k0 + 1)
e−λ(n−1). (3.5.93)

The equation forh(n) invloves two unknowns,A andλ, so I subjectedh(n) to the
following conditions:

h(n7,070) = y(n7,070) = V0

and, h(nm) = y(nm) = V1

where, m : |d(nm)− y(nm)| > |d(ni)− y(ni)| (3.5.94)

where the last inequality holds for alli ∈ (7, 070 , 2, 000, 000]. We can now find
closed form expressions forA andλ in terms of our data.
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We assumed in Equation 3.5.93 thath(n) = A
k0(k0+1)

e−λ(n−1), so lettingn7,070 =

n0 and A
k0(k0+1)

= Bk0 we begin with:

h(n0) = Bk0e
−λ(n0−1) = V0

h(nm) = Bk0e
−λ(nm−1) = V1

Now we just solve the simultaneous equations forBk0 andλ:

Bk0 = V0e
λ(n0−1)

λ =
−1

nm − 1
ln
( V1

Bk0

)
⇒ λ =

−1

nm − 1
ln
( V1

V0eλ(n0−1)

)
⇒ eλ =

(V1

V0

) −1
nm−1

(
e

λ(n0−1)
nm−1

)
⇒ eλ(

nm−n0
nm−1

) =
(V1

V0

) −1
nm−1

⇒ λ =
( 1

nm − n0

)
ln
(V0

V1

)
(3.5.95)

Then substitutingBk0 = V0e
λ(n0−1) from line 1 into the last line of Equation

3.5.95, we obtain an expression forBk0:

Bk0 = V0

(V0

V1

) (n0−1)
nm−n0 (3.5.96)

We have thus outlined a method for determining the constantsA and λ in
Levy’s error term for a given range ofn beginning withn0.

Given a numerical analysis of a set ofα ∈ K, there exists two options for
choosing the optimal values ofA andλ. Note, we obtain a different bounding
function hki

(n) for each tested value ofki. Therefore, our first choice for the
values ofA andλ is Akm andλkm, wherekm is chosen such that:

Akme−λkm (n−1) > Aki
e−λki

(n−1) (3.5.97)

for all ki and for alln. Choosing these constants will yield the optimal bounding
function for the given test set ofα.
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The other choice for the values of the constants isAkn andλkr , whereAkn >
Aki

andλkr < λki
for all i. While these choices are not optimal for our data, the

resulting bounding function:
Akne−λkr (n−1) (3.5.98)

will certainly be more robust than the bouding function in Equation 3.5.97, in
terms of satisfying Inequality 3.4.83 for a larger set of untestedα and for more
values ofk.

If the set of testedα is a subset of a special familyF of numbers (e.g. cube
roots, allα have the same Galois group, etc.), then we can expect untestedα ∈ F
to behave roughly similar to the tested set ofα. Additionally, some values ofk in
the expansions of the untestedα ∈ F will produce bounding functions larger/less
thanAkne−λkr (n−1). Thus, taking as our bounding function the one presented in
Equation 3.5.98 will yield a bounding function better suited forα ∈ F than the
function in Equation 3.5.97.

3.5.4 Results

Before we present the empirical results to the above outlined experiment, we
ask what factors should govern the values ofA andλ? We expectA’s value will
be determined by whateverk (over all α) andn exhibit the largest divergence
from Kuzmin’s expectation. Due to the large digit problem, we expect that for
some testedα ∈ K the largest observed divergence will be for the case ofn-small
andk-large, namelyn = 7, 070 andk = 100. In other words, we expect that for
someα, the frequency ofai = 100 for i ≤ 7070 will be significantly different
than Kuzmin’s predicted frequency (i.e. the eventai = 100 should occur once
for i ≤ 7, 070). However, because Kuzmin’s predicted frequency forai = 100,
given i ≤ 7, 070, is so small, anyα that does not have exactly one occurrence of
ai = 100 for i ≤ 7, 070 will produce a large divergence value, in terms of percent
difference from Kuzmin’s expectation.

We cannot rely exclusively on the same intuition to determine the factors that
should affect the value ofλ. If the bounding function fork produces the smallest
λ, then the convergence ofµ(α : an = k) to log2(1 + 1

k(k+2)
) is slower than other

values ofk over the range ofn ∈ [7, 070 , 2, 000, 000]. Recall after fixingk, y(n)
is defined as the maximum divergence (over allα and over allni) from Kuzmin’s
expectation of the frequency ofaj = k given continued fraction expansions of
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lengthni, or formally:

y(n) = max
α,ni

∣∣∣∣∣µ(E

(
ni

k

)
)−

ln
{

1 + 1
k(k+2)

}
ln 2

∣∣∣∣∣. (3.5.99)

Furthermore, the main factor affecting the value ofλ is the behavior of the “tail”
of y(ni), where the tail is defined as the values ofy(ni) for i near the end of
the range ofn, or in our casei ≈ 2, 000, 000. λ’s value is most affected when
the tail of y(ni) is an increasing function, but for all otheri in the range ofn,
y(ni) follows an exponential decay trend (we assumed thaty(ni) and the bounding
function decay exponentially). Note, that if range ofn were extended far beyond
n = 2, 000, 000 andy(ni) were an increasing function fori near2, 000, 000 but
exhibited exponential decay behavior for all otheri, then this non-exponential
decay behavior would have only a minimal effect onλ’s value.

Again, it is important to note that the constantsA andλ must be recomputed
using different values ofn, k, andα for different applications. The intention of
this experiment was to find a method for approximatingA andλ for a given an
application.

We now present the empirically determined values ofA andλ for each case
of k. The values ofλ should be intepreted as(reported value) × 10−6 and the
values ofA have been adjusted by multiplying each experimentially determined
constantB in Equation 3.5.96 by the factork(k + 1). (see Appendix A for the
backup data, graphs and summary pages):

k A λ

1 0.0221 1.464
2 0.0191 0.825
2 0.1197 1.645
4 0.1075 1.452
5 0.1232 1.826
96 1.4386 1.052
97 1.4404 1.219
98 2.7181 1.543
99 1.4395 1.105
100 2.8870 1.469
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The first conclusion one can draw from the data is bothA and λ seem to
depend onk. We mentioned earlier that in Equations 3.3.80 and 3.4.83,A and
λ were assumed to be absolute positive constants, but if one attempts to assign
numerical values to eitherA or λ then these constants become functions ofk,
which dependsα vis a visai(α) = k. Thus, we lose the power of both Kuzmin’s
and Levy’s error functions being independent ofα to the extent thatα ∈ K;
Kuzmin’s and Levy’s error terms clearly depend onα if α /∈ K.

Because all the testedαs belong to the family of cube roots of primes, I will
choose for the optimal bounding function the largestAkm and the smallestλkr ;
thus the value ofA is determined bykm = 100, as expected, and the value of
λ is determined bykr = 2, as expected after observing that fork = 2, y(ni) is
an increasing function for alli ≥ 1, 750, 000. To correct this problem we could
reperform the experiment with a longer range ofn; if we examined longer ranges
of n, then this non-exponential decaying tail would not have such a substantial
effect on the empirically estimated value ofλ. But herein lies the problem with
estimating such constants.

The approximating function obtained is:

f(n) =
2.8870

k(k + 1)
× e−8.2476×10−7×(n−1) (3.5.100)

We expect these choices forA andλ should hold for many values ofk for many
α that are cube roots of prime numbers, or at least for the cube roots tested in
[Mi]. We expect this bound to hold for the set ofα tested in [Mi] because our
bounding function in Equation 3.5.100 was obtained from theα in this set with
the largest divergence from Kuzmin’s expectations. The consequence of choosing
the constants in such a fashion is our bounding function is not the optimal bound
for our data because of reasons discussed previously.

It is important to point out that we could takeA to be arbitrarily large and
λ to be arbitrarily small, such that the inequality in Equation 3.4.83 is satisfied
for almost allk (almost allα) and for alln, but then we lose accuracy in our
approximation of the difference in Equation 3.4.83. An interesting question is
what are the minimum values ofA andλ such that the inequality in Equation
3.4.83 is satisfied by a set ofα with full measure?

We finally return to our question as to whether the inequality in Equation
3.4.83 can be bounded by a functionC × eg(n) < A × e−λ(n−1), whereg(n) is
of a higher order thann. Over a certain range ofn, we certainly can find such a
function. Two ways of constructing this function are to allow the value ofC to be
very large, or to letg(n) = −λnt and allow the value ofλ to be very small; we can
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maket arbitrarily large by makingλ arbitrarily small. But in general, the larger
the valuet the smaller the range ofn, for whichC×eg(n) satisfies the inequality in
Equation 3.4.83. However, there is no data or theory that suggests such a function
could/will hold over a range ofn asn→∞.
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Chapter 4

Bounded Coefficients

4.1 Known Theory

We present the following theorem to illustrate a lower bound for how fastx
converges toα vis a vis the growth rate of the denominators.

Theorem 4.1.1.For anyk ≥ 2, we have:

qk ≥ 2
k−1
2 [MT], [Ki]. (4.1.1)

Proof: Fork ≥ 2, we have thatqk = akqk−1 + qk−2 ≥ qk−1 + qk−2 ≥ 2qk−2

by Theorem 1.4.2. Repeating this inequality we arrive atq2k ≥ 2kq0 = 2k and
q2k+1 ≥ 2kq1 ≥ 2k ⇒ qk ≥ 2

k−1
2 . 2

An alternative proof is provided in [MT], where the authors use the recurrence
relations of the Fibonacci sequence to boundqk from below.

This theorem implies that the denominators of the convergents do not increase
more slowly than the terms of a certain geometric series. Even if allai = 1 (as
is the case withα = 1+

√
5

2
, which is the slowest converging continued fraction),

qn still grows at a rate equal to a geometric progression, which implies a very fast
convergence rate, in general. However, we will see in the next theorem that the
denominators cannot grow faster thaneBn, which will provide useful insight into
analyzing the behavior of large valued coefficients (i.e.ai = k for k very large).

Theorem 4.1.2.There exists a positive absolute constant B such that for suffi-
ciently largen the inequality

qn = qn(α) < eBn (4.1.2)

holds almost everywhere [Ki].
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I will not provide the proof of this theorem because we only need the statement
of this theorem to analyze the results presented in this chapter. However, Khint-
chine gives a slightly more explicit form forB in the proof, namelyB = A+log 2.
It is important to note that for almost allα ∈ [0, 1], we now have a lower and an
upper bound for the growth of the denominators of the convergents. Both bounds
are geometric progressions depending on an absolute constant. These bounds will
imply certain bounds applicable to digit values.

In other words, for almost allα we have2
n−1

2 < qn < eBn. Taking thenth

roots of the inequality yieldsa < q
1
n
n < eB for almost all numbersα ∈ [0, 1],

wherea = lim
n→∞

n
√

2
n−1

2 =
√

2. In fact, Levy proved that there exists an absolute

constantγ such that
lim

n→∞
n
√

qn = γ, (4.1.3)

where

ln(γ) =
π2

12 ln 2
. (4.1.4)

If we combine Theorems 4.1.2 and 2.4.1, we find one subset of the set ofα not
satisfing Equation 4.1.2 is a set of transcendental numbers that have digit values
violating both Inequality 4.1.2 and the inequality of Louiville’s Theorem.

We now present a general result that motivated the empirical investigation
presented later in this chapter. While the theorem is self-explanatory, the results
are profound.

Theorem 4.1.3.The set of all numbers in the interval[0, 1] whose coefficients are
bouded is of measure zero, orµ(α ∈ [0, 1] : ai ≤ M ∀i) = 0

Proof: This proof can be found in [MT]. Recall that each rankn interval is a
subset of some rankn−1 interval, orJn ⊂ Jn−1. Consider Equation 3.2.18, which

gives 1
3k2 < µ(E

(
n
k

)
), or the measure of the set ofα, whosenth coefficient is

k, is greater than1
3k2 . Intuitively, “this results shows that in any arbitrary interval

of rankn − 1, that interval of rankn which is characterized by the valuean = k
takes up a part of (at least)1

3k2 ” [Ki]. In other words, the measure of the rankn
interval characterized byan = k will be at most:

µ(Jk
n) < (1− 1

3k2
)µ(Jn−1). (4.1.5)
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Applying this inequality to the theorem at hand, sinceai = ki < M ∀i, we have
for all k < M , (1− 1

3k2 )µ(Jn−1) < (1− 1
3M2 )µ(Jn−1), so we consider:

µ(JM
1 ) ≤ (1− 1

3M2
)µ(J0), (4.1.6)

whereJ0 = [0, 1] and repeated application of this inequality yields:

µ(JM
n ) ≤ (1− 1

3M2
)nµ(J0). (4.1.7)

Since(1− 1
3M2 ) < 1, asn →∞, µ(JM

n ) → 0. 2

Combining Theorems 2.3.6 and 4.1.3, we conclude that for a sufficiently small
fixed constantc a numberα with bounded coefficients cannot be approximated by
a rational number better than ∣∣∣α− p

q

∣∣∣ < c

q2
. (4.1.8)

But the previous theorem states that the set of such numbers has measure zero, so
almost all numbers can be approximated by a rational number to a degree better
than c

q2 in Equation 4.1.8. Note, in light of Theorem 2.4.1, quadratic irrationals
also cannot be approximated better than an order of1

q2 , but the set of quadratic
irrationals has zero measure. See [MT] for more details.

The next theorem will lead to a nice result to be presented later in Proposition
4.2.1.

Theorem 4.1.4.Letφ(n) be an arbitrary positive function of the positive integer

n. If the series
∞∑

n=1

1
f(n)

diverges, then the inequality

an = an(α) ≥ φ(n) (4.1.9)

is satisfied an infinite number of times for almost allα. On the other hand, if the

series
∞∑

n=1

1
φ(n)

converges, then the inequality is satisfiedat most a finite number

of times for almost allα [Ki].

Proof: Let us consider the first statement of the theorem. LetJn+m be an
interval of rankn+m, such that the continued fraction expansions of allx ∈ Jn+m

satisfy:
am+i < φ(m + i), (4.1.10)
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wherei = (1, 2, 3, . . . , n).
Using the same notation from Theorem 4.1.3 and recalling from Equation

3.2.16 thatµ(Jk
n+1) > 1

3k2 µ(Jn), we conclude:

µ

(∑
k≥M

Jk
n+1

)
>

1

3
µ(Jn)

∑
k≥M

1

k2

>
1

3
µ(Jn)

∞∑
i=1

1

(M + i)2
>

1

3
µ(Jn)

∞∫
M+1

du

u2

=
1

3(M + 1)
µ(Jn) (4.1.11)

and since
∞∑

k=1

Jk
n+1 = Jn,

⇒ µ

(∑
k<M

Jk
n+1

)
<

{
1− 1

3(M + 1)

}
µ(Jn), (4.1.12)

where the first inequality in 4.1.11 is a result of Equation 3.2.16. The second
inequality is a result of reindexing the sum in line 1 and subtracting1

M2 . The
third inequality is a result of lettingu = M + i, and noting that this intergral is a
refinement of the sum on the left hand side. The first line of 4.1.12 is a restatement
of Equation 3.2.13 and combining the results with Equation 3.2.16 yields the final
inequality.

Thus, lettingM = φ(m + n + 1) in the last line of Equation 4.1.12:

µ

( ∑
k<φ(m+n+1)

Jk
m+n+1

)
<

{
1− 1

3(1 + φ(m + n + 1))

}
µ(Jm+n). (4.1.13)

Let us sum this inequality over all rankm + n intervals, whose elements satisfy
the condition in Equation 4.1.10, and denote this collection of rankm+n intervals
by Em,n. We obtain:

µ(Em,n+1) <

{
1− 1

3(1 + φ(m + n + 1))

}
µ(Em,n), (4.1.14)
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where we lose at least
(
1− 1

3(1+φ(m+n+1))

)
part ofEm,n becauseam+n+1 < φ(m+

n + 1) for all α ∈ Em,n+1.
Let the assumption in the first statement of the theorem hold, that is the series

∞∑
n=1

1
φ(n)

diverges; then the series
∞∑
i=2

1
3(1+φ(m+i))

diverges for any constantm. As a

result, we fixm and argue:

lim
n→∞

n∏
i=2

{
1− 1

3(1 + φ(m + i))

}
→ 0

⇒ lim
n→∞

µ(Em,n) < lim
n→∞

n∏
i=1

(
1− 1

3(1 + φ(m + i))

)
µ(Em,1) → 0

⇒ lim
n→∞

µ(Em,n) = 0, (4.1.15)

where the second line is the combination of line 1 and Equation 4.1.14. Thus, we
have that for anym, µ(Em,n) → 0 asn →∞.

For a givenm, let Em denote the set of allα ∈ [0, 1], such thatam+i <
φ(m + i) for all i ∈ N , which implies this set ofα is a subset of every set:
Em,1, Em,2, . . . , Em,n, . . .. Then from Equation 4.1.15, we haveµ(Em) = 0.

LetE1+E2+. . .+Em+. . . = E, thenµ(E) = µ(E1+E2+. . .+Em+. . .) ≤
∞∑

m=1

µ(Em) = 0. Everyα, such thatan = an(α) ≥ f(n) is satisfied only a finite

number of times, belongs to one of the setsEm for a sufficiently largem, but
µ(Em) = 0 ∀m. The first assertion is proved.

Now assume the series
∞∑

n=1

1
φ(n)

conveges. Denote the embedded rankn + 1

interval, such thatan+1 = k, by Jk
n+1 ⊂ Jn. We know from Equation 3.2.16:

µ(Jk
n+1) <

2

k2
µ(Jn), (4.1.16)

which implies:
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µ

( ∑
k≥φ(n+1)

J
(k)
n+1

)
< 2µ(Jn)

∑
k≥φ(n+1)

1

k2

≤ 2µ(Jn)
∞∑
i=0

1

{φ(n + 1) + i}2
< 2µ(Jn)

( 1

φ(n + 1)
+

∞∫
φ(n+1)

du

u2

)

=
4µ(Jn)

φ(n + 1)
, (4.1.17)

where the first inequality is obtained by summing over allk ≥ φ(n + 1) in Equa-
tion 4.1.16. The second inequality is obtained by lettingk = φ(n + 1) + i and
recognizing thatk ≥ φ(n + 1) ∀n. The third inequality is obtained by letting

u = φ(n+1)+i ⇒ du = di, and from calculus
∞∫

φ(n+1)

du
u2 <

∞∑
i=0

1
{φ(n+1)+i}2 , there-

fore, the additional term 1
φ(n+1)

is required to make the third inequality strict. The

final equality is a result of evalutating the integral
∞∫

φ(n+1)

du
u2 = 0− −1

φ(n+1)
= 1

φ(n+1)

and collecting the terms.
Let Fn be the set ofα ∈ [0, 1], such thatan ≥ φ(n), and then sum the inequal-

ity obtained in Equation 4.1.17 over all rankn intervalsJn. Thus, we conclude:

µ(Fn+1) <
4

φ(n + 1)
. (4.1.18)

Since
∑

1
φ(n+1)

converges, the setsF1, F2, . . . , Fn, . . . form a convergent series,

and by thenth term test,µ(Fn) → 0 asn → ∞. Therefore, if we allowF to be
the set of allα ∈ [0, 1], which belong to infinitely manyFn, thenµ(F ) = 0.

Justifying this final step is an exercise in metric set theory: (I will follow the

proof presented in [Ki]). For anym, the setF is contained in the set
∞∑

n=m

Fn,

which implies thatµ(F ) <
∞∑

n=m

µ(Fn). Taking m to be sufficiently large, we

can makeµ(F ) arbitrarily small. By construction,F is the set of all numbers for
which the condition in Equation 4.1.9 is satisfied infinitely often.2
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4.2 Motivation

Kuzmin’s Theorem holds for all numbersα ∈ [0, 1] except for a set of zero
measure. An implication of Kuzmin’s Theorem is theProb(ai = k) > 0 for all
k ∈ N . In other words, fork arbitrarily large andα ∈ K, there is a positive
probability that for some coefficientai in α’s expansion, we haveai = k.

On the other hand, ifα0 has a continued fraction expansion whose coefficients
ai are bounded byM , thenProb(ai = k) = 0 for all k > M and alli. As a result,
a0 ∈ Z, where[0, 1] \K = Z.

Let α have a continued fraction expansion whose coefficients are bounded by
a monotonically increasing functiong(i) (i.e. ai = ki ≤ g(i) ∀i). What is the
slowest growing positive functiong(i) such thatα ∈ K? Clearly, we have:

lim
i→∞

g(i) = ∞ (4.2.19)

Consider the following argument: letα0 = [0; a1, a2, . . .] ∈ [0, 1] be irrational.
For ease of exposition, we ignore the error term in Kuzmin’s Theorem, then Equa-
tion 3.5.85 gives:

Prob(ai = k) = log2

(
1 +

1

k(k + 2)

)
, (4.2.20)

which gives the value ofProb(ai = k) for all k ∈ N . Therefore, ifk occurs with
probabilityProb(ai = k), then we expect for somei ≤ 1

Prob(ai=k)
thatai = k.

In general, the frequency ofai = k is given by 1
Prob(ai=k)

, or the eventai = k

occurs once in every 1
Prob(ai=k)

coefficients. For illustration purposes, consider
k = 1, 2, 3, 4 substituted into Equation 4.2.20:

Prob(ai = 1) = 0.4150

Prob(ai = 2) = 0.1699

Prob(ai = 3) = 0.0931

Prob(ai = 4) = 0.0589 (4.2.21)

These computations correspond to observingai = 1 about once in every 1
.4150

≈ 2
digits, ai = 2 once in every 1

.1699
≈ 6 digits, ai = 3 once in every 1

.0931
≈ 11

digits, andai = 4 once in every 1
.0589

≈ 17 digits.
Thus, suppose our bounding functiong(i) took the following valuesg(1) =

1, g(2) = 1, g(3) = 2, g(4) = 2, g(5) = 2, g(6) = 2, g(7) = 3, g(8) =
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3, g(9) = 3, g(10) = 3, g(11) = 3, g(12) = 4, g(13) = 4, g(14) = 4, g(15) =
4, g(16) = 4, g(17) = 4, g(18) = 5, . . ., org(i) grows withlog2(i). By choosing
g(i) as our bounding function we could construct an expansion, whose coefficients
obey Kuzmin’s probability distribution in the limit. Since this expansion would
hold in the limit, writing down one of the infinitly possible expansions would be
virtually impossible. The general form of such an expansion is to allow all digit
valuesk

′
< g(i) for all i to occur with Kuzmin’s expected frequency, and the

eventai = k0 must occur once for 1
log2(1+ 1

(k0−1)((k0−1)+2)
)

< i < 1
log2(1+ 1

k0(k0+2)
)
,

and thenk0 becomes one of thek
′
s. See Proposition 4.4.1 for a formal analysis of

this function.
Couldg(i) be the minimal bounding function, such that the set of allα ∈ [0, 1],

whose coefficients are bounded byg(i), has full measure and also obeys Kuzmin’s
Theorem? The answer is no.

We argued the functiong(n) = log2(n) is the slowest growing bounding func-
tion, such that a continued fraction expansion can obey Kuzmin’s Theorem in the

limit. In light of Theorem 4.1.4, because the sum
∞∑

n=1

1
g(n)

diverges, the inequality

g(n) ≥ an is satisfied for only a finite number ofan (finitely often) for almost all
α (i.e. a set of full measure with possibly the exception of a zero measure set).
In other words,µ(α ∈ [0, 1] : an ≤ g(n) = log2(n) infinitely often) = 0, where
infinitely often means asg(n) grows withn the inequalityan ≤ g(n) is satisfied
for an infinite number ofan. Thus, we must consider a faster growing function
φ(n) to ensure thatµ(α ∈ [0, 1] : an ≤ φ(n) infinitely often) = 1.

Proposition 4.2.1.For an arbitrarily small constantε > 0, the function

φ(n) = n1+ε (4.2.22)

is a positive growing function ofn, such thatφ(n) ≥ an holds for all but a finite
number ofan for almost allα ∈ [0, 1] (denote this set ofα by S), and such that
Kuzmin’s Theorem is satisfied by almost allα ∈ S.

Proof: Letφ(n) = n1+ε and note

∞∑
n=1

1

n1+ε
(4.2.23)

converges for anyε > 0. Thus, by our definition ofF in the proof of Theorem
4.1.4, the inequalityφ(n) = n1+ε ≥ an is violated only finitely often for almost
all α ∈ [0, 1] (see the analysis following Equation 4.1.18).
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Let K
⋂

S = F . Sinceµ(α ∈ K) = 1 = µ(α ∈ S) we haveµ(F ) = 1, which
is the set ofα ∈ [0, 1] that obeys Kuzmin’s Theorem and satisfies the inequality
of the proposition for all but possibly a finite number of digits.2

Extending the analysis of the proof, for almost allα ∈ K the inequality of the
proposition is satisfied for all but possibly a finite number of digits, and almost
all α ∈ S obey Kuzmin’s Theorem. In light of our discussion preceeding this
proposition, sincen1+ε > log2(n) for all n, the functionn1+ε grows sufficiently
fast such that Kuzmin’s probability lawcan be satisfied for almost allα ∈ S.
Kuzmin’s probability law cannot be satisfied for allα ∈ S because thoseα whose
coefficients are bounded byh(n) < log2(n) are elements ofS.

The only shortcoming of Proposition 4.2.1 is the relationshipφ(n) ≥ an is
violated possibly a finite number of times forα ∈ S and almost allα ∈ K. But
does there exist a “slowest” growing function such thatφ(n) ≥ an is satisfied for
all n for almost allα ∈ K?

One approach to finding such a function is to analyze the setα ∈ F . In theory,
we want to add a constantM(α) to n1+ε for eachα ∈ F , such that the inequality
n1+ε + M(α) > an holds for alln for this α. If we could determine the value
of M(α) for α, we can then try to find one value ofM that works for allα ∈ F
simultaneously; it would beM = max

α∈F
M(α) if this limit did indeed exist. But

sinceµ(α ∈ F ) = 1, we cannot find easilyM ’s value because the number of
α ∈ F is uncountable. However, for a givenα0 ∈ F , we theoretically could
find a function of the formθ(n) = n1+ε + M such thatθ(n) ≥ an(α0) for all
n. By Proposition 4.2.1, it is possible to find this function for allα ∈ F because
φ(n) ≥ an is violated only a finite number of times.

The implication of Theorem 4.1.4 and Proposition 4.2.1 is almost all numbers
α ∈ [0, 1] have unbounded coefficients, which is easy to see sincelim

n→∞
n1+ε =

∞. However, from Proposition 4.2.1 we conclude the digits in the expansions of
almost allα ∈ [0, 1] cannot become unbounded too quickly, too often. Clearly,
we could make the same statement for almost allα ∈ K.

Therefore, except for a set of zero measure, allα ∈ K satisfy Proposition
4.2.1, and as a result,Z consists of allα, whose coefficients satisfyan ≤ log2(n)
except for possibly a finite number of digits.

By Proposition 4.2.1, ifα’s coefficients satisfyan ≤ n1+ε only finitely often,
then Inequality 3.4.83 cannot be satisfied forall valuesk, which impliesα ∈ Z.
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4.3 Results

Let L be an arbitrarily large number andα ∈ K, then it is extremely difficult
to test the strength of Kuzmin’s Theorem fork ≥ L because the probability that
ai = L is very small. Consider the following: Kuzmin predicts thatProb(ai =
L) = log2(1 + 1

(L)(L+2)
) < ε, whereε is arbitrarily small for sufficiently largeL.

Thus, we should observeai = L for somei < 1
ε
, but forL sufficiently large andε

sufficiently small, computers will not distinguishL from∞ or ε from 0.
If ai 6= L for somei < A, whereA is regarded as the maximum number

of coefficients that can be computed within “reasonable” time by a computer and
a computer can distinguishA from ∞, then we could never determine whether
ai = L occurs, in the limit, with a frequency commensurate to Kuzmin’s expeca-
tion. This problem becomes especially difficult to circumvent if1

ε
> A. Thus,

the problem with testing Kuzmin’s Theorem forai = L is we cannot compute
enough coefficients to verify Kuzmin’s probability law (Equation 3.5.85); how-
ever, because of the theoretical results in Chapter 3, we must have faith and as-
sume Kuzmin’s Theorem holds for all values ofL with an error term that is a
function of bothL andn.

Reiterating the logic mentioned above: if a continued fraction expansion of an
irrational number is bounded, then this expansion cannot possibly obey Kuzmin’s
Theorem (Equation 3.5.85) for all values ofk. As a result, forα ∈ K, we expect
to observe arbitrarily large coefficient values somewhere in its expansion. In fact,
for α ∈ K andk ∈ N , the probability of never observing the eventai = k is:

lim
n→∞

(1− Prob(ai = k))n = 0 (4.3.24)

Based on research performed last year by Princeton University undergradu-
ates under the tutelage of professors Ramin Takloo-Bighash and Steven Miller,
Kuzmin’s Theorem appears to hold in many different forms for the continued
fraction expansions of prime roots of prime numbers (see [MT] for a summary
of some of the results). The behavior of these expansions truncated after the first
500, 000 digits comported with Kuzmin’s Theorem.

Motivated by these results, we examined the the first five prime roots of the
first 117 prime numbers and the same roots of the first 100 primes greater than
108, denote byT this set of testα. After having Mathematica compute the first
106 coefficients in the continued fraction expansion of eachα ∈ T , I determined
the maximum digit value and its position, as well as the values ofam−1 andam+1.
Here, I will present the most astonishing results and a segway into the theoretical
explanations governing our results.
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The average maximum coefficient value forα ∈ T was 16,058,523, which
Kuzmin predicts should occur with a probability of5.45 × 10−15 implying that
ai = 16, 058, 523 should occur once every1.83 × 1014 coefficients; however the
average position of the maximum digit (am) was m = 501, 381, and we note
501, 381 � 1.83× 1014. The largest observed coefficient value was in the expan-
sion of619

1
3 : the326, 959th digit’s value was2, 625, 830, 672, which occurs with

probability2.09 × 10−19. The fact that such large coefficient values consistently
occurr very early in the continued fraction expansions ofα ∈ T may imply the
continued fraction expansions of our testα generally converge to their true value
faster than otherα ∈ K. I now offer a summary table of the data sorted by roots;
note the “Min-Max Digit” is the lowest maximum digit value of all the testedα
for each root, or for each root the Min-Max Digit= min

α∈T
(Max. Digit(α)): (see

Appendix A for full results)

Category 3
√

α 5
√

α 7
√

α 11
√

α 13
√

α

Max Digit 2.63× 109 2.99× 108 2.01× 109 1.79× 109 1.21× 109

Pos. of Max 3.27× 105 6.74× 105 9.67× 105 2.22× 105 7.84× 105

Min-Max Dig. 2.09× 105 1.91× 105 2.47× 105 2.57× 105 1.94× 105

Pos. of Min-Max 6.47× 105 6.21× 104 6.42× 105 5.01× 105 1.35× 105

Avg. Max 2.17× 107 7.24× 106 1.89× 107 1.30× 107 1.94× 107

Prob. of Max 2.09× 10−19 1.62× 10−17 3.57× 10−19 4.51× 10−19 9.78× 10−19

Prob. of Min-Max 3.30× 10−11 3.95× 10−11 2.36× 10−11 2.18× 10−11 3.84× 10−11

While the results seem to vary across the different prime roots, Kuzmin’s The-
orem suggests if we were to consider a sufficiently largen, all the maximum
values should be relatively similar. A possible explanation for the ‘early’ occur-
rence of these large valued digits is the eventam = km (wherem is defined above)
will not reoccur for alli ≤ 1

Prob(ai=km)
. Because Kuzmin’s Theorem holds in the

limit, if we observer occurrences of the eventai = km in the first 1
Prob(ai=km)

= i
coefficients, then we expect the continued fraction expansion to possessr − 1 in-
crements of coefficients of length 1

Prob(ai=km)
, such thatai 6= km for all i in these

increments. However, due to computational limitations, we cannot conclude with
full certainty that the expansions of our testα behave in such a manner; therefore,
we cannot conclude that our data do or do not fall perfectly in line with Kuzmin’s
Theorem.

For α ∈ T , we set out to show empirically the digits of a continued fraction
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expansion can assume arbitrarily large values, and our data do not reflect a sys-
tematic bound for the values of the coefficients, which may imply the coefficients
of α ∈ T are unbounded. Observing very large digit values so early in the expan-
sion lends more evidence to the theory that the coefficient values in the continued
fraction expansions for almost allα ∈ [0, 1] can be arbitrarily large, which was
the expected result.

Because our testα were also elements ofK, we expected for at least one
α0 ∈ T , the maximum valued coefficientam(α0) = L, where Kuzmin expects
the eventai = L to occur once every106 coefficients. However, we showed
empirically the minimum-maximum valued coefficient had valueL = 191, 228 ⇒
Prob(ai = L) = 3.95×10−11, which means the eventai = 191, 228 should occur
approximately once every 25 billion coefficients.

Do prime roots of prime numbers consistently disobey Kuzmin’s Theorem
regarding the occurrence of large valued digits? Could the occurrence of such
large values suggest that continued fractions converge faster to their true valueα
than Kuzmin predicts? Or, could these large values indicate a faster convergence
rate for the firstn coefficients of a given continued fraction than for the tail of its
expansion? Does there exist a correlation between the position of the maximum
digit and the value of the maximum digit? Does there exist a correlation between
the value of the coefficient before/after the maximum valued coefficient and the
value of the maximum coefficient? Theoretical answers to these questions will be
provided below. The empirical results on the correlation questions can be found
in Appendix A.

4.4 Possible Theoretical Explanations of the Results
From Proposition 4.2.1, let

φ(n) = n1+ε, (4.4.25)

whereε > 0 is arbitrarily small. Intuitively, lettingφ(n) = n1+ε means that for all
but possibly a finite number of coefficients, the value (ki) of the coefficientai will
not exceed its position (i) almost everywhere. Comparing this theoretical expec-
tation to our results by replacingn with m in Equation 4.4.25, we note for almost
everyα ∈ T we observedam > m1+ε, where we recallm denotes the position
of the maximum valued coefficient in the expansion ofα to 106 coefficients and
ε > 0 is an arbitrarily small constant; but the inequalityan ≤ n1+ε should hold for
only a finite number ofan according to the Proposition. Thus, while our empirical
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results seem extraordinary, we can write them off as one of the finite violations
of the inequalityan ≤ φ(n), but some of our results do indeed comport with the
Proposition.

By examining the zero measure set ofα for which Kuzmin’s Theorem does
not hold (denoted byZ), we can determine if the behavior of our extraordinary
α ∈ T warrants classification of theseα as elements ofZ despite their Kuzmin-
like behavior shown in [Mi].

4.4.1 Kuzmin’s Measure Zero Set

The zero measure setZ, for which Kuzmin’s Theorem does not hold, has not
been described in an explicit form. However, based on empirical studies as well
as theoretical arguments, some of the subsets comprisingZ can be described. It
is important to note that while a setZi ⊂ Z, there may be someα ∈ Zi, for
which Kuzmin’s Theorem does indeed hold for most values ofk. Therefore, the
task at hand is to locate those setsZi ⊂ Z with the property that for allα0 ∈ Zi,
there existsk such thatProb(ai(α0) = k) = 0, or such thatProb(ai(α0) = k) 6=
log2(1 + 1

k(k+2)
).

The first zero measure subset ofZ is the setQ , or the rational numbers. Since
rational numbers have finite continued fraction expansion, the expansion termi-
nates, and we can actually determine the distribution of eachk for eachα ∈ Q .
More importantly, we can determine the maximum valued coefficientam(α) = M
in the expansion of eachα ∈ Q ; thus, for eachα ∈ Q there existsam(α) = M ,
such thatai(α) ≤ M ∀i andProb(ai(α) = k > M) = 0 ⇒ Q ⊂ Z. However, it
may be the case that someα ∈ Q appear to obey Kuzmin’s Theorem for a finite
number of valuesk throughout their continued fraction expansions; but theseα
cannot obey Kuzmin’s Theorem for allk.

The second zero measure subset (I) of Z is the set of quadratic irrationals.
This set has zero measure because it is a countable set. The quadratic irrationals
are included inZ because their continued fraction expansion is periodic (see [Ki]);
therefore for eachα ∈ I there exists a maximum value coefficientam(α) = M
(i.e. ai(α) ≤ M ∀i) andProb(ai(α) = k > M) = 0 ⇒ I ⊂ Z. Included in the
quadratic irrationals are the golden ratio1+

√
5

2
, the set ofα obtained in [Fi], and

all α with continued fraction expansions of the form[k, k, . . . , k], all of which are
zero measure sets because the number of elements in each set is countable.

By a similar argument given for the rationals, we conclude that the third zero
measure subset ofZ is the set (B) of α with bounded coefficients. Noα ∈ B can
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satisfy Kuzmin’s Theorem for allk because to eachα ∈ B there corresponds a
numberM , such thatai(α) < M for all i; as a result, for eachα ∈ B, we have
Prob(ai(α) = k > M) = 0 ⇒ B is not a subset ofK. We know from Theorem
4.1.3 thatµ(B) = 0, and thereforeB ⊂ Z.

Numerical tests that I conducted suggeste = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . .]
ande2 = [7; 2, 1, 1, 3, 18, 5, 1, 1, 6, 30, 8, 1, 1, 9, 42, 11, . . .] are also elements ofZ.
Also, Lang [La] showed that certain rational functions ofe are not in Kuzmin’s set,
and Dimofte [Di] showed empirically that any “linearly periodic continued frac-
tion retains its linear periodicity under a rational scaling or shift,” which implies
this set ofα are not in Kuzmin’s set. Additionally, we can include an uncountable
collection of irrational and transcendental numbers that do not obey Kuzmin’s
Theorem as elements ofZ without violatingµ(Z) = 0.

Finally, we are ready to add two additional subsets ofZ.

Proposition 4.4.1. Let γ(i) be a positive growing function ofi such that for all
positive integersi we haveγ(i) < g(i), whereg(i) grows with 1

log2(1+ 1
k(k+2)

)
. Let

G be the set ofα ∈ [0, 1] whose coefficients satisfyγ(i) ≤ ai(α) only finitely
often. ThenG ⊂ Z andµ(G) = 0.

Proof: Letγ(i) < g(i) for all i. Kuzmin’s Theorem (Equation 3.3.80) im-
plies forα ∈ K we should observeai(α) = k for some1 ≤ i ≤ 1

log2(1+ 1
k(k+2)

)
.

However, suppose that the digitsai(α) were bounded by the functiong(i) =
1

log2(1+ 1
i(i+2)

)
, which grows likelog2(i). Then asα ∈ K we expect to see the

eventai = k once for someg(i) ≈ k − 1 < i ≤ g(i) ≈ k, where we use “≈” be-
causeg(i) /∈ Z for all i. If the digits of an expansion are bounded byγ(i), then we
would expect to see the eventai = k once for someγ(i) ≈ k− 1 < i ≤ γ(i) ≈ k.
But since we we assumedγ(i) < g(i), we know thatγ(i0) ≈ k = g(i1) ≈ k
impliesi0 > i1.

Let N be an arbitrarily large integer, then there existsk0 such that Kuzmin
expects the eventai = k0 to occur once fori ≤ N , and this expected frequency
could be satisfied by the expansion whose coefficients are bounded byg(i) if
ai = k0 for someg(i) ≈ k0 − 1 < i ≤ g(i) ≈ k0; by construction, thei
corresponding tog(i) ≈ k0 is i = N . Using the samek0, there existsi = N

′
such

thatγ(N
′
) ≈ k0, but sinceγ(i) < g(i) we haveN

′
> N and the expansion whose

coefficients are bounded byγ(i) cannot obey Kuzmin’s expected frequencies for
digit valuek0.

If we let N → ∞, we observe such expansions cannot even satisfy Kuzmin’s
expected frequencies in the limit for allk because we can continue choosingN
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arbitrarily large, finding a correspondingk0, and arguing as above. Furthermore,
if we apply the argument above for infinitely manyN , then not even the finite
violations of the inequalityγ > an(α) can warrant classifyingα with such expan-

sions as elements ofK. Finally, since
∞∑

n=1

1
log2(n)

we have
∞∑

n=1

1
γ(n)

diverges, and

by Theorem 4.1.4 we concludeµ(G) = 0. 2

Can we strengthen the previous proposition by findingG
′ ⊂ Z, such that for

everyα ∈ G
′
we havean ≥ γ(n) infinitely often? The answer is no by Theorem

4.1.4 and Proposition 4.2.1.
Before we describe the final setZi ⊂ Z, we need to present an amazing The-

orem proved by Khintchine. I will not present the proof, but we must understand
that the proof of this theorem relies upon and is derived from Kuzmin’s Theorem.

Theorem 4.4.2.Let f(r) be a non-negative function of the positive integerr.
Further let positive constantsC andδ exist such that:

f(r) < Cr
1
2
−δ, (4.4.26)

for r = 1, 2, 3, . . .. Then for all numbersα ∈ (0, 1), with the exception of those of
a set of measure zero, we have:

lim
n→∞

1

n

n∑
k=1

f(ak) =
∞∑

r=1

f(r)
log
(
1 + 1

r(r+2)

)
log 2

, (4.4.27)

where the convergence of the series follows from the conditions imposed onf(r).
[Ki]

Let us assume that this theorem is true and letf(r) = log r for r = 1, 2, 3, . . .,
then the condition set forth in Equation 4.4.26 is satisfied. Thus, asn → ∞ the
following relation holds almost everywhere:

1

n

n∑
k=1

log(ak) →
∞∑

r=1

log(r)
log
(
1 + 1

r(r+2)

)
log 2

. (4.4.28)

If we raise each side of this relation as a power ofe and use the fact thatC log(a) =
log(aC), then we have:

n
√

a1a2 · · · an →
∞∏

r=1

{
1 +

1

r(r + 2)

} log(r)
log 2

. (4.4.29)
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We conclude for almost allα ∈ (0, 1) and asn → ∞, the geometric mean of the
first n coefficients tends to an absolute constant given by:

∞∏
r=1

{
1 +

1

r(r + 2)

} log(r)
log 2

= 2.68545. (4.4.30)

While we recognize that this mean is commonly referred to as Khintchine’s con-
stant, we will also call this constant Kuzmin’s expected geometric mean.

For allα ∈ K, Kuzmin’s Theorem gives a probability distribution of the digit
valuesk, so the area under this distribution should be equal to1. However, we

cannot compute the expected value ofk because the series
∞∑

k=1

k log2

(
1+ 1

k(k+2)

)
diverges. Since we cannot find the expected value ofk, we should next examine

what conclusions we can make regarding
n∏

i=1

ai for a typicalα ∈ K.

In the proof of Theorem 4.1.2 (see [Ki]), one would have reasoned ifg = eAn

thenµ(En(g) = {α ∈ (0, 1) : a1a2 · · · an ≥ g}) = 0. This inequality implies for
sufficiently largen and for almost allα we have:

a1a2 · · · an < eAn (4.4.31)

By manipulating Kuzmin’s Theorem and using Theorem 4.4.2 and Equations
4.4.30 and 4.4.31, we have forα ∈ K: [Ki]

∞∏
k=1

{
1 +

1

k(k + 2)

} log(k)
log 2

= 2.68545. (4.4.32)

Therefore, Equation 4.4.30 is particularly useful in expressing the expected value/behavior
of the digit values in an expansion of a typicalα ∈ K.

We are now ready to present our final subset ofZ.

Proposition 4.4.3.LetT denote the set consisting of allα, such that for an abso-
lute constantA > 1 and a sufficiently largen, we have:

qn = qn(α) < 2neAn. (4.4.33)

Then the set
(
(0, 1) \ T

)
= F ⊂ Z, whereZ is the zero measure set for which

Kuzmin’s Theorem does not hold.
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Proof: By Theorem 4.1.2, asn → ∞ the inequalityqn < 2neAn is satisfied
for almost allα ∈ (0, 1) (again, this set ofα is denoted byT ). By Theorem
4.4.2, asn → ∞ all α ∈ K satisfy the product relationship in Equation 4.4.30.
Combining these two results yieldsµ(T

⋂
K) = 1 because both setsT andK

have full measure. However, we will show there exists a subsetT
′ ⊂ T such that

T
′ 6⊆ K andµ(T

′
) = 0. If T

′
does exist, thenK ⊂ T and notT ⊂ K.

As a consequence Theorem 4.4.2, we have
n∏

k=1

ak = (2.68545)n for all α ∈ K

asn → ∞, whereak is thekth digit of the continued fraction expansion ofα.
Thus, by Theorems 4.1.1 and 4.1.2 we know there exist two setsT1, T2 ⊂ T but
that are not subsets ofK.

Let T1 be the set ofα whose coefficient product converges to a number less
than(2.68545)n asn → ∞ (for example considerα1+

√
5

2
). Clearly,T1 ⊂ T but

as a result of Theorem 4.4.2 (in particular Equation 4.4.30) we haveT1

⋂
K = ∅

soT1 ⊂ Z.
Let T2 be the set ofα whose coefficient product converges to some number

between(2.68545)n andeAn, whereA > 1. ThenT2 ⊂ T , but T2

⋂
K = ∅ by

Theorem 4.4.2, soT2 ⊂ Z. BothT1, T2 have zero measure becauseµ(K) = 1.
Sinceµ(K) = µ(T ) = 1 and there existsT1, T2 ⊂ T but that are not subsets

of K, we haveK ⊆ T .
Let F = [0, 1] \ T , which implies the coefficient product of everyα ∈ F

converges to a number greater thaneAn. By Theorem 4.1.2,µ(F ) = 0 and by
Theorem 4.4.2 (in particular Equation 4.4.30) we haveF 6⊂ K. ThusF ⊂ Z.

Collecting our results, we conclude there exists a zero measure setZ
′

=
T1

⋃
T2

⋃
F such thatZ

′ ⊂ Z.2
It is important to point outZ

′
does not necessarily correspond to the whole set

Z. Thus, the result of the previous proposition is to give another characterization
of the elements ofK. Furthermore,Z

′
provides us a way to test empirically if

α ∈ K simply by examiningα’s coefficient product. Although, in practice, we
convert this product to a sum by using logarithms. Now we can use Equation
4.4.30 combined with the previous proposition to ascertain if our previous data on
large valued coefficients are too extraordinary to be classified as Kuzmin numbers.
Intuitively, we expect theα with the largest maximum coefficient values will have
coefficient products greater than Khintchine’s constant, which would imply these
expansions converge faster in the first106 coefficients to their true values than
Khintchine predicts in Equation 4.4.30.

To put this convergence hypothesis to the test, I considered the fiveα with the
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largest maximum coefficient values in the first106 coefficients, and the fiveα with
the smallest maximum coefficient values over the same range. I then computed
the product of the first106 coefficients for these tenα:

106∏
i=1

ai. (4.4.34)

I computed the absolute constant in Equation 4.4.30 by evaluating the product
from r = 1 to r = 106 and fromr = 1 to r = 108, both of which yielded the
constant2.68545 (in actually implementing the program, I converted the product
into a sum using properties of logarithms). Later I confirmed this result with
Mathematica’s table of constants. Thus, we can test Kuzmin’s expected geometric
mean versus the observed geometric mean of the coefficients in the expansions of
the ten suggestedα. The coefficient products for these tenα are presented below,
along with Kuzmin’s expected geometric mean raised to the106th

power.

Number MaxV alue Product Act.−Kuzmin Act.−Kuz.
Kuz

KuzminExpected N/A 1.18× 10429017 0 0

SmallerMaximums
5
√

149 191228 8.60× 10429851 ≈ 8.60× 10429851 7.29× 10834

3
√

467 209076 7.88× 10429253 ≈ 7.88× 10429253 6.68× 10236

13
√

613 193849 4.23× 10429279 ≈ 4.23× 10429279 3.58× 10262

7
√

10000439 247303 2.90× 10429880 ≈ 2.90× 10429880 2.46× 10863

13
√

10001461 216987 1.19× 10428903 ≈ −1.18× 10429017 ≈ −1

GreaterMaximums
13
√

11 1214823489 5.73× 10428485 ≈ −1.18× 10429017 ≈ −1
11
√

337 1789321825 8.67× 10428560 ≈ −1.28× 10429017 ≈ −1
7
√

389 2009559864 1.59× 10429429 ≈ 1.59× 10429429 1.35× 10412

3
√

619 2625830672 5.21× 10428858 ≈ −1.28× 10429017 ≈ −1
13
√

10001207 809115083 8.66× 10429083 ≈ 8.66× 10429083 7.24× 1066

Two phenomena within these results are worth noting. First, six of the ten
coefficient products examined were significantly larger than Kuzmin expected in
both absolute and relative terms, which could be explained by considering the
possibility that continued fraction expansions converge faster to their actual un-
derlying number than Kuzmin expects in Equation 4.4.30. Perhaps, in the limit
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(i.e. n � 106), the empirically observed convergence rates eventually fall in line
with the theoretical convergence rates expected by Kuzmin, but this fact can be
shown best through more numerical experiments. A final possibility is the sixα,
whose coefficient products were larger than Kuzmin’s expectation, do not belong
to our Kuzmin setK. However, given the analysis in [Mi], it is difficult to believe
this explanation accurately describes the behavior of the data.

Secondly, four of the fiveα’s with the smallest maximum coefficients exhib-
ited coefficient product values that were significantly larger than the value pre-
dicted by Kuzmin. On the other hand, only two of the fiveα’s with the greatest
maximum coefficients had coefficient product values significantly greater than the
value expected by Kuzmin. This result is quite astonishing and suggests the fol-
lowing question: Are continued fraction expansions with an early occurrence of
a large coefficient value balanced out more than the expansions with a smaller
maximum coefficient value by a greater number of low valued coefficients (i.e.
k = 1, 2)?

The above data may further imply convergence toα is slower for thoseα with
an extremely large coefficient value in the first106 coefficients than for thoseα
with smaller maximum coefficient values over the same range. However, it would
still seem peculiar that continued fractions with the smallest maximum coeffi-
cients would converge significantly faster than those with the greatest maximum
coefficients. Perhaps, we can best explain this observation by concluding the set
of α, whose continued fraction expansions have a very large coefficient value
early in the expansion, is not approximated as well by rational numbers as those
α, whose continued fraction expansions have much smaller maximum coefficient
values over the same range (i.e.n = 106).

If we exclude allα ∈ Z, we question if irrationals whose coefficient values are
unbounded but remain relatively small (i.e. small relative to otherα being exam-
ined) actually converge faster to their true values than those irrationals whose co-
efficient values are unbounded and actually assume arbitrarily large values, given
an analysis ofn coefficients. If so, this could imply a subclassification of the ir-
rationals into those irrationals that can be represented well by a fraction and those
irrationals for which it is harder to represent as a rational number.

Linking this data analysis to our theory of unbounded coefficients is a bit dif-
ficult due to the lack of sufficient empirical research and theoretical constructs.
Some of the general conclusions we can draw from these data lead to more very
interesting topics of potential research.

To test the hypothesis that continued fraction expansions, with an early occur-
rence of a very large maximum coefficient value, are balanced out more than the

79



expansions, with smaller maximum coefficient values, by a greater number of low
valued coefficients (i.e.k = 1, 2) (hereinafter “the balancing hypothesis”), we
present the following experiment and results. For both groups ofα tested in the
previous experiment, we will determine if the number of coefficients with values
k = 1, 2, 3, or 4 significantly diverges from Kuzmin’s expectation for these values
of k, see Equation 3.5.85:
Number 1′s 2′s 3′s 4′s Total Low Digits

Kuzmin Expected 415037 169925 93109 58894 736965

Smaller Maximums
5
√

149 413998 170019 93285 59044 736346
3
√

467 414896 170057 93127 58995 737075
13
√

613 414216 170856 92950 58683 736705
7
√

10000439 415125 169654 92893 58305 735977
13
√

10001461 414672 170571 93194 59168 737605

Larger Maximums
13
√

11 415489 169796 93408 58839 737532
11
√

337 415310 170015 92811 58843 736979
7
√

389 415126 169549 92653 59264 736592
3
√

619 415352 170358 93073 58508 737291
13
√

10001207 415710 168921 93013 59074 736718

The following conclusions hold for expansions of lengthn = 106. We do not
observe a significant difference between the two sets ofα in the number of total
low valued coefficients; however, there is a substantial discrepancy between the
two sets ofα with regard to the number of observed1′s. Four of the fiveα in the
smaller maximum group have fewer1′s in their expansion than Kuzmin’s expects
for a typicalα ∈ K. Unfortunately, theα with more1’s than Kuzmin expects is
not theα, whose coefficient product is smaller than Kuzmin’s expected geometric
mean (determined in the last experiment).

On the other hand, everyα in the greater maximum group has more1′s in their
expansions than Kuzmin predicts. In fact, theα in the smaller maximum group
with the most1’s still has a fewer1’s in its expansion than in the expansion of the
α in the greater maximum group with the least number of1’s.

If we compare the average number of1′s of each group, we find the smaller
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maximumα have on average414, 581 coefficients with the value1, and the larger
maximumα have on average415, 397, which corresponds to a difference of816.
In other words, in the expansion of our testα to 106 coefficients, we observed
on average816 more1′s in the greater maximum group than in the smaller max-
imum group. Since the larger maximum set ofα consistently has more1’s than
the smaller maximum set ofα, we could infer theα in the larger maximum set
converge to their true values slower than theα in the smaller maximum set. There-
fore, we may be able to justify empirically our proposed subclassification of the
irrationals: the set of larger maximumα are ’less rational’ than the set of smaller
maximumα.

Two possible explanations could justify our results:
First, perhaps the difference is explained by Levy’s error term. We cannot

apply the error function found in Equation 3.5.100 becauses the ranges ofn are
significantly different. The value ofλ in Equation 3.5.100:

f(n) =
2.8870

k(k + 1)
× e−8.2476×10−7×(n−1) (4.4.35)

was governed by the behavior of the tails (i.e.1, 800, 000 ≤ n ≤ 2, 000, 000) of
the different cases ofk. Therefore, our bounding function will not apply to our
present data.

We can calculate the error function’s required value in order to explain the
disparate number of1’s by Levy’s expected error. All cases of the different num-
ber of coefficients with value1 must be explained by our error function, which
implies our limiting cases are5

√
149 with 413, 998 observed1’s and 13

√
10001207

with 415, 710 observed1’s. In other words:

[413, 998; 415, 710] ⊂ 415, 037± (error function value × 106), (4.4.36)

which gives an error function value of.001037. This value seems reasonable given
0.277 is the value of the error function in Equation 3.5.100 evaluated atk = 1 and
n = 2 × 106. Therefore, our set of testα appears to obey Kuzmin’s Theorem
with regard to the expected number of coefficients with valuesk = 1 or 2, but the
disparate products are still unexplained.

If in fact Levy’s error function could not explain our results, then consider the
possibility that the balancing hypothesis is true. Then if we see on average816
less1′s in the expansion of the smaller maximumα, we must conclude that these
816 coefficient values are at least2, where this average holds for an expansion
to 106 coefficients. Therefore, the smaller maximumα have an additional factor

81



in their coefficient product of at least2816 = 4.37 × 10245, which is substantial
given this is a lower bound of the additional factor. Since the total number of
small valued (i.e.k = 1, 2, 3, 4) coefficients are rougly equal between the two
groups ofα, we can infer that this lower bound is relatively close to the actual
additional factor. Moreover, because we observe an equal number of small valued
coefficients for both sets ofα, the additional factor’s value can range anywhere
in the interval[2816, 4816] ⇒ [4.37× 10245, 1.91× 10491]. If this phenonom holds
for a larger test group, then we possibly could believe the balancing hypothesis is
valid.

Without loss of generality, we takeA = 1 in Theorem 4.1.2; then for everyα
in the larger maximum set and for everyα in the smaller maximum set, the empir-
ically computed coefficient product is significantly less thane106

. Therefore, the
six α, whose coefficient products were greater than Kuzmin’s expected geometric
mean, do behave wildly in their first106 coefficients if this behavior is measured
by the expectation given in Equation 4.4.30; but this wild behavior is not so ex-
treme so as to characterize these sixα as elements of the zero measure set for
which Theorem 4.1.2 does not hold.

I will attempt to to provide some theoretical basis for the balancing hypothesis,
which states the occurrence of an extremely large digit value will be balanced out
by more than expected digits equal to1 or 2. Recall we have from Kuzmin’s
Theorem, Theorem 4.4.2, and Equation 4.4.30:

n
√

a1a2 · · · an →
∞∏

r=1

{
1 +

1

r(r + 2)

} log(r)
log 2

= 2.68545 (4.4.37)

Let K(l, n) be Kuzmin’s expected number of coefficientsai = l in an ex-
pansion of lengthn. Suppose for someα = [0; a1, . . . , ai, . . . , an, . . .] ∈ K and
for α’s continued fraction expansion ton coefficients, we haveai = k for some
i ≤ n, wherek satisfiesn � 1

Prob(ai=k)
. It is clear there exists someh ∈ N ,

such that(2.68545)h ≈ k, and from Equation 4.4.37 and our assumptionα ∈ K,
we knowα’s coefficient product must tend to(2.68545)n. Therefore, if Equation
4.4.37 holds approximately for alln, then the lengthn expansion ofα should
possess roughlyK(l, n) + p coefficients with valuesl = 1 or l = 2, or a mix
of both l = 1, 2, wherep ≥ h (equality holds if allp ‘balancing coefficients’
have value1). In other words, the coefficientai = k is balanced out by a greater
than expected number of coefficients with values1 or 2 so thatα’s coefficient
product tends to(2.68545)n. But since Equation 4.4.37 holds in the limit and
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there is always some error associated with truncated continued fraction expan-
sions, we may observe fewer balancing coefficients thanp, and it is unlikely we
will observe these balancing coefficients in the firstn coefficients, but they should
occur somewhere in the expansion ofα. Finally it is important to mention the
above argument does not preclude the frequent occurrence of large valued digits
ki close together, where the valueski are distinct and close is determined relative
to Kuzmin’s expected frequency of each distinctki.
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Chapter 5

Conclusion
This thesis has explored many facets of Kuzmin’s Theorem. The first two

chapters provided the necessary background to understand the theory in Chapters
3 and 4. All of the results presented in the early chapters were not absolutely
essential, but every result or proof builds the reader’s intuition about the behavior
of continued fractions; this was the main goal of the first two chapters.

The most theoretical and detailed concept presented in this thesis was Kuzmin’s
Theorem, and while Kuzmin’s Theorem is not elementary, I attempted to present
it in full detail while keeping the arguments self-contained (within this thesis).
The same Theorem was proved by Levy with a different error function. Although
I neglected to include Levy’s proof, I did provide a method for estimating bothA
andλ in his error function for a given set ofα over a range ofn. While A andλ
are absolute constants in theory, as soon as we attempted to assign numerical val-
ues to these constants, we saw that bothA andλ become functions of the rangen,
the beginningn, and the test set ofα. Given that these absolute constants became
functions of our data, I suspect we will encounter the same dilemna in answering
what the minimum values ofA andλ are such that Levy’s inequality holds for a
set of full measure.

Motivated by my work on continued fractions in 2003 [Mi], I wanted to find a
more rigorous definition of the zero measure setZ, for which Kuzmin’s Theorem
does not hold. In addition to the many known subsets ofZ, we used some theo-
rems presented in Khintchine’s work [Ki] to argue for the inclusion of two more
sets inZ.

However, in finding these additional subsets, we realized we were on the road
to finding Khintchine’s constant, which allows us to subclassify irrational num-
bers. Finally, there may be additional theory to support the balancing hypothesis
presented in Section 4.4.1, but more empirical work is needed to fully develop the
intuition needed to prove or disprove this hypothesis.
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Chapter 6

Appendix A
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