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Abstract

In this paper, | will reconstruct Khintchine’s presentation of Kuzmin’s Theo-
rem but with vastly more details and explanations. | will then use this formulation
to give a method of approximating the absolute positive constarasd A in
Levy’s error term:

Ind1+ 1o
N(E n ) . ! { k(k+2)} < A 67)‘(”71)-
In2 k(k+1)

| conducted a numerical experiment to estimate these constants given certain con-
ditions and will present the results in this paper.

Finally, there exists some guiding theory to describe the zero measure set of
a € [0, 1] that does not obey Kuzmin’s Theorem, but the existing theory has never
been fully summarized in a single exposition. | will provide this summary, and
I will present two additional sets, for which theory suggests Kuzmin’s Theorem
does not hold.



Chapter 1

Preliminaries

1.1 Notation

A continued fraction is the representation of a numbeg R and is of the
form:

a=ag+ (1.1.1)
a; +
as +

1

, 1
o —
an
If the continued fraction is infinite, then the expansion will not terminate with
a, like the expansion above does. Throughout this thesis we will also represent
a finite continued fraction witlug; a4, . . ., a,,] @and an infinite continued fraction
with [ag; a1, . . ..
Where appropriate, | will make the following notational distinctions:=
lag; ay, . ..] is the value of the continued fraction of arbitrary length, buts
the actual number being represented by the continued fraction, or the number
to which the continued fractiom converges. In other words, we attempt to rep-
resenta by a rational numbery = [ag; aq,...]. For example, ifo = =, then
x = [3;7,15,1,292,1,...] is the value of the continued fraction expansion of
arbitrary length that ultimately convergesio



1.2 Definitions

Many of the following definitions are found in [MT]:

Definition 1.2.1. Coefficients of a Continued Fractionif x = [ag; a4, ...], then
thea; are the digits or coefficients.

Definition 1.2.2. Positive Continued Fraction:A continued fractiorjag; a4, . . .|
is positive if eachu; > 0.

Definition 1.2.3. Simple Continued Fraction:A continued fraction is simple if
all a; are positive integers.

Definition 1.2.4. Convergents of a Continued FractionLet x = [ag; aq,. . .|,

and ifx,, = [ag; a1, ..., a,] = JZ—: thenf}’—: is then" quotient or convergent.

Property 1.2.5. Letk > 2, then the following is an increasing sequence for even
values oft and a decreasing for odd values/af

o D —1 Pr—2 + 2pi— - -
Pk—2 DPk—2 + Pk—1 Pr—2 + 2Pk—1 Pr—2 + QkPr—1 _ Pk (1.2.2)

Q-2 Qr—2+ Q-1 Qr—2+ 2qk—1 Qe—2 + apQr—1 Gk

Definition 1.2.6. Intermediate Fractions: The fractions standing betweé;g:—j
and% are called intermediate fractions.

Let us define:
S = [ao;al,...,ak], (123)

or a section comprised of the firstcoefficients of a continued fraction. Cor-
respondingly,r, is the remainder of the continued fraction beginning with the
coefficientay:

Te = [an; pgr, - -], (1.2.4)
wherer, terminates at,, if the continued fraction expansion is finite, or=
lag; ay, ..., a,] = |ag;as, ..., ax_1,7%]. If 7 €Xists, therr, > 1 becausey, > 1

for all &.

1.3 Finding the Quotients of a Continued Fraction
and Uniqueness

Although there exist other methods to determine a continued fraction’s coef-
ficient values, these algorithms build on the same idea behind the Lang-Trotter
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method [LT]. However, the “old-fashioned” method utilizes the Euclidean algo-
rithm and implementing this method yielad% unique continued fraction expan-
sion [MT].

Assume that is represented by a simple continued fraction:

1
r=a+— (1.3.5)

1
a; +

1
as + —

To find ao, we take the greatest integer less thafdenoted by{z]) to beay’s
value. Hence, the remainder of the continued fraction expansion represents the
valuer — [x]:

r—[r]=——m (1.3.6)
a; +

1
CLQ—I——

where by taking the reciprocal, we determinés value:

I’lz —= a1+
ag +

a3+—

:>[{E1] = Q. (137)

We repeat this process fos (i.e. Ty = m) and all subsequent; until our

expansion repeats, terminates, or a desiresdreached.

Since we assumed thais continued fraction representation was simple, the
only modification needed if < 0 is to allowa, < 0, then every other coefficient
value is a natural number. Assuming that a continued fraction possesses at least
m coefficients, it is also important to reiterate that> 1 for 1 < i < m because
0 < —[z;] < 1. If z; — [x;] = 0 then the remainder i8 and the expansion
terminates.

From this traditional method of finding coefficients, we note a very important

property:



Property 1.3.1. Let o be a rational number with a finite continued fraction ex-
pansion of length, thena = [ag; a1, .. ., a,] = [ag;ay, ..., ap_1] + i wherea;
is a positive integer for all < n.

For expositions on this see [MT]. We will now show thatrihas an infinite
continued fraction expansion, then the expansion is unique.

Theorem 1.3.2.Letx = [ag; ay, as, as, . ..] = |ay; a}, ay, as, . . .| be two continued
fraction expansions for, thena;, = a; for all <. Thus, a continued fraction
expansion is unique.

Proof: This proof is found in [Ki]. Let the conditions of the theorem hold,
namelyz = [ag; ay, as, as, . ..] = |ay; a}, ay, as, . . .], where the expansions can be
finite or infinite. Let: = 0, then since both expansions represenwve haven, =
[z] andd’y = [x], which impliesay = a,. Assumeq; = a; for all i < n. Then
by Theorem 1.4.2, we haye = p, andg; = ¢, for all i < n. From the definition
of r, and Theorem 1.4.8, we have= [ag;ay,...,a,] = [ag;a1,...,a51, 7],
which implies:

T = PnTn+1 +pn—1 - p;@rr;wrl +p,n71 _ pnr;L+1 + Pn—1 .

= / , (1.3.8)
dnTn+1 + dn—1 QnTnJrl + qn,1 Qnrn+1 + dn—1

therefore,r,, 11 = r,,,. But we know thatu,,.; = [r,+i] anda,_, = [r,.;] SO
ani1 = a,.,, and the two expansions are identical.

From this proof we conclude if’s continued fraction expansion terminates
with a coefficienta,, = 1, then two possible continued fraction representations
exist fora: one representation ends wiih = 1 and the other ends with), | =
a,_1+1. Onlyin this case is it possible for a number to have two distinct continued
fraction representations.

1.4 Properties of Convergents

Property 1.4.1. Let|ag; a4, - - ., a,,] be a continued fraction, then [MT]:

L. [ag;a1,...,a,] = lag;a1,..., 001+ —]
G,

2. [ag;ay, ... a,] = [ao;as, ..., Qm_1,[@m,- -, an)]- (1.4.9)



The following theorem will be integral in answering certain questions involv-
ing measure and continued fractions, especially with regard to a continued frac-
tion’s tail or interval of uncertainty.

Theorem 1.4.2.Foranym € {2,...,n} anda,, a positive integer, we have

1. po = ag, p1 = apay + 1, and p,, = @mPm—1 + Pm—2
2' QO = ]-7 QI = a17 and Qm - amqm—l + qm_Q. (1.4.10)

Proof: Use induction (see [MT]). Noteg, andg, are positive integers, and we
shall assume this when referencing them hereinafter.

This theorem provides a closed form expression for the denominator, the nu-
merator, and the convergents of the continued fraction expansionefR. In
fact, we will soon understand that this formula allows us to estimate howawell
approximates given N coefficients.

Lemma 1.4.3.For all ¥ > 0 we havep,¢, 1 — pn_1G, = (—1)"L.
Lemma 1.4.4.For all £ > 1 we havep,,¢,—2 — pn—2g, = (—1)"a,.
The next theorem is presented only to justify later the assumpgion = 1:

Theorem 1.4.5.1f a continued fraction expansion possesses:&nconvergent
Iq’—:, then{l’—z is reduced.

Proof: From Lemma 1.4.3 any common factoof both p,, andg, is also a
factor ofp,gn_1 — Pn_1Gn = (=1)""1. Soc|(—1)""! which impliesc = 1. O

This theorem implies the reduced valuewt [ag; ay, . . ., ai] is given by the
Eth convergentp—:. In the case the continued fraction expansion is finite, there
exist somen, for whicha = Z—” = .

Lemma 1.4.6.For all £ > 2 we have

_1\n—1
Pn _ Pt _ (1) (1.4.11)
dn dn—1 dnGn—1
L, (=1)"
Pn_ Po-z _ (Z1)"an (1.4.12)

dn gn—2 dndn—2



Proof: We know from Theorem 1.4.2 thgt> 0 for all 7, otherwise the con-
vergent would be undefined. Moreovey,> 0 for all 7, otherwise the expansion
would terminate. Therefore, we can divide Lemma 1.4.3,ay,_,, by which the
first relation of Lemma 1.4.6 follows. To obtain the second relation, we divide
Lemma 1.4.4 by),,q,_». O

Given a continued fraction representation of lengththere exsits amter-
val of uncertainty, which is the absolute difference betwe%ﬂnanda. Lemma
1.4.6 offers a closed form expression for the measure (or length) of the interval of
uncertainty given a continued fraction expansion of lengthAdditionally, this
lemma, combined with Theorem 1.4.2, allows us to determine how fast the mea-
sure of the interval of uncertainfy — 7;” -| falls asn becomes large. The next
theorem will show the measure of the interval of uncertainty decreases after each
coefficient.

Theorem 1.4.7.1f the coefficients to a,, are positive, then the sequeneg,
is an increasing sequence, the sequengg, ; is a decreasing sequence, and for
everym, Ty, < a < Toni1 (if n # 2m or 2m + 1) and wherer,,, = ’;—:

Proof: This proof is adapted from [MT]. We will prove this theorem ¢or
irrational. By Lemma 1.4.6 we know that

-1 2m m
oes — Ty = W Gom (1.4.13)
Q2mq2m+2

This equation holds for alln because:,, > 0 and the continued fraction ex-
pansion of an irrational number is infinite. Since the right hand side is always
positive, this implies that,,, 2 > x2,,. A similar relationship can be proved for
the odd indexed terms but the right hand side of Equation 1.4.13 will have the
factor (—1)?"*! instead of(—1)*". Since—1 is raised to an odd power for the
odd indexed terms, the differengg,, .3 — v9,,11 <0 = ZTopi1 > Tomys. We

must show now that,,,. ; —z2,, > 0, which is just another application of Lemma
1.4.6 takings' = 2m + 1. If n' is odd, thenz,, = % is less than all the preceed-

ing odd indexed convergents. 1if is even, therr,, = ZL Is greater than all the
preceeding even indexed convergents. Since> xs,, for evenn, Ty < Tomyt

for oddn, andzxs,, 1 > x2,, for all m, we concluder,, = Z—" (n > 2m + 1) will
always be in the intervalks,,,,, z2,,+1] for all n. O

The next few theorems will be used extensively in later chapters.



Theorem 1.4.8.For anyk (1 < k < n) we have:

a = [ag;ay,...,ay] :w. (1.4.14)
Qk—17Tk + Qk—2
Proof: Recall our definition af, implied [ao; a1, . . . , a,] = [ag; a1, - - ., ar—1,7k],

where we assume th%}:—i is the (k — 1) convergent of the continued fraction

on the right hand side of Equation 1.4.14, but this continued fractidh'srder
convergent’s value ig and given by Theorem 1.4.2:

Pk = Dr—1Tk + Pk—2 and qx = @17k + qr—2. O (1.4.15)
Theorem 1.4.9.Let[ay; a4, . . ., a,| be apositive, simple continued fraction. Then:

1.¢g, > ¢,y forall n>1, and g, > ¢.,_1 If n> 1.
2. g, > n, with strict inequality if n > 3. (1.4.16)

Note, a similar statement can be made for the numeratpis ©f the conver-
gents.

Proof: From Theorem 1.4.2we knay =1, ¢ = a; > 1, andq, = a,,¢,—1 +
Gn—o. For alln, we havea,, > 1 anda,, € N. Thus,a,¢n—1 + Gn—2 = ¢ > Gn_1.

If n > 1andg,_» > 0, then the inequality is strict.

The second claim is proved by induction. Fer= 0, the claim is clearly
satisfied agy = 1 > 0. Assumey,,_; > n — 1 for all i < n. Then from Equation
1.4.2, we havey,, = angn-1+ Gn-2 > Gn-1 + Gn—2 > (n — 1) + 1 = n, where
the last inequality is given by the inductive step. If at any point the inequality is
strict, then it is strict from that point onward. By inspection, it is easy to see that
g, > nforn > 3 because, = a,q,_1 + q,_2; lettingn = 4 anda,, = 1, we have
G42=34+2=5>4=n.0

The ratioq;’—f1 is often needed in establishing convergence properties of con-
tinued fractions.

Theorem 1.4.10.For anyk > 1, z = [ag; a1, - - ., ax, - - .|, and when convergents
Pe-1 Pk exist, we have:
qk—1 " 9k
dk
— = [ak, Af—1y .- ,al]. (1417)
qk—1



Proof: This theorem is easily proved by induction. ket 1, then the theorem
is trivially true becausé— 2 = a;. Now assumé;% = [ag—_1;a8-2,...,a1]
holds for alli < k. By comblnlng the relation;, = aquﬂ + gr_o established in
Theorem 1.4.2 with Property 1.3.1, we reason:

B =y B2 gy B, (1.4.18)
dk—1 dk-1 4k—2

Whereg’;—j is equivalent to terni in Property 1.3.1. By Definition 1.2.4 and our
inductive assumption, we conclude:

[ak;—gkl] = ar+[0;ap_1,...,a1]

k—2

ﬁfhzzmmwwwmym (1.4.19)
k—1

We note relationship in Theorem 1.4.10 is simply the reverse-efag; a, . . . , ax]
excluding the coefficient,.

1.5 Infinite Continued Fractions

We previously defined an infinite continued fractionras [a; a1, . . .], where
the expansion never terminates. An infinite continued fraction converges to a
valuea only if the following limit exists:

lim 2% — o < o0 (1.5.20)

n—oo qn

In other words, associated with each coefficienin the above continued fraction
is a convergen% and if the sequence of convergeﬁ%s qn . converges,
then the infinite continued fraction converges to vatueiowever |f the sequence
diverges, then the expansion does not converge to a value.

An analog of Theorem 1.4.8 exists for infinite continued fractions, in that we
can represent as follows:

- Pn—1Tn + Pn—2

B qn—1Tn + An—2
assuming both,, converges a8 — oo andg;, p; are positive integers for all> 0.
Recalling our definition of, and Theorem 1.4.8 we can write for irrational

!

pk—l% — Pk—2
a=lap;ay,...,1) = ———, (1.5.22)

Py,
Qk—177 — k-2
Ay

(1.5.21)



!/

where the right hand side of the equation is Affeorder convergent ang, = Z—k

If lim Z& exists, them; converges.

k—o0 4y

We proved in Theorem 1.4.7 that the value of a convergent of an infinite con-
tinued fraction is greater than that of any even order convergent and less than
that of any odd order convergent. This result will help us to prove later that the

convergents of an infinite continued fraction sati%dy— Z—: < qkqﬁ For the

time being, let us assume this inequality (the proof will come shortly) in order to
present the following theorem, which is powerful because it justifies using contin-
ued fractions to represent uniquely any R.

Theorem 1.5.1.To every real numbedt there corresponds, uniquely, a simple
continued fraction whose value is this number. This continued fraction terminates
if o is rational, or is infinite ifa is irrational [Ki].

Proof: We established = [ag; 1] = [ao; a1, - - ., an, Tny1] IN EqQuation 1.2.4,
wherer; is not assumed to be an integer. lsgt= [a], where[z| denotes the
largest integer not exceeding Then by the discussion on finding coefficients,
we havex = ag + % wherer; = [a;aq,...] > 1 (equality is not possible unless
la] = ap+1). So we haveTl—1 = a — qp < 1; thereforea,, is the largest integer
not exceeding,,: .

T'n+1
This process can be repeated indefinitely or until the expansion terminates.

If o € Q, thenr,, € Q for all n, and our process will eventually terminate after
a finite number of steps. To see this, consider the following: assume thap,
which implies that-, = 7, then we have

Tn = Qp +

(1.5.23)

a—ba, ¢

Th = n = = (1.5.24)
wherec < b is a strict inequality because — a,, < 1. Equation 1.5.23 yields
Tpil = ’g but if ¢ = 0 thenr, is an integer, in which case the expansion would
terminate; so assume that# 0. Thenc < b andr,,; has a smaller denominator
thanr,; as a result, after a finite number of steps in the sequenes, ..., we
must arrive eventually at, = a,. Hence, the continued fraction expansion ter-
minates witha,, = r, > 1, where the inequality is strict because< b. By the
fact thata = [ag; 7] = [ao; a1, - . ., an, Tny1], We can conclude that is indeed




represented by a terminating continued fraction. Uniqueness of the terminating
continued fraction was proved in Theorem 1.3.2.

If « is irrational, thenr, is irrational for alln, and the process delineated
in Equation 1.5.24 never terminates. We wiiitg; a4, . .., a,| = f}’—: where by
Theorem 1.4.5(p,,, ¢,) = 1. From Theorem 1.4.8 for irrational, we have:

o = Pn—1Tn + Pn—2
Gn—1Tn + Gn—2
but & _ Pn—10n + Prn—2
dn Gn—10n + qn—2
Whence o — pn _ (pn—lqn—2 - qn—lpn—Z)(rn - &n)
dn (Qn—lrn + Qn—Q)(Qn—lan + Qn—2)
N 1
;»‘a—p— < <— (1.5.25)
An (Qn—lrn + Qn—2)(Qn—1an + qn—2) qn

Becauseq— — 0asn — oo, we have”“ — «, Which implies the value of
the infinite continued fraction is. Agaln "we previously showed uniqueness in
Theorem 1.3.20

This theorem is important because it enables us to distinguish rational num-
bers from irrational numbers simply by examing the lengths of the their continued
fraction expansions. We concluded in Theorem 1.3.2 that the continued fraction
expansion of an irrational number is unique. Therefore, when empirically analyz-
ing properties of a continued fraction expansion, we need not worry other possible
results exist.

In summary, every number can be represented uniquely as a continued frac-
tion. If a € Q, then the continued fraction expansion terminates; on the other
hand, ifa is irrational, then the continued fraction expansion is infinite.

The next theorem is a natural consequence of the definition of an infinite con-
tinued fraction’s value.

Theorem 1.5.2.1f an infinite continued fraction converges, then all its remainders
converge. Conversely, if at least one remainder of the infinited continued fraction
converges, then the continued fraction itself converges.

Proof: This proof is an application of Equation 1.5.20 coupled with Theorems
1.4.2 and 1.4.8. For details see [Ki].

A final result will be sufficient to build a strong intuition for infinite continued
fractions.
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Theorem 1.5.3.For a simple infinite continued fractiofao; a4, . . .] to converge,
it is necessary and sufficient that the serj}e§. | a,, should diverge.

| will present the proof of this theorem but will not consider the question of
convergence of an infinite continued fraction when the sériés, a,, converges;
however, the argument is worth reading in Khintchine’s exposition [Ki].

Proof: As a result of Theorem 1.4.7 and Equation 1.5.20, we note:

lim 227 — gim P2mtt (1.5.26)

m=—00 (2m Mm=00 (om+1
is a necessary and sufficient condition to guarantee convergence of an infinite
continued fractign tax. Recall from Lemma 1.4.6 that for a > 1, we had
% — Z’—: = %; thus, an infinite continued fraction converges if:

Qrqr—1 — 00 ask — oo. (1.5.27)

This condition is both necessary and sufficient to guarantee an infinite continued
fraction’s convergence. Now, we will show if the serles. | a,, diverges, Equa-

tion 1.5.27 is satisfied. We label= min|qy, ¢1], which impliesg, > ¢ for all
nonnegativek becausey, > ¢, for all & > 2 by Theorem 1.4.9, and recall

qr = qr_1ax + qx_2 by Theorem 1.4.2. Collecting our results yields:

Qe > Qu2 +car, (k> 2)
k
= Qor = QO+CZCLG

n=1
k

and gar+1 > ¢1 + CZ A2n+1

n=1
2k+1

:>Q2k+CZ2k+1ZC]0+CI1+CZCLn

n=1

k
= Gk + qr—1 > Czan, (1.5.28)

n=1

where the last inequality holds for @l > 0. Line 2 is a repeated application
of line 1, and line 4 is the sum of lines 2 and 3. Finally, line 5 results from
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recognizingy, ¢; > 0. From this last equation, we note at least one of the factors
in the produciy,q,.—: is greater thar§ Zﬁzl a,, but by line 1 of Equation 1.5.28
the other factor cannot be less tharso we have for alk,

5 k

C
1> 5> (15.29)

n=1

Therefore, so long as the series diverges, we havethat;, — oo ask — oc. O

1.6 Advantages and Disadvantages of Continued Frac-
tions

The power and utility of continued fractions is best explained by Khintchine
[Ki], and | will summarize some of his key points. First, we can represent every
numbera € (0, 1) as a continued fraction, and we can computevalue to any
desired precision; this property is especially useful in the cageQ. In the next
chapter, we will develop upper and lower bounds on a continued fraction’s ability
to approximatey, given the expansion has length

Many properties ofy are revealed in its continued fraction expansion. For
example, if a number is irrational, then the continued fraction never terminates.
Moreover, Khintchine [Ki] comments: “Whilst every systematic fraction is cou-
pled to a definite radix system (i.e. the base of a number system) and therefore
unavoidably reflects more the interaction of the radix system and the number than
the absolute properties of the number itself. The continued fraction is completely
independent of any radix system and reproduces in pure form the properties of the
number which it represents.” Its independence of a radix system and the property
that we can compute’s value to any desired precision make continued fractions
extremely practical in both theoretical and practical settings. In fact, we will see
shortly that a continued fraction gives the best possible rational approximation of
an arbitrarya € (0,1).

There does exist one major disadvantage that was partially mentioned at the
beginning of this section. Large expansions require considerable computational
capital relative to decimal expansions. Furthermore, continued fractions do not
lend themselves easily to arithmetical operations. For instance, the difficulty in
adding, subtracting, multiplying, and dividing two or more continued fractions is
often prohibitive, especially for large expansions.

12



Therefore, as a theoretical construct, continued fractions are extremely impor-
tant, and computations involving a single continued fraction are usually cheap.
But even basic manipulations of multiple continued fractions are too difficult to
justify their use in such applications.
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Chapter 2

Convergence and Approximation

2.1 Discussion and Bounds

The power of a continued fraction lies in its convergents ability to provide the
best possible rational approximation to an irrational nunabgiven denominator
q. Assuming that: = [ag; a1, as, .. .| converges to a value, the best rational ap-
proximations are provided by evaluating the converggfmsf x. By understand-
ing how quickly the convergents af converge tax, we can give exact answers
to many questions involving measure and continued fractions. For example, what
is the measure of the interval of uncertainty given a continued fraction expansion
of length N? The answer to this question was given by Lemma 1.4.6, and the

measure of the interval of uncertaintyu{[flﬁ, Z—n]> wheren is assumed to be
odd andu denotes the Lebesgue measure. Hereinafter, | will assume the reader
has a working knowledge of Lebesgue measure theory.

In chapter 4, we try to explain and classify the behavior of continued fraction
expansions with a large valued digit (i®.= k;, wherek; > 0). A large coeffi-
cient valuek; directly affects the convergence ratewof= [a; a4, . . ] to its value
«; therefore, only through a proper understanding of continued fraction conver-
gence will we understand the implications of observing a large coefficient value
k;. With our knowledge of convergence, we can address questions such as: do
continued fractions converge tofaster than Kuzmin predicts? Finally, an un-
derstanding of convergence is necessary in order to follow the proof of Kuzmin’s
Theorem.

Our first theorem will present upper and lower bounds‘ for- Z—:

14



Theorem 2.1.1.For all £ > 0 and for an irrational numbery, we have:
1

1 ‘ Pk
— < |
@ (qr + Qry1)
Proof: First we derive the lower bound. A consequence of Definition 1.2.6 is
the intermediate fractioglzi‘;’ﬁ is enclosed betweegilf anda (see [Ki]). There-
fore:

(2.1.1)

1
’a_@‘ o |PE T PerL PE (2.1.2)

pk‘ o
T G+ W1 @l G+ o)

An equality sign is not possible because then- I;ZE:E = ’;:ﬁ which im-
plies thata, . » = 1; in this caseqn would have a terminating continued fraction
expansion, but we assumado be irrational.

Now we develop the upper bound by following the exposition in [MT]. Con-
sider the continued fractiam = [ag; a1, . . ., an, ni1, .. .| = [ao; a1, ..., an, a;ﬂ],
wherea;ﬂrl > a,.1 and is irrational. So we write:

n a;l n + n— n 1)
’a_p_ _ [Pt P pa| | (1) , (2.1.3)
dn an+1Qn + gn—1 dn ann+1
whenceg, ., = a,,1Gn + gn1 > Gni1Gn + Gu1 = gns1. Therefore:
n —1)"
o= 22) = (i
dn In4,41
but Qq/@+1 > Gyl
n 1
so la—Pn . O (2.1.4)
qn Gndn+1

2.2 Convergents as Best Approximations

Definition 2.2.1. The rational numbef (b > 0) is a best approximation ta &
(0,1) if every other rational fraction having the same or smaller denominator
differs froma: more thang, or formally for0 < d < b, and§ # 5, we have:
‘ c
a{ J—
d
We call a best approximation of the first kind. [Ki]

> ‘a - %’ (2.2.5)
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Definition 2.2.2. The rational numbet, (b > 0) is a best approximation of the
second kind tex € (0,1) iffor 0 < d < band for # 5, we have: [Ki]

|doe — ¢| > |bar — al. (2.2.6)

Every best approximation of the second kind is also a best approximation of
the first kind, but the converse does not hold. To see that the converse does not
hold, consider that is a best approximation of the first kind fobut ? is the best
approximation of the second kind.

We will merely state the following theorems, all of which justify our exclu-
sive focus on convergents as the means, by which unbounded coefficients affect a
continued fraction’s value.

Theorem 2.2.3.Every best approximation of the first kind to the numbeis
either a convergent or an intermediate fraction of the continued fraction which
represents this number. [Ki]

Theorem 2.2.4.Every best approximation of the second kind is a convergent.
[Ki]

The converse of the previous theorem is also true:
Theorem 2.2.5.Every convergent is a best approximation of the second kind. The

only trivial exception is given by: [Ki]

1
a = Qg + 5 (227)

2.3 Absolute Difference Approximation

We will now attempt to refine our estimate of the differeli\@e— f]’—: . Recall

from Theorem 2.1.1 thgtv — ‘ < q2, where we use the faqt, < g,4;. This
section will answer if we can replace the right hand side of this inequality by
some other function af,,, which would result in a smaller upper bound théfn
Whatever refinement we consider, it must apply taxadind hold for most. As
Khintchine [Ki] described the problem, how small cabe such that we cannot

find ana € (0,1) satisfying‘a— Pn) < 1q—‘%€ for only a finite number of.. In other

words, the inequalit*oz
for infinitely manyn.
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Theorem 2.3.1.If the numberx possesses a convergent of order- 0, then at
least one of the two inequalities:

‘ Dn 1
R 2q2

Pn—1 1 2 3 8
Oé_qnq < 2q21 (2.3.8)

holds.  [Ki]

Proof: We showed as a consequence of Theorem 1.4. 7oztrmt[”" L, bel
for oddn, but whenn is even, the endpoints of the interval are swﬂcheé Now
consider the sum:

1 1 1
+

Pn Pn—1
_ — < — -
Gnn—1 202 2¢2_,

‘ Pn
o —
4n

‘ Pn— 1‘__
Gn—1

(2.3.9)

Gn Gn—1

The last inequality holds because the geometrlc mea%g\ ahd (i.e. o 1)
is less than their arithmetic mean (|.{;;3 + 2q ——). Equallty Would be possible
onlyif g, =¢q,_1. O

The following theorem is in a sense the converse of the theorem just proved.

Theorem 2.3.2.Every irreducible fractior! satisfying the inequalitJ( -7
5z IS a convergent of the number  [Ki]

<

Proof: | will not provide the proof because we do not need this theorem’s
results, but the proof is found in [Ki].

In Theorem 2.3.1, the smallest constant we could find &vas % which is
better than our starting bound by a factor of one-half, but this choicedofes
not hold for alln. The next two theorems along with Liouville’s Theorem wiill

provide the “supremum” for the dn‘feren#&

The following theorem is very important, but the proof will not shed much
light on our discussion so | refer the reader to [Ki].

17



Theorem 2.3.3.1f o« possesses a convergent of order- 1, then at least one of
the three inequalities below will be satisfied:

‘ Pl _ 1
a _——
Pn—1 1
o — <
Pn—2 1
o — S — (2.3.10)

The results of this theorem are profound because they will be used to prove
€= \L@ is the smallest constant, such that— ’q’—z < é holds for allo and for an
infinite number ofr (but not alln). This claim is valid because for any constant
smaller thare = —, we can find am such that‘a — 5| > g2, namelya = L+v/5

o . . P _ ; 1.
ora =[1;1,1,1,...]. For thisa we have‘a o = A wheree,, is the

uncertainty in any approximatioﬁ- of a € R, ande — 0 asn — oo. Thus, if

>éfora:ﬂ5.

,then’a— En
dn 2

1
c < 75
Theorem 2.3.4.For anya € R the inequality‘a — %" <z has infinitely many

solutionsp,q € Z (¢ > 0) if ¢ > % On the other hand, if < -, then itis

possible to find amy, such tha#a — ’5” <z has no more than a finite number of
solutions. [Ki]

Proof: This proof is taken from Khintchine’s exposition [Ki]. We showed the
second statement of the theorem by noting for any \/LB we can taken =

1;1,1,1,1,...] = %5 which satisfiega — Ia" > 5 The proof of the first

statement relies on Theorem 2.3.3. kebe irrational, which implies an infinite

continued fraction expansion. From Theorem 2.3.3, we kby)w Bal < \/gqu is

satisfied at least once in every three convergents for evergr, but sincex ¢ Q,

this inequality is satisfied infinitely often. Thus the first statement is proved for
irrational . Now leta € Q, thena can be represented as= 4. Assuming

the expansion ofv at least has digita, as, a3, then this expansion possesses

at least three convergents. From Theorem 2.3.3, we know at least one in every
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three convergents satisfigs — §| < 5 S0 Iet§ be the convergent satisfying this
inequality and takg = nd,p = nc, (n =1,2,...). O

The previous theorem states rigorously that we cannot find an approximating
constant smaller than\% such that

’a—g‘ <= (2.3.11)
q q

holds for alla and allg. However, we will see in the next theorem that no matter
how smallc may be, we can always find an € R, such that the inequality in
Equation 2.3.11 is satisfied.

Theorem 2.3.5.Define a function of such that for allg, f(¢) > 0. Then regard-
less of the behavior of(q), we can find an irrationaty, such that the inequality:

‘oz . g’ < f(q) (2.3.12)

should possess infinitely many solutigng € z, (¢ > 0).

Proof: By controling the behavior of the coefficients of a continued fraction
expansion, we can construct ansuch that the claim of the theorem is satisfied.
We assume is irrational, and we impose the following restriction enfor all
n=1(1,2,...):

1
quf(Qn) .
Note that we can find infinitely many satisfying Inequality 2.3.13. Therefore,
for anyn > 0, we have the following:

Qg1 > (2.3.13)

) Dn 1 1
o — — =
dn Undnt1  n(Ang1Gn + Gn-1)
< 5 < f(an), (2.3.14)
Ant14y,

where the last step is justified by Inequality 2.3.03.
The next argument will help us understand the effects of a large valued coef-
ficient onz’s convergence tax (see Chapter 4). Far irrational, we proved in
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Theorem 2.1.1;

1 1
_— < a—-2| <«
Qn(Qn + Qn+1) an GnQn-+1
= 1 < Pn < 1
a —_
q%(an+1 + 1+ q:;_;l) qn q%(an+1 + q:;;l)
1 1
S5 < |a— 2 < : 2.3.15
Gn(ans1 +2) n Gani1 ( )

where the left hand side of the second line is a result of expanding line 1, factoring
g, out of the denominator, and then utilizing the deflnltlon"—@fl from Equation
1.4.10. The right hand side of line 2 is a consequence of Ied;umg = ¢p_1 +
Inanyi1, €xpanding, and then factoring out of the denominator. The last step is
basic algebra.

If a,.1 = k,.1 for k, ., arbitrarily large, then the convergeit becomes very
close toa in Equation 2.3.15. This large value bf,; will increase the precision
of z’s approximation ofa. because all convergents subsequenhcare closer
to o than 2z is (see Theorem 1.4.7). In other words, the result of observing a
large coeﬁﬂuent valué,, ., is a large reduction in the measure of the interval of
uncertainty.

Extending our analysis, irrationals, whose continued fraction expansions are
characterized by the frequent occurrence of large valued digits, are approximated
well by rationals because the convergeﬁsconverge tax very quickly. How-
ever, it may be the case that whose expansmn has only a few extremely large
valued coefficients and also is replete with small valued coefficients, is not ap-
proximated by rationals better than, whose expansion has no extremely large
valued coefficients and far fewer small valued coefficients. The worst approxi-
mated irrational is obviously = [1; 1,1, .. .], which explains why this irrational
is always the limiting case for making generalized statments about continued frac-
tion convergence.

The next theorem extends our previous results, in that irrationals with bounded
coefficients cannot be approximated to a degree better&ﬂjdnnwever, the set
of sucha has zero measure (see Chapter 4). On the other hand, irrationals with
unbounded coefficients can be approximated to a degree far bettq}%than

Theorem 2.3.6.For every irrational number with bounded elements, the in-
equality:
)a——( <L (2.3.16)
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has for sufficiently smalt no solution inp, ¢ € Z (¢ > 0). Conversely, for every
a with unbounded elements, the above inequality is satisfied for arbitrary),
by infinitely many integers, ¢q.  [Ki]

Proof: The proof of this theorem is found in [Ki]. First, we will prove the
second assertion. Let> 0 be arbitrary. Since the continued fraction expansion
of an irrationalw is infinite and we assume the coefficients are unbounded, then
we can find an infinite number of valueswotuch that,, ., > % Thus, from the
last inequality in Equation 2.3.15, we have for infinitely many

< —. (2.3.17)

Now, we prove the first assertion by finding a sufficiently seauch that
there exists n@, ¢ € z satisfying Equation 2.3.16 for an irrationaivith bounded
coefficients. Because has bounded coefficients, there exigt > 0, such that
a, < M for all n € N. SubstitutingM for a,, in Equation 2.3.15, we observe:

L (a _bn (2.3.18)

Gi(M +2) Gn

for anyn > 0. Now, letp, ¢ be arbitrary integers and set the indexaccording

to the conditiong,_; < ¢ < ¢,. By Theorem 2.2.5 and by the fact that all best
approximations of the second kind are also best approximations of the first kind,
we conclude all convergents are best approximations of the first kind. Therefore,

< ‘a — § forall ¢ < ¢,, and we argue:

qn

1

Dn
> -
@2 (M + 2)

=
an

v

o — —

‘ p
q

= s () ()

_ 1 n—1 2
@M +2) <anQn1 + Qn2>
1 1 1
PO 12) (an+ 12~ (M1 2)(M + 12

1
h : 2.3.1
= choose ¢ < M+ 2)(M 1172 (2.3.19)
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The first equation is justified by Theorem 2.2.5 and Equation 2.3.18. The inequal-
ity in the second line is justified by our construction of the indeX he third step

is simply expandingy,, according to Theorem 1.4.2. The fourth line is obtained
by multiplying the numerator and the denominator of the second factor in line 3
by - = - me 2 and by recognizing Theorem 1.4.2 gl\,@s— < 1. To arrive

dn—1

at the last mequallty in line 4, we notg, < M. Thus, forc satisfying the final
inequality, there does not existq € 7, such thaqa — 5‘ <z is satisfied. O
We foundc = % is the smallest constant such that Equation 2.3.11 holds for

all « and for most:, but can we improve the degreegifin this same equation (i.e.
can we find a bound in Equation 2.3.11 of the fo(ffft)? The answer happens to
be no.

Theorem 2.3.7.Let C, ¢ be positive constants. L&t be the set of all points
« € [0, 1], such that there exist infinitely many coprime integekgsatisfying:

C

- q2-‘r€

(2.3.20)

L

Then the measure of S is zero, denoteg () = 0. [MT]

Proof: This proof is an excerpt from [MT]. Le¥ > 0 and defineSy to be
the set consisting of all the € [0, 1], such that there exisis ¢ € Z andq > N,
for which:

)a—ﬂ < (2.3.21)

q — q2+e'

Since we defined to be the set oft for which there exists an infinite number
of coprime pairs op, ¢ satisfying Inequality 2.3.21, we havedf € S thena €
Sy for all N. Otherwise,a has only a finite numbeN of denominators, for
which the inequality can be made to hold, and because there are at rrokt
choices ofp for each denominatay, the maximum number of coprime pairs of
p, q satisfying Inequality 2.3.21 is finite. Therefore, it suffices to show that as
N — o0, u(Sy) — 0.

We must estimate the size 8§ . Let§ be given, and consider the measure of
the set of allx within qﬁe of § This set is an interval:

P C p C
Iy = <a TP + q2+€>’ (2.3.22)
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and the measure of this intervalfﬁ—e. Now, let I, be the set of allv € [0, 1]

within qz% of all rational numbers with denominatgrthis set will be the sum of
at mosty intervals. Then we have:

q

I, < UIp,q
p=0
L 2C
= u(ly) < ZN(Ip,q) =(¢+ 1)q2+€
p=0
_ gt120 40 (2.3.23)

q q1+e - ql—i-e
where the last inequality holds because 7z and1 < ¢q. Now we can consider
1(Sn):

p(Sy) < > )
q>N

i A0

1+e

q>N q -

o N (2.3.24)
€
We know that the series converges because). The first step is justified by the

definitions ofSy and/,. Applylng Equatlon 2.3.23to line 1 yields line 2. The last
= 1N~ Thus asN — oo,

IN

step is justified by recogmzm@ 1+e
q>N q=N

w(Sy) — 0= u(S) — 0 becauses C Sy. O

The previous theorem implies that except for a set of zero measure, one cannot
find a rational numbeg that approximates: better thanq%. See Theorem 2.4.1
for a more general result.

2.4 Liouville’s Theorem

In this section we present Lioville’s Theorem, which allows us to define fam-
ilies for the numbers examined in Chapters 3 and 4. In Chapter 3 we examine
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degree 3 algebraic irrational numbers, and in Chapter 4 we analyze algebraic num-
bers of degrees 3,5,7,11,13. Additionally, Liouville’s Theorem will provide one

final approximation of the diﬁeren#@ — § .

Theorem 2.4.1.Corresponding to every algebraic number of degie¢here ex-
ists a constan€” > 0, such that for any integers ¢ (¢ > 0), we have:

‘04 - g‘ > q% IKi] (2.4.25)

Proof: The proof is not included because it does not add any additional intu-
ition or insight into the properties of continued fractions, on which | am focusing.
See [Ki] or [MT] for the proof.

This theorem implies an algebraic numhercannot be approximated by a
rational fraction to a degree of accuracy exceediisgalgebraic degree. An inter-
esting result of Liouville’'s Theorem is a method for constructing transcendental
numbers.

A summary of the method is as follows: €t > 0 be arbitrary and letn be
any positive integer. If satisfies

a—=|<— (2.4.26)
for somep, ¢, thena is transcendental. After the coefficients ao, .. ., a, have

been chosen, take,,; > ¢"~!. Then we have:

1 1 1
< < (2.4.27)

2 1’
InGn+1  QA0ny1 q0F

‘a—& <
dn

where the first inequality is a result of Theorem 2.1.1. The second inequal-
ity is a result of Theorem 1.4.2, and the third inequality is from the condition
ani1 > q"'. Thus, for sufficiently large values af, Inequality 2.4.26 is sat-
isfied for arbitraryC' andm. Now, we can reason if's continued fraction ex-
pansion possesses ‘too many’ extremely large valued coefficientsythey be
transcendental.
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Chapter 3

Kuzmin’s Theorem and Levy’s
Improved Bound

This chapter will provide the crux of the theory needed for this thesis. |
will present some necessary definitions and lemmas, Kuzmin’s Theorem, and
then Levy’s refinement of Kuzmin'’s Theorem. However, the main focus of this
chapter will be to trace the derivation of not only the closed form expression for
Prob(a,, = k,), wherea,, is a function ofa. but we will denoteu,, () simply as
a,, but also the error estimate for this expression. As we derive this expression,
we will obtain some results that can explain our empirical observations, which are
presented in this chapter and in Chapter 4.

3.1 The Gaussian Problem

Let/(a, N) denote the length of the continued fraction expansion of the num-
bera expanded taV coefficients. Because the expansiomoE Q is finite, we
can assume is irrational without any loss of generality. In a letter dated Jan-
uary 30, 1812, to Laplace, Gauss mentioned that he was unable to find a closed
form solution to the following problem: le¥/ € [0, 1] be an unknown, for which
all values are either equally possible or given according to some distribution law.
Then convertV/ into its simple continued fraction form:
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M=— (3.1.1)
a1 +

1
a2+—

We ask what the probability is when stopping the expansion at a finitedgrm
that the tail

M = : (3.1.2)

1

Ap42 + —

An+41 +

will represent a numbeB € (0,x), wherez < 1? We label this probability
P(N,z), and if all values of\/ are equally probable, theR(0,z) = x. Gauss
was able to prove a§ — oc:

,  log(1+ )
but for largeN, Gauss wanted to find an explicit estimate for the difference:

_ log(1+ =)

P(N,2) log 2

(3.1.4)

In 1928, Kuzmin was the first person to estimate this difference. In his proof,
Kuzmin assumed/ is uniformly distributed on the interval, 1]. In 1929, Levy
used an entirely different approach to estimate the difference in Equation 3.1.4,
and he gave a better estimate of the difference than Kuzmin did.

3.2 Intervals of Rank n

3.2.1 Definition and Intuition

Recall we used the Euclidean algorithm to find the coefficients of a continued
fraction expansion. This method yielded= [1], where[z] is the smallest integer
not greater tham. Therefore, we note; = 1for1 < é <2= % < a < 1,where
the strict inequality is due to the greatest integer functibnWe can proceed in
this fashion, such that we arrive at the general case:
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1 1
al_kfork<_<k+1:>k’——|—1< ]{j

A notable property aboui; is it assumes a constant value on the interval

(75> #), and ifa; = k, thena € (=5, 1]. Secondlyg, is discontinuous at every

integer. Lastly, the area under thgfunction is given by:

/al(a) da = 0. (3.2.6)
0

This result follows from recognizing each inter\(%ll— 1] is a rectangle of width

L _ _1_and height, so writing the divergent integral as an infinite series yields:

k k+1
1
/ (@) da = oo = Z (__k;—+1> Zk+1 (3.2.7)
0

Definition 3.2.1. Leta; = k, wherek is an interger, ther{-, +] is an interval

k+1° k
of rank one, which implies € (k+1’ .

(3.2.5)

We can perform the same procedure deby fixing a; = k£ and takinga, =
[r2], wherer, can take any value ifi, co). Lettinga; = k anday, = h, the interval
of rank two corresponding to numbers whose first two digitskaaad’ is given

by:

(7 i I +1,++1)‘ (3.2.8)

Assuminga; = k is given, the intuition of the equation above is that after the
value ofa, is ascertained, we have “shortened” the interval, in whican reside

1
(I €.ac <k+i’k+n+1)>.

Comparing the interval of rank one with the interval of rank twok as oo in
the interval of rank one, we have— 0. Thus, ask — oo, the rank one intervals
form a sequence proceeding from right to left and are indexe#; likis is the
case for all intervals of rank, wheren is odd. On the other hand, let = k be
fixed, then as — oo in the intervals of rank two, we have — % or the larger
endpoint of a rank two interval. This results implies that/dagven, the intervals
of rankn form a sequence that runs from left to right. The formal expression
giving the directions of these sequences is provided by considering:
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a—Pr_ (=1) (3.2.9)
dn Qn(QnTnJrl + QHfl)

We now define an interval of rank

Definition 3.2.2. Leta; = ky,a3 = ko,...,a, = k, be given, then the corre-
sponding interval of rank is
Jn — (&71971 +pn71 )
dn 4n + Gn—1
This interval is the formal expression of the previously definegtval of uncer-
tainty given a continued fraction expansion of length

(3.2.10)

The endpoints of a rank interval are easily obtained. First, we recognize

nl'n +! n— . .
a = lki,....ky,rn] = a = ’ﬁ Letl < r,.1 < oo. Substituting

inr,. = 1givesa = % which is the larger endpoint of,. Now let

rny1 — 00, and we obtain:

lim Pnfntl T Pnot_ Pn (3.2.11)
Tn41—00 QpTpy1 + Q-1 qn
which is the smaller endpoint of,. Additionally, asr,, ; runs through the natural
numbers, the interval, is partitioned into a countable number of intervals of rank
n + 1; the sequence of rank+ 1 intervals runs from left to right for. odd, and

right to left forn even. Alsog is a monotonic function of,,,; forr, 1 € [1, 00).

The next argument is extremely useful in forthcoming proofs, and the logic is
adopted from [MT].

Consider all continued fraction expansions of the ferm [0; a4, ..., a,] and
look at all n-tuples (i.e. all combinations ofall valuesk; for everya;). Given
a rankn interval J,, defined by the continued fraction expansion beginning with
[0; a4, ..., a,], we can find the enpoints of, by taking the infinite union over all
rankn — 1 subintervals comprising,,:

[e.9]

" an{Z + 1) + Gn-1 ’ qn(k) + dn—1 Qn7 Qn + dn—1

}, (3.2.12)

k=1
where we leta,,,; = k for k = 0,1,2,..., and the endpoints aof, are given
by letting bothk = 1 andk — oo. The length of each rank interval is‘Z—: —

Pnt+Pn—1
Gntqn-1 |"
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Each{;—: corresponds to a unique, disjoint ranlsubinterval of|0, 1], as each
possible continued fraction expansion of lengtleads to a different interval of
rankn; this is easily seen by applying Theorem 1.4.mes to Definition 3.2.2.
From [MT], we conclude:

o = U (e
| (at,...,an)ENT dn ’ qn + Qn—1
D S b TP (3.2.13)
4n dn + Qn—1

(a1,...,an)EN™

Therefore, as argued previously, the union of all ranktervals covers0, 1].

3.2.2 Prob@, = k)

In this section we examine the set of poiatse [0, 1], such that,, = k.
From our analysis of Equation 3.2.12, we expect this set to be a union ofirank
intervals. The measure of this union will be equal to the measure of the set of
a € [0, 1], such that,, = k. What is the length or measugeof the union of these
intervals?
2...n

1
We denote by .
ko, ..., a, = k,, which clearly defines an interval of ramk If we let the values
of k; be arbitrary, therf/ ( L 2-m

the setofx € [0, 1], such thati; = &y, ay =

defines an arbitrary rankinterval, J,,;
ki koo k,
1 2---n n+1
kl kQ . kn
n + 1 contained inJ, (s is used in order to show the expressiBnob(a, 1 =
k.+1)'s independence from and fromk; for i < n).

Recall thain = % and ifa, 1 = [rhy1] = s, thenr, . € [s, 5+ 1).

Therefore:

correspondingly we let; | = E ( be an interval of rank

(3.2.14)

PnS + Pne1 Pu(s+1) +puy
S+ qno1 qu(s+ 1)+ qur |

This interval denotes the endpoints .gf,,, and we haveJ;,, C J, for some
Jn. Thus, we must estimajg.J;;, ;) by using a conditional probability argument,
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wherey denotes the Lebesgue measure, or in our case, the linear difference be-
tween the two endpoints.
From Definition 3.2.2 and Equation 3.2.14, we have:

AR LIRS 1 R S
Y et e 21+ =1)
n+1 Qns‘i_anl qn(S‘i‘l)—f—qnfl q232(1+‘1:11_;1)(1+%+q5,1(]_,;)7
which implies
p(Joq) 1 1+ qﬁl

W)~ F I+ IT B @20
wherey, denotes the Lebesgue measure. The right hand sides of the above equa-
tions are obtained by simple algebraic manipulations.

In order to bound the last expression from above in Equation 3.2.15, we need
to make the numerator as large as possible and the denominator as small as pos-
sible. By Theorems 1.4.2 and 1.4.10, we hé%:é < 1; so, let bothq’;—;1 — 1

14 In=1

ands — oo in the second facto( e P ) on the right hand side of
(4= )(1+ +2==)

Sqn
Equation 3.2.15, and we obtain the upper boy )(12+E v 52, wheree is
an arbitrarily small constant. To establish the Iower bound, we let @e%h—> 1
ands = 1 in the second factor, and then we obtain the lower boign;f—

Collecting the results yields:

1 1(Jnin) 2
352 < 0 < =l (3.2.16)
where the inequalities are strict becaléi%eL < 1. The intuition behind the previ-
ous equation tells us in a ramkinterval Jn, the (n + 1) rank interval determined
by a, .1 = s occupies roughly a;— part of J,,. Further, note the bounds are inde-
pendent of, andk; because the intervals of rankcover[0, 1] by Equation 3.2.13.
We can now write:

<(np) < —5— (3.2.17)
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but from Equation 3.2.13 we see
[e)e] o0 . n + 1
Spm=1and S =ue (")

N 3% < u(E (” :T 1)) < % (3.2.18)
where the first step is justified by recognizing thé@t,,) > 0 for all n, thereby
permitting us to multiply all terms by (.J,,). The second line is justified by rec-
ognizing the union of all rank intervals cover$0, 1]. The second equality in line
2 expresses the measure of the union of all rank 1 intervals characterized by
a,+1 = s. The third line is a consequence of collecting the results in lines 1 and
2.

Khintchine [Ki] writes that the “the measure of the set of points for which a
certain element has a given valgealways lies betweegls—2 and S% or an interval
with magnitude of orders%. Another important implication of this result is the
upper and lower bounds of the measure/df, are not dependent onor onk;
for i < n, which is a consequence of Equation 3.2.13.

3.3 Kuzmin's Theorem

Kuzmin's Theorem states for almost all irratiomak [0, 1] and allk € Z, the
following inequality holds:

In(1+4 15 A
‘,U(E (Z>) B ( 1nl;(k:+2)) < k(k - 1)6—/\ n_l, (3.3.19)
whereA and )\ are absolute positive constants.

In this section, | will present the proof of Kuzmin’s Theorem, which requires a
bit of preliminary work. A very easy to follow proof of Kuzmin’s Theorem is pro-
vided in both [MT] and [De], both of which follow Khintchine’s exposition [Ki].

In addition, | will also present a summary of Levy’s results but will not provide a
full proof of his approach; however, the proof can be found in his original paper
[Le] or a good summary can be found in [De].

3.3.1 Notation and Definitions

Let us denote the following:
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a=[0;ay,a9,...,an,...],
T = Tn(@) = [an; apia, -,
Zn = zp(@) =1y — ap = [0; apt1, Ango, .- .| = 2, € [0, 1),

mp(x) = u({a €10,1] : zp() < a:})

Property 3.3.1. Consider the sequence of positive functiengz) as defined
above:

mo(z), mi(z),...,mu(z),... (3.3.20)
then,
My1(T) = Z (mn <%> —my, (k Jlr x>> , (3.3.21)
k=1

where we assume< z < 1 and0 < n.

Proof: z, = [0; apy1, . . .] = rn — a,, Wherer,, = a,, + e but sincez,,, =
0; Gnto, -] = i1 — Gui1 = Tng1 = ang1 + 2ny1. HeNce the equation:
1 1
Zn = G + —y = ——————— (3.3.22)
Tnt1 Api1 + Znt1

implies we must have fot,,,; < x:

1
<am<q, (3.3.23)

which follows by direct substitution into Equation 3.3.22. The measure of the set
z, satisfying Equation 3.3.23 is:

i, (%) _ mn(k i x) (3.3.24)

Thus, our recurrent relationship is shown. Nateis specified in Equation 3.3.24,
while a,, remains undetermined in Equation 3.3.21.
Differentiating Equation 3.3.21 term by term with respect wives:

- 1
My (2 ;; ,Hx (Hx) (3.3.25)
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We must address why we can differentiate this series term by term. The proof
is by induction omn. Leta € [0, 1], then we havey(a) = a = mo(x) = =z,
wherebym,(z) = 1. Now assume that,, (z) is bounded and continuous for all
n < n+ 1 and for allx € [0,1]. Then the right hand side of Equation 3.3.25
is bounded and continuous by our inductive assumption, which impiigg is
also bounded and continuous for all thus, the series on the right hand side of
Equation 3.3.25 is bounded, continuous, and equal,to, () for all n. Equation
3.3.25 has been shown by induction.

With Equation 3.3.21 in mind, we search for a recurrent function with similar
behavior. Gauss proposed the following function:

Lemma 3.3.2.LetC be an arbitrary constant, then
¢(x) =Cln(1 + z) (3.3.26)

satisfies

¢(x) = i (cb(%) - cb(k i :E)) (3.3.27)

k=1
wherek is a positive integer and < [0, 1].

Proof: Consider the following argument, noting bojp( In(1 + x)) = L

1+
and the first line in the following equation is a telescoping series:

1

1+1

1
(k+6)2(1+ )

WE

B
Il

1

[
:>/—dt = Z/ —dt
J 1+t = k+t)2 1+m)

8

1
= Clog(l+z) = Zlog(1++ )

k+x

= log(l+z) = i <10g <1+%) — log (1+k+%)>

where we introduced as a dummy variable to avoid a non-unique indefinite in-
tegral. In the second line, bringing the integral inside the sum is justified because
we know from line 1 and Equation 3.3.25 the sum is uniformly convergent for
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x € [0, 1]. The third line is obtained by performing the required integration in line
2 and noting the result is unique up to a const@nT he final line is an application
of the logarithm propertyog 3 = loga — logb. O

3.3.2 Necessary Lemmas

In this section we will assume that a sequence of functfgrssitisfy a recurrent
functional relationship similar to Equation 3.3.25, and by assuming this recurrence
relationship, we will prove four main results governing the behavior offthe
These results will be crucial in showing is bounded above and below by+
Be~*V" whereB and\ are positive constants amdwill be defined later in this
chapter. If we substitute:, (z) in for f,(z) and integrate both:, () and the
bounds forf,,(z), then Kuzmin’s Theorem will follow.

For the following lemmas, we assume that we have an infinite sequence of
real functionsf,(z), fo(z),..., fu(z),... defined onz € 0, 1], satisfying the
following conditions:

fnﬂ(x):z(ijyfn(kix), 0<n (3.3.28)

k=1

where clearly—— is the argument of;; the sequence of; also satisfies:
k+x

0 < fo(z) < M and |fy(z)] < 7. (3.3.29)

The series in Equation 3.3.28 is uniformly convergent due to our analysis of
Equation 3.3.25.

Lemma 3.3.3.For any0 < n andz € [0, 1], we have the following:

(n)
Pn + ITPn—1 1
ful@) = fo ) , (3.3.30)
@=2 Gn + Tqn-1/ (Gn + TGn-1)*
where(n) denotes the sum over all intervals of ra;mk(%, %) is an arbi-
trary interval of rankn, and% is the argument of;,.

Proof: This proof proceeds by induction. First we establish the base case:

(0)
letn = 0, then fo(z) = >_ fo (p”“”p*l)( L z; the sum is over all rank

go+xq—1 ) (go+xg—1
intervals, which coincides the single interyal 1]. Thus, we havey, = 0, ¢y =

34



1, p_1 =1, ¢_1 = 0. Now, assume that this relationship holds foriall n. Then
we proceed from Equation 3.3.28:

frn(2) (k;—l—m) f"(k:i;;;)

(n)

1 Dn + xpnl 1
()

Gn + ;H_an 1 (CJn + mqn—l)2

M T

I
s L
/—\

n

ZZ (pnkﬂ?n 1)+xpn> 1
e an + Qn—l) + Tdn {(%Lk + Qn—l) + xQn}2

n+1
S (et L B33

Gnt1 + G0/ (i1 + 7¢n)

where the second equation results from a substitution based on our inductive as-
sumption that the relationship in Equation 3.3.30 holds fair glln. The third line
is a result of multiplying the term 1 by (kjm)g in line 2, expanding all

( "+k+ac n— 1)2
numerators and denominators, and then grouping the terms. We also switch the or-

der of summation because Equation 3.3.28 is uniformly convergentfor < 1;
thus, extending the equality sign from the first line in Equation 3.3.31, we con-
clude that the series in line 3 is also uniformly convergent. Finally, taking the sum
in line 3 overk from 1 to oo, which results in an arbitrary interval of ramk+ 1,
yields the fourth line. The sum in line 4 is over all intervals of rank 1 because
we previously summed over all € N, which yielded all possible intervals of
rankn + 1 within each interval of rank. Since the union of all intervals of rank
n + 1 cover all the intervals of rank, the sum in line 4 is justifiedl

We will now present a lemma bounding, ()| beyond the initial condition in
Equation 3.3.29.

Lemma 3.3.4.Given Equations 3.3.28 and 3.3.29, we have

()] < 2n -+ 4M. (3.3.32)
Proof: We have from the last lemma that
(n)
Pn + TPn—1 1
— , 3.3.33
Zfo(qn +an1) (qn + 2¢p—1)? ( )
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and we know from our argument above that this series is uniformly convergent for
0 <z < 1, so differentiating the series term by term resuls in:

n—1
Zfo —) 2Zfo L (3.3.34)

+ Tln— 1 Qn + xQn—1)3

where we lety = ’% and we note by Lemma 1.4.3 that,{,—1 — pn—1g, =
(1)),
Following the analysis in both Deveaux [De] and Khintchine[Ki], we conclude

An— gn—1 1 1
that ((qn+mqn171)3 < qnl Z < q—%) because,_1 < ¢,. Also, we have as a conse-

quence of Theorem 1.4.2¢,( > g1 = g, > 2=t = ¢2 > —q"(q";q”*”)
(where we have multiplied each side &)). Therefore, by substituting the appro-
priate inequality, we can bound the second term on the right hand side of Equation
3.3.34:

(n)
e I ST

< 4Zfo

Qn+Qn 1)

= 4M,

< |AM
an Qn+Qn 1)

(3.3.35)

where last inequality results from our condition in Equation 3.3.29, nandely (
(n) (n)

1 _ Pn
fo(z) < M). The last step is a consequence@m = > |-
Z’ﬁ% = 1. This sum equals 1 because we are summing over all intervals

of rankn, which cover|0, 1], see Equation 3.2.13.

Now considering the second term in Equation 3.3.34, we note from Theorem
1.4.2that ¢, > ¢,—1 + g.—2 > 2q,—2) andq; = 1; by repeated application of this
inequality, we haved, (¢, + ¢.—1) > ¢> > 2"') (by induction the denominators
of the convergents increase by at least a factor of 2 for eaghl). As a result,
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qn(qn + Qn—1)>2

(Qn + an—1>4 > Qi > ( 9

_ Qn<Qn + anl)
4

:>‘Zf0 —1

Qn + Ln— 1)

(qn(qn + qn_1)> > 2", (qn + Gn1)

(3.3.36)

on—3 :

The second inequality is a result of the relatign> % The last inequality
results from lines 1 and 2, Equation 3.2.13, and our condition in Equation 3.3.29,
which gives|f,(x)| < 7 . The lemma follows

The next two lemmas are relatively straightforward and require only a few
lines to prove.

Lemma 3.3.5.For (0 <z < 1), if
t T

Tz < falz) < Tz (3.3.37)
then we also have . T
T < fopa(z) < T (3.3.38)

[Ki].

Proof: By Equation 3.3.28 and the assumptﬁg < falz) < le from this
lemma, we reason that:

= 1 = T 1
;1 %k+)<f"+1 ) <25 + L (kta)

1 k=1 k:
:ti L < frg(z) <TZ !
c~ (k+a)(k+z+1) —~ (k+ax)(k+a+1)
- 1 1 - 1 1

ey — T —

t; k+z k+x+1>< fan(@) < ;(k—i—x k+a:+1>

T
= T2 < fan(z) < T+ (3.3.39)
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Line 1 is a direct result of our condition in Equation 3.3.28. The second line is
obtained by multiplying and expanding the sums in line 1. Separating the terms
being summed in line 2 into their partial fraction representations gives line 3.
Evaluating the telescoping series in line 3 yields lin€4.

We now present the final lemma.

Lemma 3.3.6. For all integer values: > 0, we have:

[z = [ e K (3.3.40)

1
Proof: This is proof follows by induction. Let = 0, then we obtain) fo(z) dz =
0

1
[ fo(2) d=. Now, assume the relation in Equation 3.3.40 holds foi alln. Then
0

we have:
1

/fn(Z)dZ -~ io/fM(kiz)(k;jl—Zz)Q

0 k=1

k=1 0 0

:iifnl(u) du = /fnl(u) du:/fo(z) dz,  (3.3.41)

for all n > 0. The first line is basically a restatement of Equation 3.3.28, where
we switch the intergral and the sum because the sum is uniformly convergent. We
1

&
let u = #Z in order to proceed from line 1 to line 2. Summing f,_1(u) du
1

k+1
1
over allk justifies the third equality (formally, we should Wril]7tim0 [ faz1(u) du).
Y

Our inductive assumption justifies our final equality. Thus our lemma is proved.
O

3.3.3 Proof of Main Result

If a function f is strictly positive and continuous in a closed intervab|, then
f possesses a positive minimufiz) = m for somez € [a,b]. We assumed in
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Equation 3.3.29 thaf, () exists and) < f,(x) < M forall z € [0, 1]. Therefore,
since0 < fy(z) and differentiability implies continuity, we conclude thatx)
possesses a positive minimum for somez € [0,1]. Thus, we argue that for
x e [0,1]:

m< folx) <M

g G
< <

(3.3.42)

where the first step summarizes our assumptions. To obtain line 2, we note
so we can divide line 1 byl + z) and introduce a factor df and2 to ensure strict
inequalities because < (1 + ) < 2. Inline 3 we letg = & andG = 2M. It
is important to note we hinge the following line of analysis on the base function
fo(x) and notf,,(z).

Now we define a function that is strictly positive, is defined for all non-negative
integer values of,, and whose domain is € [0, 1]:

On() = ful) = 5 i . (3.3.43)

Recall from Equation 3.3.27 that the functifw) = C'ln(1 + z) satisfied

the relationshipioj (0(%) — 9(@)) which we know upon differentiation
k=1

satisfiedd (z) = 3 gt (ﬁ) Motivated by these relationships, we define
k=1

F(z) = +£, which is the derivative of In(1 + z); therefore:

Tz’
F(x):ZF(kix>(ij>2. (3.3.44)

k=1

By the definition provided in Equation 3.3.28, satisfies the same functional
relationship asF'(x) does in Equation 3.3.44, and as a result, the sequence of
functionseo(z), ¢1(x), ..., on(x), ... satisfies this same functional relationship.
Khintchine makes the astute observation that because the sequence of functions
¢o(x), d1(x), ..., on(x), ... satisfies the relationship in Equation 3.3.28, all the
lemmas presented in the subsection “Necessary Lemmas” hold for this sequence,
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and in particular, each functionp;(z) satisifies the relationship established in
Equation 3.3.30.

Our next goal is to bound, (x) from above and below by functions of If we
can find such bounding functions, then we can show the bounds for the sequence
of f,(z) converge to the same value.

Recalling thaty = 22™2==1 \we can rewritep, (z) with the aid of Lemma

qn+tTqn—1
3.3.3:
-_— 3.3.45
-3t - (3345
and sincer < 1 andg,, > ¢,—1 + ¢,—2 We have
an + TGn—1 S dn + dn—1 < 2Qn (3346)

From Equation 3.3.42 and from the definition@(u) given in Equation 3.3.43, it
is cleargy(u) > 0 becausefy(x) > —; we can apply Lemma 3.3.5 to conclude
¢, > 0 for all n, therefore

1+z

Substituting Equation 3.3.45in 3.3.46, nam@ly+zq¢,_1)*> = (gn+2¢n_1)(qn+
Tqn-1) < 2¢n(qn + qn-1), gives Equation 3.3.47.
The Mean Value Theorem from real analysis allows us to write:

PntpPpn—1
Qn+qn71
bo(2)dz = olul)——
2 0 0 (qn + Qn 1)
1T 1
= — dz = -— E —. 3.3.48
2/%(2) © bolu w(Gn + Gn—1) ( )

Here, we notes, € (’ﬂ M) and we apply the Mean Value Theorem to

qn’ qntqn—
every disjoint rank: interval (i.e. /(.. a,) = [2, %]) Because we apply

the Mean Value Theorem to every ranknterval,v,, is different for each rank
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interval, over which we integraté,. The second equation is a result of summing
both sides of the equality in line 1 over all possible intervals of rankhe right
hand side of line 2 is an expression of the Riemann sum, where weghave)
as the representative height in a particular interval of ﬂaahdm is the
length of each rank interval.

Combining Equations 3.3.47 and 3.3.48, we arrive at the inequality:

1

— . (3.349)
Qn(Qn + Qn—l)

! (n)
6u(0) = 5 [ Gu(:)dz > 5 (o) — dn(a)}

Then if we differentiates(z) in Equation 3.3.43, while keeping in mind that

by Equation 3.3.29 we hav¢,(z)| < 7 and that‘(HLw)’ = ’ — ap| < 9, we
conclude forr € [0, 1]:
[Go(@)| < fo(@)l +g<T+g (3.3.50)
In Equation 3.3.48 we establisheg ¢ (7;’—", %) therefore:
lu—u'| < ! ! ! (3.3.51)

— < = < —.
Qn(Qn + anl) quL 2n—1
Combining this equation with Equation 3.3.50, we infer:

| Po(un) — ¢0(U;L)|

K

=¢o(u,) < T+g

ol
n

= [¢o(un) = do(u,)| < (7 +g)|un —u,,

T+g T+g
< 2
Qn(Qn + Qn—l) qn
T+g
< St (3.3.52)

This argument is straightforward except for proceeding from line 2 to line 3; since
u, € <p—” M), which denotes a rank interval having length——————

Gn’ GntQn—1 an(gn+agn—1)"’

the inequality( + g)|u, — u,| < —-=%— holds for allu,,. Thus, combining

Equations 3.3.49 and 3.3.52, we have:

!/
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1
On(z) > 5/%(2) dz — on = | — o (3.3.53)
0
where,
1
| = %/%(2) dz (3.3.54)
0
Collecting our results and recalling Equation 3.3.43, we conclude:
| —2-nt!
fule)> 2 ) TE9 97 (r+9) _ o (3.3.55)

1+a on 1+a C1l+4x

Now, consider a new sequence of functions defined for all non-negative inte-
gersn and for allz € [0, 1]:

G
on() = 142z

Applying the same logic used to obtain Equation3.3.55, we obtain an upper bound
for the sequence of functions, oy, o, ... defined in Equation 3.3.56:

— ful®), (3.3.56)

G-l'+2"(r+G) &
falz) < T =T (3.3.57)

1
wherel’ = 1 [ 00(2) d=. We have thus established the upper and lower bounds of

0
fn as functions of: (i.e. Gy, g; are functions ot:), which is what we initially set
out to find.

Subtracting Equation 3.3.55 from Equation 3.3.57 and realizing> 0, we
haveg < g1 < G| < G. These inequalities apply for large or as lim 27! =
0. As a result:

Gi—g<G—g—(1+1)+27"2(14+G) (3.3.58)

Then using the definitions dfandl” and the definitions of ande introduced in
Equations 3.3.43 and 3.3.56:

1

|+|—2/1+Zd2—(G—g) : (3.3.59)
0
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whereG andg are constants. Combining our previous result with Equation 3.3.58,
we infer:
Gi— g1 < (G—g)d+27"P2(r +Q), (3.3.60)

wherej =1 — @ < 1, which is a positive constant. In summary, we note from
Equation 3.3.42:

g G
T4z < folx) < T2 (3.3.61)
and for large enough, we just concluded:
qn Gy
.3.62
1+a:<fn(x)<1+x’ (3.3.62)

where all the relations amortg, g, G, g1 in Equation 3.3.58 still hold.

In the beginning of this line of analysis, we commented that our base function
was fy. Suppose we considerdd(x) as our starting function and reapplied the
same rigorous argument to this function, then it is evident:

Go
1+z

g2
1+

< fon(x) < : (3.3.63)
where we havé, — g < (G —¢1)0 +27""2(1y + G4) andg; < go < Go < G
(see Equation 3.3.60), and is defined in a similar fashion to Equation 3.3.29,
namely|f, (z)| < 7. Now, we can continue this process an infinite number of
times, which produces a general result:

gr G,
n ) 4
1—i—x<f (a:)<1+x (3.3.64)

which naturally implies a relationship amorigs andg;s similar to Equation
3.3.60:

Gr —gr < (Gr—l - gr—1)5 + 2_n+2(7_r—1 + Gr—l)> (3365)

where this equation yields the relationshijp; < ¢, < G, < G,_;. Again, 7,_;
is defined in a similar fashion to Equation 3.3.29, name’[y_l)n(xﬂ < Tpo1.
The above inequalities hold forr € N and z € [0, 1].

By Lemma 3.3.4, we can writg. < 5= + 4M for r € N, from which we
seenli_)r]cr>102m+_3 = oo; thus7,. < 5M for largen andr € N. We can repeat the

application of Equation 3.3.65 for alle [1,n]:
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Grn—gn < (G—g)0"+27" 2L (u+2M) 6" HTMS" P +7TM "3+, +TMS+TM},
(3.3.66)
which expresses!,, — g, in terms of G andg. Because botli < 1 and2"+2
decay very rapidly as — oo, we can bound this decay from above witH’, in
particular:
Gn — gn < Be ™", (3.3.67)

SinceG,, — g, is a function ofr and M, andG, ¢ are functions of\/, B must
be a function of both\/ andr, formally B = B(M, 7). Since the expression
in Equation 3.3.66 is strictly positive? > 0 for all M and7. Finally, A is an
absolute constant that does not change irrespective of the sequence of functions
fn satisfying Equation 3.3.28, and < 1 otherwise for anyB € R asn — oo,
we would haveBe™" < 27"*2, thereby violating the assumption needed for
Equation3.3.67.

From Equation 3.3.67, we complete our goal of showing the lower and upper
bounds off,, converge to the same valueas— oo:

lim G, = lim ¢, = a, (3.3.68)

n—oo

where this limit exists becausim Be " = 0. Now, letr = n in Equation

n—oo

3.3.64, and we argue far e [0, 1]:

fr2 () < Be ™. (3.3.69)

_1+x

If we considered this inequality as — oo, then it is clear the sequence 6f
converges uniformly tg. Using Equation 3.3.69 and a result in real analysis
that states if a sequence is uniformly convergent, then the limit of the integrals is
the integral of the limit, we reason:

li 2 =
lim oz () T2
1
= lim [ f2(2)dz — aln2. (3.3.70)

n—oo

0
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1
Hence, Lemma 3.3.6 gives = 5 [ fo(z) dz. If we now let N be such that
0

n? < N < (n+1)? wheren? is the index used in the sequenfe, then dropping
the absolute value signs in Equation 3.3.69 yields:

a — 2Be " < foa ) - a + 2Be "
14+ ’ 1+
a — 2Be " < fu ) - a+ 2Be "
F— x —_—
1+=x N 1+=x
= | fla) = 7 i <2BeM = Ae M) < AcWN (3.371)
T

whereA = 2Be*. Note, line 2 is the result of applying Lemma 3.3.5f@ in line

1. The first inequality in line 3 is the consequence of introducing absolute value

into line 2, and the final inequality is due to our constructiodok (n + 1)2.
Throughout this section, our results have held for sufficiently la¥gevhich

implies Equation 3.3.71 holds only for largé, but if A can be made arbitrarily

large, then Equation 3.3.71 can be made to hold foNall> 0. The arguments

presented in this section have proved the following theorem.

Theorem 3.3.7.Kuzmin’s Theorem -Let the conditions of Equations 3.3.28 and
3.3.29 hold, then "
= —— QA 3.72
fu(z) 1+x+9 e , (3.3.72)

1
wherez € [0,1], a = =5 [ fo(z)dz,

0
constant, and is a positive function of/ andr but not ofz [Ki].

0] < 1, A < 1is an absolute positive

A more detailed analysis of the constants in Kuzmin's Theorem will be pro-
vided at the end of this chapter; however, we will fiddind A cannot be assigned
actual numerical values without losing some of the theoretical thrust of the theo-
rem. Kuzmin's Theorem implies a result that is paramount to our analysis that is
presented at the end of this chapter.

3.3.4 Kuzmin’s Result
Recall the definition ofn,(z) and Equations 3.3.21 and 3.3.25, which show:
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oot = 3 (m(B) i)

k=1

. = 1 s 1
m . (z) = kz(k+x)2m“(k+x>‘ (3.3.73)

1

But in Equation 3.3.28, we definef] (=) to satisfy:

o0

1 1
fua () = Z (k;+:z‘)2fn(k—|—a:)’ (3.3.74)

k=1

which is preciselyn,, ., (x)’s functional relationship. Also notel(m., ., (z) dz =
mn+1(x)), which is the measure of the set of numberm the interval|0, 1] for
which z, (o) < z.

Gauss wanted to find a closed form expressiomigfx) for largen. Moti-
vated by the similarities between Equations 3.3.73 and 3.3.74, we set:

!

fo(x) =m,(x) (3.3.75)

for x € [0,1]. If we let fo(z) = 1, then all the conditions of Theorem 3.3.7 are
satisfied. Now, we can appropriately apply Theorem 3.3.7 With) = m,, (z):

/ 1 7)\\/5
‘mn(x) 1522 < Ae (3.3.76)
integrating yields
In(1
() — %] < Ae VR, (3.3.77)

where these inequalities hold fore [0, 1]. Again, A and\ are absolute positive
constants. Note, the factor ef which should result from integrating the right
hand side with respect to, is dropped. We drop the in order to make the error
term independent of, and we noterAe V" < Ae V" becauser € [0,1].
Gauss’s conjecture is thus proved.

We can apply these results to approximate the measure of the set of numbers
for whicha,, = k for largen.
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Recall from Equation 3.3.22, = r, — a,, = [0; a,41,...], and as a result, if

a, = k, then
1

—— < zp-1(a) < (3.3.78)

| =

therefore

W(E (Z)) = mn_1<%> —mn_1<%+1> = l/km;”(x) dr.  (3.3.79)

k

Now, we integrate Equation 3.3.77 fro@ﬁ to % and use Equation 3.3.79:

{1+ )
ny\, k(k+2) A W=
w(E <k)) o ‘ < A 1)6 , (3.3.80)

where the powekr/n — 1 is a result Equation 3.3.78. The facté‘rm Is a

1
k

result of the integratior= | C'dz, whereC' = Ae=*v"~! is not a function ofz.
1

k41

Note, ——— is the length of each interval characterizedigy= k. Collecting our

" k(k+1) X . ) .
results, we conclude this section with Kuzmin’s result:
In {1 + ;}
n k(k+2)
E 3.3.81
ue (1)~ —— (33.81)
asn — oo.

3.4 Levy’s Refined Results

DeVeaux [De] provides an excellent summary of Levy’s proof, which DeVeaux
uses to critique Kuzmin’s approach. The major criticism of Kuzmin’s proof is the
reliance on the seemingly too restrictive condition in Equations 3.3.28, “which
shows convergence regardless of the distribution choseA ffide].” Levy did
not rely on such heavy assumptions, which enabled him to solve Gauss’ problem
not only forz uniformly distributed in[0, 1], but also forz with a density in the
set of Lebesgue measurable functiohs|(, 1]).
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Khintchine states: “The method of P. Levy allows a better estimate to be ob-
tained. The inequality

In(1+ x)

—n
| < e (3.4.82)

M, () —
is shown to be satisfied [Ki].” If we substitute this error term into the inequality
in Equation 3.3.77 and follow the exact same argument used to obtain Equation
3.3.80, then we conclude:

Inql+ i
n k(k+2) A (e
wlE < >> N { In 2 } ) k(k + 1)6 o (3.4.83)

Because (Y — 0 much faster than—*v"~! — 0 asn — oo, we conclude
Levy’'s bounds are significantly better than Kuzmin’s, but still not necessarily op-
timal.

3.5 Experimental Results for Levy’s Constants

3.5.1 Motivation

Does there exists a more optimal bounding function for the diﬁer%m(d_é (Z) )—

ln{l—l—#}
#) than Levy's ;745¢~*"? Formally, can we find a functioer™,

In§ 145
o)) - {—)}\ < CA(k)e"™ = 0(n, k)

such thaed™ < e=n and‘u(E
holds for alln or at least for largex? Intuitively, one may believe there exist a
more optimal bounding functiof(n, k) for all n than Levy’s proposed function,
even if the order ob(n, k) is equal only ta==“"; or, g(n) has a higher order than

cn, which is the order of Levy’s bounding function (i.€.*~1),

This intuition results from two facts. First, Levy’s function does not bound
the difference in Equation 3.4.83 with equality, so perhaps there exists a bounding
function that does indeed bound this difference with equality. Secondly, in going
from line 1 to line 2 in Equations 3.3.77 and 3.4.83, we drop the factar of1

from the right hand side. If this factor were included in Levy’s error term, then
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not only would the error term depend aenbut also asc < 1 the resultant error
term would be more optimal that our current error term in Equation 3.4.83.

Suppose we set out to emprirically estimate the optimal error funétion:)
by considering the various length expansions of a set of irratianal [0, 1].
Immediately, we note this test set has zero measure, so we could never be certain
d(n, k) is the optimal error function for a set af€ [0, 1] with positive measaure.
However, if we just consider the various length expansions of ountdsen we
can find a functiord(n, k) that approximates the difference in Equation 3.4.83 to
a better degree than™; 6(n, k) would preserve the inequality in Equation 3.4.83
only for those values af anda in out test set. Furthermore, if one uses Kuzmin'’s
Theorem in an empirical analysis, then the bounding function does not need to
hold necessarily for alt, rather only over a range af, however, over this range
of n, #(n, k) needs to preserve the inequality in Equation 3.4.83 for all examined
k anda.

Alternatively, we can assuntén, k) has the same functional form as Levy’s
bounding function: .

I A o (o B
O(n, k) = e 1)6 (3.5.84)

By assumptiond(n, k) now looks almost exactly like Levy’s bounding function.
While the constantsi and A in Levy’s bounding function are supposed to be
absolute constants that preserve Inequality 3.4.83 for almastait! for alln, we
can change these constants to suit our purposes. Rarely do we need our bounding
function to hold for alln, and rarely do we need this bounding function to hold for
all « € K (whereK denotes the set for which Kuzmin’'s/Levy’s Theorem holds).

It is extremely important to bear in mind that the “rangendfis determined
by the demands of the empirical analysis; hereinafter, the previous statement will
be assumed when refering to the range:ofWe also define the “beginning,”
which is the firstn in the range, over which the bounding function must satisfy
Inequality 3.5.86.

A very nice consequence of Equation 3.4.83 is:

Pwﬁ@n:k)gkgzof% (3.5.85)

1
Mk+m>+“
wheree is either Kuzmin’s or Levy’s error term. In order to approximate the
constantsA and )\ in Equation 3.4.83, we must empirically estimater € [0, 1] :

a, = k), or Prob(a, = k). To perform this estimation we do the following:
computen coefficients of the continued fraction expansion of a giwgand count
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the number of coefficients; whose value i%; then we divide this number by the
total number of coefficients examined (i.): call this procedure “Kuzmin Test
Procedure.” It is important to note Kuzmin’s Theorem gives us the probability
a, = k for givenn andk; however, we can test the expression in Kuzmin’s
Theorem by implementing the Kuzmin Test Procedure. Basically, the difference
between the Kuzmin Test Procedure and Kuzmin’s Theorem is the former tests
the expected number of digits equalitgivenn coefficients while the later gives
Prob(a, = k). Both [MT] or [Mi] show the expected number of coefficients
equal tok givenn coefficients isnlog,(1 + m) + €(n, k), wheree(n, k) is
the error term that decreasesas- co. There%ore, Kuzmin’'s Theorem does lead
directly to an expectation of the number of digits equat wivenn coefficients.

In the next few sections | will present a method for finding the optimal con-
stants (i.e. A and \) of the bounding function, where “optimal” is in reference
to an arbitrary empirical analysis, and | will apply this method to a numerical
application.

3.5.2 Problems in EstimatingA and A

Since Levy provides a more optimal bounding function than Kuzmin, we as-
sumed(n, k) has the same functional form as Levy’s bounding function (see the
condition presented in Equation 3.5.84). Then we have from Equation 3.4.83:

{1+ by b
ny\y k(k+2) _ A A(n—1)
u(E (k)) o ‘ <f(n, k)= WD) 1>€ : (3.5.86)
where we relabeled the constants from Equation 3.5.84(i&k) = ﬁ and

N =)).

We note an immediate problem in trying to estimate empirically the constants
A and ). Although by formal construction our constamsand \ are supposed
to be independent af, in any empirical analysis both constants will be functions
of the testedv’s. To see this dependence, consider an empirical test of Kuzmin’s
Theorem, where we perform Kuzmin Test Procedure for a predetermined set of
coefficient values: and a test set of.. Sincea;(«) is a function ofa and the

expression
1
In {1 + —k(k+2)} ‘

In2

pla:a; = k) — (3.5.87)
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is estimated by counting the number of coefficiesmtsvith value k, we observe
A and ) are functions ofv. Furthermore, both constants will also be functions of
the range of: and the beginning.

For example, suppose we chagge K, such that; (o) = 10% and the sub-
sequent digits are free to assume any values. Further suppose we are attempting
to determined and A in Equation 3.5.86 by utilizing the Kuzmin Test Procedure
over the first two digits ofy,. If we computed the constantsand ) based only
on the coefficients, a; (i.e. the range of, = 2 and the beginning = 1), then
A and X will be extremely large because immediately there is a large divergence
from Kuzmin’s Theorem. However, we assumed thate K, which means that
asn — oo the divergence from Kuzmin’s Theoreom 0. The point of tracing
the effects of thisi; = 10® problem (will also be referred to as the large digit
problem) is to show that any empirical analysis needs to consider mamyts
test set and to be conducted over a large numladrcoefficients. Note: For con-
ciseness, when we refer to Kuzmin's Theorem, we mean Kuzmin’s Theorem with
Levy’'s bounding function

To understand this problem we note that Kuzmin’s expected valug(fer:
an, = 108) < log,(1 + m) + €, which for all practical purposes is But
since our empirical estimation f« : a,, = 10%) was based on only one tes}
and on only two coefficients, we are led to believe by Kuzmin Test Procedure that
p(a : a, = 10%) = 1. Thus, we conclude the difference in Equation 3.4.83 is
approximated by:

IRCE——
n 105(105+2) | 1
,u(E( )) - 5 ‘ =5 ¢ (3.5.88)

This divergenc% —ewould yield a very large value of, although | acknowledge
the empirically estimated value df would be somewhat attenuated by ultimately
dividing A by k(k + 1) as in Equation 3.4.83. From Equations 3.3.80 and 3.4.83,
this A theoretically should remain constant for all tested valuefs, diut we will
see empirical results indicate otherwise. Additionally, this divergence value im-
plies a larger value ok than would be the case if our test considered a longer
range ofn.

Reconsider out; = 10® problem over a longer range afinstead of only
over a range of 2 coefficients as above; the effect of the coeffisient 108
on the divergence value will be diluted, and our contatitand A will become
smaller (assuming that there are not frequent occurrences of the coefficient value
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10%, which is a reasonable assumption given that we assumed K). For
example, suppose that we recompute : a; = 10®) but letn = 100, 000. We
know o € K, so we can assume that# 10® for all 2 < i < 100, 000. Now the
divergence is given by:

p(E <n)) o {1 i 108(1%8%)}

k In2

1
~ 100,000 °©

(3.5.89)

which would yield more optimal values fot and \ than the values determined
whenn = 2.

Therefore, if we compute the constantsand\ from an examination of only
the firstn (wheren is assumed to be small) coefficients of only one tgest K,
then the bounding functiode >~ will be too great (i.e.

In {1 +
In2

for most ranges ofi and most values df to be of any practical use. Khintchine

even notes if we choos¢and) sufficiently large, then we can make our bounding

function hold for almost allv € K, for all n, but these large valued constants are

of no practical use because they are not close to being optimal even for a small

range ofn, or for a small beginning.

The natural follow up question to the previous discussion is what should be
our minimum range of, and our lowest beginning value affor an empirical
analysis to approximate the optimal valuesdoédnd\? The answer to this ques-
tion depends on the problem that one wishes to solve. This paper will present a
method for estimating the values dfand ), such that

o (n)> B 1n{1+ m}

k In2

wla:a, =k)— } ‘ < Ae M=) (3.5.90)

A e
" 3.5.91
k(k+1)° ( )
holds for a given range of and for all testv, or more specifically for most val-
uesk over the given range oi. The range of is determined by experimental
demands, but my method can be applied to all required rangesaafl all test
values ofa andk.

3.5.3 Method

Again, given a test set af andn coefficients, | will present the method for
estimating the constantsand\ appearing in Levy’s error term, which is a better
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approximation of the difference in Inequality 3.4.83 than Kuzmin’s error term. |
will often call the value of the difference in Inequality 3.4.83 the divergence from
Kuzmin’s Theorem.

In [Mi], the author computed the continued fraction expansions touthe
500, 000" coefficient of the cube roots of the firs60 primes and the first00
primes greater than0”. For each tested andk, the divergence from Kuzmin's
expectation was computed. This empirical study suggests these cube roots are
elements of the sét’. The reason the author considered the two different sets of
testa was to ensure one set of numbers was independent of the other. | refer the
reader to [MT] for a more indepth analysis of this problem, but here | will offer
an excerpt:

“If one studies say® — p = 0, as we varyp the first few digits will often be
the same. For example, the continued fractions for 100000007, 100000037 and
100000039 all begifl 79, 3, 1,2, 5,2]. Consider a large numbey. Primes near
it can be written as, + x for x small. Then

no'

n% 1—1—12
0 3”0

1

(ng + )

W=
I
VRS

—_

+
Sl
~_

W=

Q

(3.5.92)

If ng is a perfect cube, then for smallrelative ton,, these numbers will all have
the same first few digits (and the first digit should be somewhat large). Thus, if
we want to average over different roots, the first few digits are not independent; in
many of the experiments, digits 50,000 to 1,000,000 were investigated: for roots
of numbers of size0', this was sufficient to see independent behavior (though
ideally one should look at autocorrelations to verify this claim. Also, Kuzmin’s
theorem describes the behavior fofarge; thus, it is worthwhile to throw away
the first few digits so we only study regions where the error term is small.” [MT]
Motivated by the results in [Mi], | considered fives from the firstl00 primes
and five as from the second set of primes with the greatest divergence from
Kuzmin’s Theorem over all tested values /af The rationale for choosing only
five from each set is that | am mainly trying to illustrate a method. Addition-
ally, one could conjecture a numberc K that exhibited the greatest divergence
from Kuzmin’s Theorem over a given rangerotoefficients for a certaih would
yield constantsA and A that bound from above the divergence of all other tested
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values ofk for all the other testedis over the same range. Note's large di-
vergence from Kuzmin’s Theorem given a rangewafoefficients for a certaif,

does not imply thaty maintains a relatively large divergenceras— oo for the
samek, or even for other values d@f. In a sense, the continued fractions of the
low-divergencexs exhibited a faster convergence ratesgdtrue value than the

with the greatest divergence. According to this intuition, we are testing essentially
200 numbers. The more considered in an empirical analysis, the less dependent
A and \ are on any particulas (except for then with the greatest divergence
from Kuzmin’s Theorem).

| examined the cube roots af= 79, 167, 223, 251, 307, 10,000, 357 ,
10,001,221, 10,001,237, 10,001,567, 10,001,643 forn = 7,070, 50,000,
100,000, 150,000, ..., 2,000,000. | then computed the number of coefficients
that have values = 1, 2, 3, 4, 5, 96, 97, 98, 99, 100 for eacha for each value of
n.

The rationale for choosing in 50,000 increments was to record the diver-
gence at multiple values af, but the lengths of the increments were arbitrary. The
beginningn = 7,070 because according to Kuzmin’s Theorem, #eb(a; =
100) = log,(1 + m), which corresponds to observing one in everg70
coefficients whose value i$)0. Since we are fairly confident all the tested K
[Mi], for smaller values ofn we expect to see a very low number of coefficients
with valuesk = 100; thus we face the problem presented in the discussion where
we assumed that; = 10%. However, letting: = 7,070 will dilute most of the
effect of observing multiple occurrencesqf= 100 for i < 7,070.

For example, suppose that fap € K we observed coefficients such that
k; = 100, then we empirically estimate(« : a,, = 100) = ﬁ ~ .0004 versus
Kuzmin’s expectation ofi(« : a,, = 100) = ﬁ = .0001, yielding a divergence
of .0003, which is not so large as to limit severely the optimality of resultant values
of A and).

While all of the discussion about the = 10® problem has been to provide
warning that the resultant bounding function will not be optimal if such a prob-
lem is not avoided, we also lose some of the true behaviersstonvergence
to Kuzmin’s Theorem if we do not include some valuesc@ndn such that the
bounding function captures the possibly large divergence caused hy thé0®
problem. It is important that our estimations include some form of this behavior
so that the obtained bounding function will preserve the inequality in Equation
3.4.83 for manyk. If we choosek large andh large, we can capture some of this
behavior but the large will have enough of a dilutive effect so as to preclude
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impractical values ol and\. This approach differs from letting = 1 orn = 2
because there is absolutelg dilutive effect in this case fai;, a, large.

Lastly, | chose to examine the valugs= 1,2, 3,4,5 because according to
Kuzmin’s Theorem, these values should occur with the highest frequency; there-
fore, any empirically estimated bounding function must bound Inequality 3.4.83
for these values of. | chose the rangg; = 95, ...,100 randomly, but wanted
numbers that were large enough, such that their Kuzmin expected frequencies
would be very small relative tb = 1, 2, 3, 4, 5s’ frequencies. Also, | wanted num-
bers small enough to capture the possibly large divergence causeddyy-the)®
problem, but large enough so that the beginningould dilute some of the er-
ratic behavior caused by this problem, which was accomplished by considering
n = 7,070 andk = 100. Therefore, this experiment should caputure the behav-
ior of the bounding functiome*~1) for mostk (or for mostk observed in the
expansions our test set @j over the range. = [7,070 , 2,000, 000].

For each value of. (usen; to distinguish distinct values of) and for each
value ofk, | calculated the maximum divergence from Kuzmin’s Theorem over
all the examinedv (label this maximumy(n, k) = y(n), wherey is really only a
function ofn because we fix to determine this maximum divergence overcaéit
eachn;). Then for eaclt, | plotted the maximum divergence against the different
values ofn; and found a best fit exponential decay functitin), which yielded
values forA and A. However, the best fit function did not boupé) for all n
because it was a trend line. Therefore, | obtained a best fit funktionfor each
k, such that:(n) > y(n) for 7,070 < n < 2,000,000. Motivated by Equation
3.4.83, fork = ko, | assumedh(n) is of the form:

_ A —A(n—1)
h(n) = Folho © 1>e : (3.5.93)

The equation fof(n) invloves two unknowns4 andJ, so | subjected(n) to the
following conditions:

h(nzo0) = y(nron) =W

where, m:|d(nm,) —y(nm)| > |d(n;) — ymi)| (3.5.94)

where the last inequality holds for ale (7,070, 2,000, 000]. We can now find
closed form expressions far and\ in terms of our data.
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We assumed in Equation 3.5.93 thét) =
no and = By, we begin with:

A —A(n—1 H _
CTER VIS (n=1)s0 lettingny g7o =
+_1)

h(ng) = Be ™D = 1
) = Bige X0 = 1,

Now we just solve the simultaneous equationsBgy and A:

By, = Vpermo b

A= nm_illn (;/;)

1 Vi
=\ = %ewo—l))
V; e Alng—1)
A= ()" (et
e = <VO> (6 1)
Aty <Vl>nm1
= 1) =
‘ Vo
1
— A = ( >ln (VO) (3.5.95)
Nm — No VYI

Then substitutingBy, = Ve~ from line 1 into the last line of Equation
3.5.95, we obtain an expression By, :

% (ng—1)
nm—n(Q
Vi

We have thus outlined a method for determining the constdndsd A in
Levy’s error term for a given range afbeginning withn,.

Given a numerical analysis of a set@fe K, there exists two options for
choosing the optimal values of and \. Note, we obtain a different bounding
function iy, (n) for each tested value df;. Therefore, our first choice for the
values ofA and\ is A, and);, , wherek,, is chosen such that:

By, vo( (3.5.96)

Ag, e Mm D > Ay e M) (3.5.97)

for all k; and for alln. Choosing these constants will yield the optimal bounding
function for the given test set of.
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The other choice for the values of the constantd,is and )\, , whereA;, >
Ai, and ), < A, for all i. While these choices are not optimal for our data, the
resulting bounding function:
Ay, e (1) (3.5.98)

n

will certainly be more robust than the bouding function in Equation 3.5.97, in
terms of satisfying Inequality 3.4.83 for a larger set of untestexthd for more
values ofk.

If the set of testedy is a subset of a special family of numbers (e.g. cube
roots, alla have the same Galois group, etc.), then we can expect untestefd
to behave roughly similar to the tested setwfAdditionally, some values of in
the expansions of the untested= F will produce bounding functions larger/less
than A, e (=1 Thus, taking as our bounding function the one presented in
Equation 3.5.98 will yield a bounding function better suiteddoe F' than the
function in Equation 3.5.97.

3.5.4 Results

Before we present the empirical results to the above outlined experiment, we
ask what factors should govern the valuesicind A\? We expectd’s value will
be determined by whatevér (over all o) andn exhibit the largest divergence
from Kuzmin’'s expectation. Due to the large digit problem, we expect that for
some tested € K the largest observed divergence will be for the case sinall
andk-large, namely, = 7,070 andk = 100. In other words, we expect that for
someaq, the frequency ofi; = 100 for « < 7070 will be significantly different
than Kuzmin’s predicted frequency (i.e. the evept= 100 should occur once
for i < 7,070). However, because Kuzmin’s predicted frequencydor= 100,
giveni < 7,070, is so small, anyy that does not have exactly one occurrence of
a; = 100 for ¢ < 7,070 will produce a large divergence value, in terms of percent
difference from Kuzmin’s expectation.

We cannot rely exclusively on the same intuition to determine the factors that
should affect the value of. If the bounding function fok produces the smallest
A, then the convergence pfa : a,, = k) to log, (1 + m) is slower than other
values ofk over the range of € [7,070, 2,000, 000]. Recall after fixingt, y(n)
is defined as the maximum divergence (ovewadind over all;) from Kuzmin’s
expectation of the frequency af = k given continued fraction expansions of
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lengthn;, or formally:

y(n) = max

@,y

Ind1+ 1o
W(E (Z"))— { ln';('“”)}. (3.5.99)

Furthermore, the main factor affecting the value\a$ the behavior of the “tail”
of y(n;), where the tail is defined as the valuesydf,;) for i near the end of
the range of, or in our case ~ 2,000,000. \'s value is most affected when
the tail of y(n;) is an increasing function, but for all othéiin the range ofn,
y(n;) follows an exponential decay trend (we assumedihat) and the bounding
function decay exponentially). Note, that if rangenofvere extended far beyond
n = 2,000,000 andy(n;) were an increasing function ferear2, 000, 000 but
exhibited exponential decay behavior for all othethen this non-exponential
decay behavior would have only a minimal effect)ds value.

Again, it is important to note that the constantsand A must be recomputed
using different values of, &, anda for different applications. The intention of
this experiment was to find a method for approximatihgnd \ for a given an
application.

We now present the empirically determined valuesiadnd \ for each case
of k. The values of\ should be intepreted dseported value) x 1075 and the
values ofA have been adjusted by multiplying each experimentially determined
constantB in Equation 3.5.96 by the factdr(k + 1). (see Appendix A for the
backup data, graphs and summary pages):

E A A

1 0.0221 1.464
2 0.0191 0.825
2 0.1197 1.645
4 0.1075 1.452

5 0.1232 1.826
96 1.4386 1.052
97 14404 1.219
98 2.7181 1.543
99 1.4395 1.105
100 2.8870 1.469
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The first conclusion one can draw from the data is hdtland A seem to
depend ork. We mentioned earlier that in Equations 3.3.80 and 3.448and
A were assumed to be absolute positive constants, but if one attempts to assign
numerical values to eithed or A\ then these constants become functiong: of
which depends vis a visa;(«) = k. Thus, we lose the power of both Kuzmin’s
and Levy’s error functions being independentcoto the extent thatr € K;
Kuzmin’'s and Levy’s error terms clearly depend®iif o ¢ K.

Because all the testeds belong to the family of cube roots of primes, | will
choose for the optimal bounding function the largdgt and the smallesk,, ;
thus the value ofd is determined byt,, = 100, as expected, and the value of
A is determined byt = 2, as expected after observing that foe= 2, y(n;) is
an increasing function for afl > 1, 750,000. To correct this problem we could
reperform the experiment with a longer range.pff we examined longer ranges
of n, then this non-exponential decaying tail would not have such a substantial
effect on the empirically estimated value bf But herein lies the problem with
estimating such constants.

The approximating function obtained is:

_ 2.8870 —8.2476x 10" x(n—1)
f(n) = —k(k ) X e (3.5.100)

We expect these choices fdrand A should hold for many values @f for many
« that are cube roots of prime numbers, or at least for the cube roots tested in
[Mi]. We expect this bound to hold for the set aftested in [Mi] because our
bounding function in Equation 3.5.100 was obtained fromcha this set with
the largest divergence from Kuzmin’s expectations. The consequence of choosing
the constants in such a fashion is our bounding function is not the optimal bound
for our data because of reasons discussed previously.

It is important to point out that we could také to be arbitrarily large and
A to be arbitrarily small, such that the inequality in Equation 3.4.83 is satisfied
for almost allk (almost alla) and for alln, but then we lose accuracy in our
approximation of the difference in Equation 3.4.83. An interesting question is
what are the minimum values of and A such that the inequality in Equation
3.4.83 is satisfied by a set afwith full measure?

We finally return to our question as to whether the inequality in Equation
3.4.83 can be bounded by a functichx 9™ < A x e~ *"=Y whereg(n) is
of a higher order than. Over a certain range of, we certainly can find such a
function. Two ways of constructing this function are to allow the valué' od be
very large, or to leg(n) = —An' and allow the value of to be very small; we can
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maket arbitrarily large by making\ arbitrarily small. But in general, the larger

the valuet the smaller the range af, for whichC x ¢9(" satisfies the inequality in
Equation 3.4.83. However, there is no data or theory that suggests such a function
could/will hold over a range af asn — oc.
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Chapter 4

Bounded Coefficients

4.1 Known Theory

We present the following theorem to illustrate a lower bound for how fast
converges te vis a vis the growth rate of the denominators.

Theorem 4.1.1.For anyk > 2, we have:
g >2"7  [MT], [Ki]. (4.1.1)

Proof: Fork > 2, we have thaty, = arqe—1 + Gr—2 > Qr—1 + Qu—2 > 2q_o
by Theorem 1.4.2. Repeating this inequality we arrivg.at> 2%¢, = 2* and
Gors1 > 251 > 28 = gy > 2.0

An alternative proof is provided in [MT], where the authors use the recurrence
relations of the Fibonacci sequence to boypffom below.

This theorem implies that the denominators of the convergents do not increase
more slowly than the terms of a certain geometric series. Evendf al 1 (as
is the case withy = 1+2‘/5, which is the slowest converging continued fraction),
q» Still grows at a rate equal to a geometric progression, which implies a very fast
convergence rate, in general. However, we will see in the next theorem that the
denominators cannot grow faster th&tt, which will provide useful insight into
analyzing the behavior of large valued coefficients @.e= k for k very large).

Theorem 4.1.2. There exists a positive absolute constant B such that for suffi-
ciently largen the inequality

In = qn(a) < eBn 4.1.2)

holds almost everywhere [Ki].
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| will not provide the proof of this theorem because we only need the statement
of this theorem to analyze the results presented in this chapter. However, Khint-
chine gives a slightly more explicit form fd@# in the proof, namely3 = A+log 2.
It is important to note that for almost all € [0, 1], we now have a lower and an
upper bound for the growth of the denominators of the convergents. Both bounds
are geometric progressions depending on an absolute constant. These bounds will
imply certain bounds applicable to digit values.

In other words, for almost all We have2"s < ¢, < eP". Taking then!”
roots of the inequality yielda < ¢; < e for almost all numbersy € [0, 1],
whereq = lim V2" = /2. In fact, Levy proved that there exists an absolute

n—oo

constanty such that

lim /g, =, (4.1.3)

where
G 4.1.4
In(y) = Plne (4.1.4)

If we combine Theorems 4.1.2 and 2.4.1, we find one subset of the aehaoff
satisfing Equation 4.1.2 is a set of transcendental numbers that have digit values
violating both Inequality 4.1.2 and the inequality of Louiville’s Theorem.

We now present a general result that motivated the empirical investigation
presented later in this chapter. While the theorem is self-explanatory, the results
are profound.

Theorem 4.1.3.The set of all numbers in the interv@l 1] whose coefficients are
bouded is of measure zero, pfa € [0,1] : a; < M Vi) =0

Proof: This proof can be found in [MT]. Recall that each raniaterval is a
subset of some rank—1 interval, orJ,, C J,_;. Consider Equation 3.2.18, which

gives o> < u(E (n) , or the measure of the set af whosen'" coefficient is

i)
k, is greater tha@%. Intuitively, “this results shows that in any arbitrary interval
of rankn — 1, that interval of rank: which is characterized by the valug = k
takes up a part of (at Ieasﬁg” [Ki]. In other words, the measure of the ramk
interval characterized hy, = % will be at most:

W) < (1= 2 ). (4.15)
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Applying this inequality to the theorem at hand, siage= k; < M Vi, we have
forall k < M, (1 — 55)1(Jn-1) < (1 — 5372)14(Jn-1), SO We consider:

1
3M?

u(I) < (1= o5 d), (4.1.6)

where.J, = [0, 1] and repeated application of this inequality yields:

P < (1= o)), (417)

Sincgl — 1) < 1, asn — oo, u(J}) — 0.0

Combining Theorems 2.3.6 and 4.1.3, we conclude that for a sufficiently small
fixed constant a number with bounded coefficients cannot be approximated by
a rational number better than

‘oz . —’ <L (4.1.8)

But the previous theorem states that the set of such numbers has measure zero, so
almost all numbers can be approximated by a rational number to a degree better
than in Equation 4.1.8. Note, in light of Theorem 2.4.1, quadratic irrationals

also cannot be approximated better than an ordek obut the set of quadratic
irrationals has zero measure. See [MT] for more details.

The next theorem will lead to a nice result to be presented later in Proposition
4.2.1.

Theorem 4.1.4. Letgb( ) be an arbitrary positive function of the positive integer
n. If the serlesz f dlverges then the inequality

a, = ap(a) > o(n) (4.1.9)
is satisfied an infinite number of times for almost@llOn the other hand, if the
serlesz ¢ ; converges, then the inequality is satisfidmost a finite number

of times for almost altv [Ki].

Proof: Let us consider the first statement of the theorem. J,et, be an
interval of rankn+m, such that the continued fraction expansions aofal .J,, , ,,
satisfy:

Ui < O(m + 1), (4.1.10)
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wherei = (1,2,3,...,n).
Using the same notation from Theorem 4.1.3 and recalling from Equation
3.2.16 thaju(J¥, ) > 55 u(J,), we conclude:

1 1
(T ) = BTk
k>M

k>M

1 1 1 du
2L G 7 3 | e

= ———u(J,) (4.1.11)

and since

o9
E k _

Jn+1 - Jn?
k=1

= u( > Jj;l) < {1 - m}u(m, (4.1.12)

k<M

where the first inequality in 4.1.11 is a result of Equation 3.2.16. The second
inequality is a result of reindexing the sum in line 1 and subtracﬁeg The
third inequality is a result of letting = M + ¢, and noting that this intergral is a
refinement of the sum on the left hand side. The firstline of 4.1.12 is a restatement
of Equation 3.2.13 and combining the results with Equation 3.2.16 yields the final
inequality.

Thus, lettingM = ¢(m + n + 1) in the last line of Equation 4.1.12:

1

(m+n+1

Let us sum this inequality over all rank + n intervals, whose elements satisfy
the condition in Equation 4.1.10, and denote this collection of rark: intervals
by E,, .. We obtain:

1
(I+op(m+n+1))

N(Em,n—‘rl) < {1 - 3 }M(Em,n)a (4114)
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where we lose at Iea%tl m) part of £, , because,, 1 < ¢(m+
n+1)foralla € E,, ,41.
Let the assumption in the first statement of the theorem hold, that is the series

Z ¢( dlverges then the serlg W diverges for any constant. As a
result we fixm and argue:

1
JE&H{ 1+¢(m+z))}_>0

: . 1
= Jim ) < Ji T (1 - S gl n) =0
i=1

= 1lim u(Epn) =0, (4.1.15)

n—oo

where the second line is the combination of line 1 and Equation 4.1.14. Thus, we
have that for anyn, p(E,,,) — 0 asn — oo.

For a givenm, let E,, denote the set of alh € [0, 1], such thata,,,; <
¢(m + i) for all ¢ € N, which implies this set ofv is a subset of every set:
Epni,Ensa, ..., Epnp, . ... Then from Equation 4.1.15, we hauéFE,,) = 0

LetF +FEo+...+Ep+... = E, thenu(E) = w(E1+FEy+.. . +E,+...) <

Z w(Ey) = 0. Everya, such that,, = a,(a) > f(n) is satisfied only a finite

number of times, belongs to one of the séits for a sufficiently largem, but
w(E,y,) =0 Vm. The first assertion is proved.

Now assume the serieg % conveges. Denote the embedded rank 1

interval, such that,, . ; = k,By Jk. ., C J,. We know from Equation 3.2.16:

2

which implies:
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( > Jé&) SETEAND DI

k>¢(n+1) k>¢(n+1)
1 1 T du
< 2u(n) ZO FCES e 2“““(@ " / )
= d(n+1)
_ o Ap(dn)
= —gb(n 1) (4.1.17)

where the first inequality is obtained by summing ovetkalt ¢(n + 1) in Equa-
tion 4.1.16. The second inequality is obtained by letting: ¢(n + 1) + 7 and
recognizing that > ¢(n + 1) Vn. The third mequallty |s obtained by letting

u = ¢(n+1)+i = du = di,and from calculuz( f+1) < Z m, there-
fore, the additional ter% is required to make the thlrd mequahty strict. The

. . . . . o0 du o . _1 o 1
final equality is a result of evalutating the mteg;(i{rl) 2 =0 D = 300D

and collecting the terms.
Let £}, be the set of € [0, 1], such that,,, > ¢(n), and then sum the inequal-
ity obtained in Equation 4.1.17 over all rankntervals.J,,. Thus, we conclude:

4
dn+1)

Since)’ m converges, the sefs,, F», ..., F,,... form a convergent series,

and by then!" term test,u(F,) — 0 asn — oo. Therefore, if we allowr” to be

the set of allv € [0, 1], which belong to infinitely many,, thenu(F') = 0.
Justifying this final step is an exercise in metric set theory: (I will follow the

H(Fo) < (4.1.18)

proof presented in [Ki]). For anyn, the setF' is contained in the sed’ F,,

which implies thatu(F) < > u(F,). Takingm to be sufficiently large, we

can makeu(F') arbitrarily small. By constructiont’ is the set of all numbers for
which the condition in Equation 4.1.9 is satisfied infinitely often.
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4.2 Motivation

Kuzmin’s Theorem holds for all numbers € [0, 1] except for a set of zero
measure. An implication of Kuzmin’s Theorem is theob(a; = k) > 0 for all
k € N. In other words, fork arbitrarily large anchv € K, there is a positive
probability that for some coefficient in o’s expansion, we have, = k.

On the other hand, ik, has a continued fraction expansion whose coefficients
a; are bounded by/, thenProb(a; = k) = 0 for all k > M and alli. As aresult,
ap € Z,where[0,1] \ K = Z.

Let o have a continued fraction expansion whose coefficients are bounded by
a monotonically increasing functiof(i) (i.e. a; = k; < g(i) Vi). What is the
slowest growing positive functiog(i) such thatx € K? Clearly, we have:

lim g(i) = o0 (4.2.19)
Consider the following argument: lety = [0; a;, ao, . . .| € [0, 1] be irrational.
For ease of exposition, we ignore the error term in Kuzmin’s Theorem, then Equa-
tion 3.5.85 gives:

Prob(a; = k) = log, (1 n (4.2.20)

i)

which gives the value aProb(a; = k) for all k € N. Therefore, ifk occurs with

probability Prob(a; = k), then we expect for some< m thata; = k.

In general, the frequency of = k is given bym, or the event; = k

occurs once in everym coefficients. For illustration purposes, consider
k =1,2,3,4 substituted into Equation 4.2.20:

Prob(a; = 1) = 0.4150
Prob(a; = 2) = 0.1699
Prob(a; = 3) = 0.0931
Prob(a; = 4) = 0.0589 (4.2.21)

These computations correspond to observing 1 about once in everm ~ 2
digits, a; = 2 once in everyﬁ ~ 6 digits, a; = 3 once in everyﬁ ~ 11
digits, anda; = 4 once in every%% ~ 17 digits.

Thus, suppose our bounding functigft) took the following valueg(1) =

L g(2) =1,93) =2, 9(4) =2, g(5) = 2, g(6) = 2, g(7) = 3, g(8) =
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3, 9(9) =3, g(10) =3, g(11) = 3, g(12) =4, g(13) =4, g(14) =4, g(15) =

4, g(16) =4, g(17) =4, g(18) =5, ..., 0rg(i )growswnhlog2( ). By choosing

¢g(1) as our bounding function we could construct an expansion, whose coefficients
obey Kuzmin’s probability distribution in the limit. Since this expansion would
hold in the limit, writing down one of the infinitly possible expansions would be
virtually impossible. The general form of such an expansion is to allow all digit
valuesk’ < g¢(i) for all i to occur with Kuzmin's expected frequency, and the

1 R T e—
eventa; = k, must occur once fof- e G —— L < 10g2(1+W)

and thenk, becomes one of the's. See Proposition 4.4.1 for a formal analysis of
this function.

Couldg(7) be the minimal bounding function, such that the set ofvadl [0, 1],
whose coefficients are boundeddyy), has full measure and also obeys Kuzmin’s
Theorem? The answer is no.

We argued the function(n) = log,(n) is the slowest growing bounding func-
tion, such that a continued fraction expansion can obey Kuzmin’s Theorem in the

limit. In light of Theorem 4.1.4, because the s@ dlverges the inequality

g(n) > a, is satisfied for only a finite number @L (f|n|tely often) for almost all

a (i.e. a set of full measure with possibly the exception of a zero measure set).
In other words (o € [0,1] : a, < g(n) = logy(n) infinitely often) = 0, where
infinitely often means ag(n) grows withn the inequalitya,, < g(n) is satisfied
for an infinite number ofi,,. Thus, we must consider a faster growing function
¢(n) to ensure that(« € [0, 1] : a, < ¢(n) infinitely often) = 1.

Proposition 4.2.1. For an arbitrarily small constant > 0, the function
p(n) = n'te (4.2.22)

is a positive growing function of, such thaip(n) > a, holds for all but a finite
number ofa,, for almost alla € [0, 1] (denote this set af by S), and such that
Kuzmin’s Theorem is satisfied by almostalE S.

Proof: Let¢(n) = n'™< and note

=1
y (4.2.23)
— n1+

converges for any > 0. Thus, by our definition of in the proof of Theorem
4.1.4, the inequalityy(n) = n'*c > a, is violated only finitely often for almost
all o € [0, 1] (see the analysis following Equation 4.1.18).
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Let K(S = F. Sinceu(a € K) =1 = p(a € S)we haveu(F) = 1, which
is the set ofx € [0, 1] that obeys Kuzmin’s Theorem and satisfies the inequality
of the proposition for all but possibly a finite number of digits.

Extending the analysis of the proof, for almostalE K the inequality of the
proposition is satisfied for all but possibly a finite number of digits, and almost
all « € S obey Kuzmin’'s Theorem. In light of our discussion preceeding this
proposition, sincex!™ > log,(n) for all n, the functionn'*< grows sufficiently
fast such that Kuzmin’s probability lawan be satisfied for almost alk € S.
Kuzmin’s probability law cannot be satisfied for alle S because those whose
coefficients are bounded IByn) < log,(n) are elements of.

The only shortcoming of Proposition 4.2.1 is the relationship) > a, is
violated possibly a finite number of times fare S and almost allk € K. But
does there exist a “slowest” growing function such that) > a,, is satisfied for
all n for almost alle € K?

One approach to finding such a function is to analyze the sef. In theory,
we want to add a constanf («) to n' < for eacha € F', such that the inequality
n't¢ + M(a) > a, holds for alln for this «. If we could determine the value
of M («) for o, we can then try to find one value of that works for alle € F
simultaneously; it would b&/ = max M («) if this limit did indeed exist. But

sinceu(a € F) = 1, we cannot find easily//’s value because the number of
a € Fis uncountable. However, for a given, € F, we theoretically could
find a function of the formd(n) = n'*c + M such thatd(n) > a,(«ap) for all
n. By Proposition 4.2.1, it is possible to find this function foralk F because
¢(n) > a, is violated only a finite number of times.

The implication of Theorem 4.1.4 and Proposition 4.2.1 is almost all numbers
a € [0,1] have unbounded coefficients, which is easy to see sihaen'™ =

n—oo

oo. However, from Proposition 4.2.1 we conclude the digits in the expansions of
almost alla € [0, 1] cannot become unbounded too quickly, too often. Clearly,
we could make the same statement for almost adl .

Therefore, except for a set of zero measurepalt K satisfy Proposition
4.2.1, and as a resulf, consists of alky, whose coefficients satisfy, < logz(n)
except for possibly a finite number of digits.

By Proposition 4.2.1, ifv's coefficients satisfy;,, < n'* only finitely often,
then Inequality 3.4.83 cannot be satisfieddfrvaluesk, which impliesa € Z.

69



4.3 Results

Let L be an arbitrarily large number amde K, then it is extremely difficult
to test the strength of Kuzmin’s Theorem for> L because the probability that
a; = L is very small. Consider the following: Kuzmin predicts tHatob(a; =
L) =log,(1 + m) < €, wWheree is arbitrarily small for sufficiently largé..

Thus, we should observe = L for somei < % but for L sufficiently large and
sufficiently small, computers will not distinguighfrom oo or e from 0.

If a; # L for somei < A, whereA is regarded as the maximum number
of coefficients that can be computed within “reasonable” time by a computer and
a computer can distinguisi from oo, then we could never determine whether
a; = L occurs, in the limit, with a frequency commensurate to Kuzmin’s expeca-
tion. This problem becomes especially difficult to circumvenlet i A. Thus,
the problem with testing Kuzmin’'s Theorem foy = L is we cannot compute
enough coefficients to verify Kuzmin’s probability law (Equation 3.5.85); how-
ever, because of the theoretical results in Chapter 3, we must have faith and as-
sume Kuzmin’s Theorem holds for all values bfwith an error term that is a
function of bothZ andn.

Reiterating the logic mentioned above: if a continued fraction expansion of an
irrational number is bounded, then this expansion cannot possibly obey Kuzmin'’s
Theorem (Equation 3.5.85) for all values/afAs a result, forr € K, we expect
to observe arbitrarily large coefficient values somewhere in its expansion. In fact,
for « € K andk € N, the probability of never observing the event= k is:

lim (1 — Prob(a; = k))" =0 (4.3.24)

Based on research performed last year by Princeton University undergradu-
ates under the tutelage of professors Ramin Takloo-Bighash and Steven Miller,
Kuzmin’s Theorem appears to hold in many different forms for the continued
fraction expansions of prime roots of prime numbers (see [MT] for a summary
of some of the results). The behavior of these expansions truncated after the first
500, 000 digits comported with Kuzmin’s Theorem.

Motivated by these results, we examined the the first five prime roots of the
first 117 prime numbers and the same roots of the first 100 primes greater than
108, denote byT” this set of testv. After having Mathematica compute the first
106 coefficients in the continued fraction expansion of each T', | determined
the maximum digit value and its position, as well as the values,of anda,,, .

Here, | will present the most astonishing results and a segway into the theoretical
explanations governing our results.
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The average maximum coefficient value forc T was 16,058,523, which
Kuzmin predicts should occur with a probability 5 x 10~1° implying that
a; = 16,058,523 should occur once evey83 x 10'* coefficients; however the
average position of the maximum digii,() wasm = 501,381, and we note
501,381 < 1.83 x 10'. The largest observed coefficient value was in the expan-
sion of6195: the 326, 959" digit’s value was2, 625, 830, 672, which occurs with
probability 2.09 x 10~'%. The fact that such large coefficient values consistently
occurr very early in the continued fraction expansionstaf 7" may imply the
continued fraction expansions of our testjenerally converge to their true value
faster than othet € K. | now offer a summary table of the data sorted by roots;
note the “Min-Max Digit” is the lowest maximum digit value of all the tested
for each root, or for each root the Min-Max Digit ?Gijr}(Max. Digit(«)): (see

Appendix A for full results)

Category Va e va Va Vo
Max Digit 2.63 x 10° 299 x10% 201 x10° 1.79x10° 1.21 x 10°
Pos. of Max 3.27 x 10°  6.74 x 10°  9.67 x 10°  2.22x 10°  7.84 x 10°
Min-Max Dig. 2.09 x 10° 1.91 x 10° 247 x10° 257 x10° 1.94 x 10°
Pos. of Min-Max 647 x 10°  6.21 x 10*  6.42 x 10° 5.01 x 10>  1.35 x 10°
Avg. Max 2.17x 107 724 x 105 1.89x 107 1.30 x 10"  1.94 x 107
Prob. of Max 2.00 x 107" 1.62 x 10717 357 x 10719 451 x 107 9.78 x 10~
Prob. of Min-Max 3.30 x 10~ 3.95 x 107! 2.36 x 10~ 2.18 x 107'* 3.84 x 10~ "

While the results seem to vary across the different prime roots, Kuzmin’s The-
orem suggests if we were to consider a sufficiently latgeall the maximum
values should be relatively similar. A possible explanation for the ‘early’ occur-
rence of these large valued digits is the event= k,, (wherem is defined above)
will not reoccur for alli < W Because Kuzmin’s Theorem holds in the

limit, if we observer occurrences of the eveat = k,, in the flrstﬂ =1
coefficients, then we expect the continued fraction expansion to passesdn-
crements of coefficients of Iengtgi such that; # k,, for all 7 in these
increments. However, due to computatlonal limitations, we cannot conclude with
full certainty that the expansions of our tesbehave in such a manner; therefore,
we cannot conclude that our data do or do not fall perfectly in line with Kuzmin’s
Theorem.

Fora € T, we set out to show empirically the digits of a continued fraction
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expansion can assume arbitrarily large values, and our data do not reflect a sys-
tematic bound for the values of the coefficients, which may imply the coefficients
of a € T are unbounded. Observing very large digit values so early in the expan-
sion lends more evidence to the theory that the coefficient values in the continued
fraction expansions for almost all € [0, 1] can be arbitrarily large, which was

the expected result.

Because our test were also elements ok, we expected for at least one
ag € T, the maximum valued coefficiemt,, (o) = L, where Kuzmin expects
the eventa; = L to occur once every0°® coefficients. However, we showed
empirically the minimum-maximum valued coefficient had value 191, 228 =
Prob(a; = L) = 3.95x 1071, which means the event = 191, 228 should occur
approximately once every 25 billion coefficients.

Do prime roots of prime numbers consistently disobey Kuzmin’s Theorem
regarding the occurrence of large valued digits? Could the occurrence of such
large values suggest that continued fractions converge faster to their truewalue
than Kuzmin predicts? Or, could these large values indicate a faster convergence
rate for the first, coefficients of a given continued fraction than for the tail of its
expansion? Does there exist a correlation between the position of the maximum
digit and the value of the maximum digit? Does there exist a correlation between
the value of the coefficient before/after the maximum valued coefficient and the
value of the maximum coefficient? Theoretical answers to these questions will be
provided below. The empirical results on the correlation questions can be found
in Appendix A.

4.4 Possible Theoretical Explanations of the Results

From Proposition 4.2.1, let
d(n) = n'te, (4.4.25)

wheree > 0 is arbitrarily small. Intuitively, lettings(n) = n'*t¢ means that for all
but possibly a finite number of coefficients, the vallg ¢f the coefficient:; will

not exceed its position almost everywhere. Comparing this theoretical expec-
tation to our results by replacingwith m in Equation 4.4.25, we note for almost
everya € T we observed:,, > m!'*¢, where we recalln denotes the position
of the maximum valued coefficient in the expansiormab 10° coefficients and

e > 0 is an arbitrarily small constant; but the inequatity< »n'*< should hold for
only a finite number ofi,, according to the Proposition. Thus, while our empirical
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results seem extraordinary, we can write them off as one of the finite violations
of the inequalitya,, < ¢(n), but some of our results do indeed comport with the
Proposition.

By examining the zero measure setcofor which Kuzmin’s Theorem does
not hold (denoted by’), we can determine if the behavior of our extraordinary
a € T warrants classification of theseas elements of despite their Kuzmin-
like behavior shown in [Mi].

4.4.1 Kuzmin's Measure Zero Set

The zero measure s&t, for which Kuzmin’s Theorem does not hold, has not
been described in an explicit form. However, based on empirical studies as well
as theoretical arguments, some of the subsets compusicen be described. It
is important to note that while a set C Z, there may be some € Z;, for
which Kuzmin’s Theorem does indeed hold for most values.of herefore, the
task at hand is to locate those sgtsC Z with the property that for allyy, € Z;,
there exists: such thatProb(a;(ag) = k) = 0, or such thatProb(a;(ag) = k) #
log, (1 + m)

The first zero measure subset6fs the set(), or the rational numbers. Since
rational numbers have finite continued fraction expansion, the expansion termi-
nates, and we can actually determine the distribution of édcdhn eacha € Q.

More importantly, we can determine the maximum valued coefficigiidr) = M

in the expansion of each € @; thus, for eachy € @ there exists,,(a) = M,
such that;(«) < M ViandProb(a;(a) =k > M) =0= @Q C Z. However, it
may be the case that somec () appear to obey Kuzmin’s Theorem for a finite
number of valueg throughout their continued fraction expansions; but these
cannot obey Kuzmin’s Theorem for all

The second zero measure subdgtdf 7 is the set of quadratic irrationals.
This set has zero measure because it is a countable set. The quadratic irrationals
are included irZ because their continued fraction expansion is periodic (see [Ki]);
therefore for eacln € I there exists a maximum value coefficient(a) = M
(i.e. a;(a) < M Vi) andProb(a;(a) =k > M) = 0= 1 C Z. Included in the
quadratic irrationals are the golden raﬁQ“—g, the set ofa obtained in [Fi], and
all « with continued fraction expansions of the fofimk, . . ., k|, all of which are
zero measure sets because the number of elements in each set is countable.

By a similar argument given for the rationals, we conclude that the third zero
measure subset df is the set B) of a with bounded coefficients. Neo € B can
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satisfy Kuzmin’s Theorem for alt because to each € B there corresponds a
number)/, such thaw,;(«) < M for all ¢; as a result, for each € B, we have
Prob(a;(a) =k > M) =0 = Bis nota subset oK. We know from Theorem
4.1.3 thatu(B) = 0, and therefore3 C Z.

Numerical tests that | conducted suggest [2;1,2,1,1,4,1,1,6,1,1,8,.. ]
ande’ = [7;2,1,1,3,18,5,1,1,6,30,8,1,1,9,42,11, .. ] are also elements df.
Also, Lang [La] showed that certain rational functiong @fre not in Kuzmin’s set,
and Dimofte [Di] showed empirically that any “linearly periodic continued frac-
tion retains its linear periodicity under a rational scaling or shift,” which implies
this set ofa are not in Kuzmin’s set. Additionally, we can include an uncountable
collection of irrational and transcendental numbers that do not obey Kuzmin’s
Theorem as elements afwithout violatingu(Z) = 0.

Finally, we are ready to add two additional subsetg of

Proposition 4.4.1. Let v(i) be a positive growing function afsuch that for all

positive integers we havey(i) < g(i), whereg(i) grows Wlthﬁ. Let
k(k+2)

G be the set ofv € [0, 1] whose coefficients satisfy(i) < a;(«) only finitely
often. TherG C Z andu(G) = 0.

Proof: Lety(i) < g(¢) for all i. Kuzmin’s Theorem (Equation 3. 3 80) im-

plies fora € K we should observe;(«) = k for somel < i < —————
10g2(1+k(k+2))

However, suppose that the digits(«r) were bounded by the functiog(i) =
which grows likelog,(i). Then asa € K we expect to see the

eventa; = k once for some(i) ~ k — 1 < i < g(i) = k, where we use” be-
causeg(i) ¢ Z for alli. If the digits of an expansion are boundedty), then we
would expect to see the event= k once forsome (i) ~ k—1 < i < (i) = k.
But since we we assumeqd:) < g(i), we know thaty(ig) ~ k = g(i1) =~ k
impliesig > 5.

Let N be an arbitrarily large integer, then there exigissuch that Kuzmin
expects the event; = ky to occur once foi < N, and this expected frequency
could be satisfied by the expansion whose coefficients are bounde oif
a; = ko for someg(i) ~ ko — 1 < ¢ < g(i) = ko; by construction, the
corresponding tg(i) ~ ky isi = N. Using the samé,, there exists = N’ such
thaty(N") ~ ko, but sincey(i) < g(i) we haveN" > N and the expansion whose
coefficients are bounded by(i) cannot obey Kuzmin’s expected frequencies for
digit valuek,.

If we let N — oo, we observe such expansions cannot even satisfy Kuzmin'’s
expected frequencies in the limit for &lbecause we can continue choosiNg
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arbitrarily large, finding a correspondirtg, and arguing as above. Furthermore,
if we apply the argument above for infinitely many, then not even the finite
violations of the inequalityy > a,,(«) can warrant cIassﬁymg with such expan-

sions as elements df. Finally, smcez om0 We havez dlverges and

by Theorem 4.1.4 we concludéG) = . D

Can we strengthen the previous proposition by findihg= Z, such that for
everya € G' we havea,, > ~(n) infinitely often? The answer is no by Theorem
4.1.4 and Proposition 4.2.1.

Before we describe the final s&f C 7, we need to present an amazing The-
orem proved by Khintchine. | will not present the proof, but we must understand
that the proof of this theorem relies upon and is derived from Kuzmin’s Theorem.

Theorem 4.4.2.Let f(r) be a non-negative function of the positive integer
Further let positive constants andé exist such that:

flr) < Cra?, (4.4.26)

forr =1,2,3,.... Then for all numbers: € (0, 1), with the exception of those of
a set of measure zero, we have:

n 9] lo 1 + _1

. 1 g r(r+2)
nh_)Holo " Z flay) = Z f(r) ( log 2 ) , (4.4.27)
k=1

r=1

where the convergence of the series follows from the conditions imposg&a)on
[Ki]

Let us assume that this theorem is true ang'(e} = logr forr =1,2,3,.. .,
then the condition set forth in Equation 4.4.26 is satisfied. Thus, as co the
following relation holds almost everywhere:

n e 10g 1 +
1 < 7(r+2)>
— E log(a,) — E lo . 4.4.28

If we raise each side of this relation as a power ahd use the fact thét log(a) =
log(a®), then we have:

log(r)
log 2

Waray - ay, — H { 3 } . (4.4.29)
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We conclude for almost all € (0,1) and as» — oo, the geometric mean of the
first n coefficients tends to an absolute constant given by:

log(r)

e¢] 1 log 2
1 = 2.68545. 4.4.
H{ +T(T+2) 68545 (4.4.30)

r=1
While we recognize that this mean is commonly referred to as Khintchine’s con-
stant, we will also call this constant Kuzmin’s expected geometric mean.
For alla € K, Kuzmin’s Theorem gives a probability distribution of the digit
valuesk, so the area under this distribution should be equdl tblowever, we

cannot compute the expected valuéd:dfecause the seri€s, & log, (1 + m)
k=1
diverges. Since we cannot find the expected valuk, efe should next examine

what conclusions we can make regardifge; for a typicala € K.
=1
In the proof of Theorem 4.1.2 (see [Ki]), one would have reasongd-ife4”
thenu(E,(g) = {a € (0,1) : ayas---a, > g}) = 0. This inequality implies for
sufficiently largen and for almost altv we have:

aras - - a, < " (4.4.31)

By manipulating Kuzmin's Theorem and using Theorem 4.4.2 and Equations
4.4.30 and 4.4.31, we have fare K: [Ki]

log(k)
log 2

11 {1 + m — 2.68545. (4.4.32)

k=1

o0

Therefore, Equation 4.4.30 is particularly useful in expressing the expected value/behavior
of the digit values in an expansion of a typicak K.
We are now ready to present our final subsef of

Proposition 4.4.3.Let T denote the set consisting of al] such that for an abso-
lute constantd > 1 and a sufficiently large,, we have:

Gn = qnl@) < 2" (4.4.33)

Then the se((o, 1)\ T) = F C Z, whereZ is the zero measure set for which
Kuzmin’s Theorem does not hold.
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Proof: By Theorem 4.1.2, as — oo the inequalityg, < 2"e4" is satisfied
for almost alla € (0,1) (again, this set ofv is denoted byl'). By Theorem
4.4.2, asn — oo all « € K satisfy the product relationship in Equation 4.4.30.
Combining these two results yieldg7 () K) = 1 because both sef§ and K
have full measure. However, we will show there exists a subset 7" such that
T' ¢ K andu(T') = 0. If T" does exist, thedl c 7" and notT C K.

As a consequence Theorem 4.4.2, we hjje, = (2.68545)" forall « € K

k=1
asn — oo, whereaq,, is the k" digit of the continued fraction expansion af
Thus, by Theorems 4.1.1 and 4.1.2 we know there exist twolsefs C T but
that are not subsets &f.

Let 77 be the set ofiv whose coefficient product converges to a number less
than(2.68545)" asn — oo (for example consideay%g). Clearly, T} C T but
as a result of Theorem 4.4.2 (in particular Equation 4.4.30) we haf@K = ()
soT) C Z.

Let T be the set ofx whose coefficient product converges to some number
between(2.68545)" ande”, whereA > 1. ThenT, C T, butT, (K = 0 by
Theorem 4.4.2, s@, C Z. BothT}, T, have zero measure becaygé() = 1.

Sinceu(K) = p(T) = 1 and there exist$y, 7, C T but that are not subsets
of K, we haveK C T.

Let i = [0,1] \ 7, which implies the coefficient product of evety € F
converges to a number greater thatt. By Theorem 4.1.2u(F) = 0 and by
Theorem 4.4.2 (in particular Equation 4.4.30) we havg K. ThusF C Z.

Collecting our results, we conclude there exists a zero measurg set
T, JT»J F suchthatZ' ¢ Z.0

It is important to point ouZ’ does not necessarily correspond to the whole set
Z. Thus, the result of the previous proposition is to give another characterization
of the elements of. FurthermoreZ provides us a way to test empirically if
a € K simply by examiningy’s coefficient product. Although, in practice, we
convert this product to a sum by using logarithms. Now we can use Equation
4.4.30 combined with the previous proposition to ascertain if our previous data on
large valued coefficients are too extraordinary to be classified as Kuzmin numbers.
Intuitively, we expect thex with the largest maximum coefficient values will have
coefficient products greater than Khintchine’s constant, which would imply these
expansions converge faster in the fitéf coefficients to their true values than
Khintchine predicts in Equation 4.4.30.

To put this convergence hypothesis to the test, | considered the fwth the
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largest maximum coefficient values in the fit8f coefficients, and the five with
the smallest maximum coefficient values over the same range. | then computed
the product of the first0° coefficients for these tem:

106

Tl

=1

(4.4.34)

| computed the absolute constant in Equation 4.4.30 by evaluating the product
fromr = 1tor = 10° and fromr = 1 tor = 108, both of which yielded the
constant.68545 (in actually implementing the program, | converted the product
into a sum using properties of logarithms). Later | confirmed this result with
Mathematica’s table of constants. Thus, we can test Kuzmin’s expected geometric
mean versus the observed geometric mean of the coefficients in the expansions of
the ten suggested. The coefficient products for these terare presented below,

along with Kuzmin’s expected geometric mean raised taltlié power.

Number

KuzminFExpected

Smaller M aximums

V149
VA67
V613
¥/10000439
\/10001461

Greater M azimums

V10001207

MaxV alue Product
N/A 1.18 x 10429017
191228 8.60 x 10429851
209076 7.88 x 10129253
193849 4.93 x 10429279
247303 2.90 x 10429880
216987 1.19 x 10%28903
1214823489 5.73 x 10428485
1789321825 8.67 x 10428560
2009559864 1.59 x 10429429
2625830672 5.21 x 10428858
809115083 8.66 x 1029083

Act. — Kuzmin

~ 8.60 x 10429851
A~ 7.88 x 1(*29253
A~ 4.23 x 10429279
A~ 2.90 x 10429880

~
~

~
~
~
~
~
~

~
~

—1.18 x 1029017

—1.18 x 10#29017
—1.28 x 10429017
1.59 x 10429429

—1.28 x 10429017

~ 8.66 x 10129083

Act.—Kuz.
Kuz

7.29 x 1083
6.68 x 1023
3.58 x 10262
2.46 x 1063

7.24 x 1096

Two phenomena within these results are worth noting. First, six of the ten
coefficient products examined were significantly larger than Kuzmin expected in
both absolute and relative terms, which could be explained by considering the
possibility that continued fraction expansions converge faster to their actual un-
derlying number than Kuzmin expects in Equation 4.4.30. Perhaps, in the limit
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(i.e. n > 10%), the empirically observed convergence rates eventually fall in line
with the theoretical convergence rates expected by Kuzmin, but this fact can be
shown best through more numerical experiments. A final possibility is the,six
whose coefficient products were larger than Kuzmin’s expectation, do not belong
to our Kuzmin set. However, given the analysis in [Mi], it is difficult to believe
this explanation accurately describes the behavior of the data.

Secondly, four of the fiver's with the smallest maximum coefficients exhib-
ited coefficient product values that were significantly larger than the value pre-
dicted by Kuzmin. On the other hand, only two of the five with the greatest
maximum coefficients had coefficient product values significantly greater than the
value expected by Kuzmin. This result is quite astonishing and suggests the fol-
lowing question: Are continued fraction expansions with an early occurrence of
a large coefficient value balanced out more than the expansions with a smaller
maximum coefficient value by a greater number of low valued coefficients (i.e.
k=1,2)?

The above data may further imply convergence ie slower for thosev with
an extremely large coefficient value in the fit$f coefficients than for those
with smaller maximum coefficient values over the same range. However, it would
still seem peculiar that continued fractions with the smallest maximum coeffi-
cients would converge significantly faster than those with the greatest maximum
coefficients. Perhaps, we can best explain this observation by concluding the set
of o, whose continued fraction expansions have a very large coefficient value
early in the expansion, is not approximated as well by rational numbers as those
a, whose continued fraction expansions have much smaller maximum coefficient
values over the same range (ire= 10°).

If we exclude allv € Z, we question if irrationals whose coefficient values are
unbounded but remain relatively small (i.e. small relative to othbeing exam-
ined) actually converge faster to their true values than those irrationals whose co-
efficient values are unbounded and actually assume arbitrarily large values, given
an analysis of: coefficients. If so, this could imply a subclassification of the ir-
rationals into those irrationals that can be represented well by a fraction and those
irrationals for which it is harder to represent as a rational number.

Linking this data analysis to our theory of unbounded coefficients is a bit dif-
ficult due to the lack of sufficient empirical research and theoretical constructs.
Some of the general conclusions we can draw from these data lead to more very
interesting topics of potential research.

To test the hypothesis that continued fraction expansions, with an early occur-
rence of a very large maximum coefficient value, are balanced out more than the
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expansions, with smaller maximum coefficient values, by a greater number of low
valued coefficients (i.ek = 1,2) (hereinafter “the balancing hypothesis”), we
present the following experiment and results. For both groupstekted in the
previous experiment, we will determine if the number of coefficients with values
k =1,2,3, or4significantly diverges from Kuzmin’s expectation for these values
of k, see Equation 3.5.85:

Number 1's 2's 3's 4's  Total Low Digits
Kuzmin Expected 415037 169925 93109 58894 736965
Smaller Mazimums

/149 413998 170019 93285 59044 736346
/467 414896 170057 93127 58995 737075
/613 414216 170856 92950 58683 736705
v/10000439 415125 169654 92893 58305 735977
§/10001461 414672 170571 93194 59168 737605
Larger Maximums

V11 415489 169796 93408 58839 737532
/337 415310 170015 92811 58843 736979
/389 415126 169549 92653 59264 736592
/619 415352 170358 93073 58508 737291
/10001207 415710 168921 93013 59074 736718

The following conclusions hold for expansions of lengtk= 10°. We do not
observe a significant difference between the two sets iofthe number of total
low valued coefficients; however, there is a substantial discrepancy between the
two sets ofa with regard to the number of observéd. Four of the fiver in the
smaller maximum group have fewg&g in their expansion than Kuzmin’s expects
for a typicala € K. Unfortunately, thex with more1’s than Kuzmin expects is
not thea, whose coefficient product is smaller than Kuzmin’s expected geometric
mean (determined in the last experiment).

On the other hand, everyin the greater maximum group has mafein their
expansions than Kuzmin predicts. In fact, thén the smaller maximum group
with the mostl’s still has a feweil’s in its expansion than in the expansion of the
a in the greater maximum group with the least numbet'sf

If we compare the average numberldf of each group, we find the smaller
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maximuma have on averaggl 4, 581 coefficients with the valué, and the larger
maximuma have on averagéls, 397, which corresponds to a difference&if6.
In other words, in the expansion of our testo 10° coefficients, we observed
on average&16 morel’s in the greater maximum group than in the smaller max-
imum group. Since the larger maximum setoco€onsistently has moré&s than
the smaller maximum set ef, we could infer thex in the larger maximum set
converge to their true values slower than éhie the smaller maximum set. There-
fore, we may be able to justify empirically our proposed subclassification of the
irrationals: the set of larger maximumare ’less rational’ than the set of smaller
maximumq.

Two possible explanations could justify our results:

First, perhaps the difference is explained by Levy’s error term. We cannot
apply the error function found in Equation 3.5.100 becauses the rangearef
significantly different. The value of in Equation 3.5.100:

_ 2.8870 —8.2476x 107 x(n—1)

f(n) = —k(k ) X e (4.4.35)
was governed by the behavior of the tails (i1e800, 000 < n < 2,000, 000) of
the different cases df. Therefore, our bounding function will not apply to our
present data.

We can calculate the error function’s required value in order to explain the
disparate number dfs by Levy’s expected error. All cases of the different num-
ber of coefficients with valué must be explained by our error function, which
implies our limiting cases ar¢/149 with 413, 998 observed.’s and /10001207
with 415, 710 observed’s. In other words:

[413,998;415,710] C 415,037 &+ (error function value x 10°%), (4.4.36)

which gives an error function value @f01037. This value seems reasonable given
0.277 is the value of the error function in Equation 3.5.100 evaluatéd-atl and

n = 2 x 10°. Therefore, our set of test appears to obey Kuzmin's Theorem
with regard to the expected number of coefficients with vakuesl or 2, but the
disparate products are still unexplained.

If in fact Levy’s error function could not explain our results, then consider the
possibility that the balancing hypothesis is true. Then if we see on avéi&ge
less1’s in the expansion of the smaller maximumwe must conclude that these
816 coefficient values are at lea®t where this average holds for an expansion
to 10° coefficients. Therefore, the smaller maximunhave an additional factor
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in their coefficient product of at leagt'® = 4.37 x 10?*5, which is substantial
given this is a lower bound of the additional factor. Since the total number of
small valued (i.e.k = 1,2,3,4) coefficients are rougly equal between the two
groups ofa, we can infer that this lower bound is relatively close to the actual
additional factor. Moreover, because we observe an equal number of small valued
coefficients for both sets af, the additional factor’s value can range anywhere
in the interval[2819, 4316] = [4.37 x 10?*°,1.91 x 10*']. If this phenonom holds
for a larger test group, then we possibly could believe the balancing hypothesis is
valid.

Without loss of generality, we také = 1 in Theorem 4.1.2; then for every
in the larger maximum set and for everyn the smaller maximum set, the empir-
ically computed coefficient product is significantly less thé#fi. Therefore, the
six a, whose coefficient products were greater than Kuzmin’s expected geometric
mean, do behave wildly in their firg0® coefficients if this behavior is measured
by the expectation given in Equation 4.4.30; but this wild behavior is not so ex-
treme so as to characterize these @ias elements of the zero measure set for
which Theorem 4.1.2 does not hold.

| will attempt to to provide some theoretical basis for the balancing hypothesis,
which states the occurrence of an extremely large digit value will be balanced out
by more than expected digits equal toor 2. Recall we have from Kuzmin’'s
Theorem, Theorem 4.4.2, and Equation 4.4.30:

log(r)

log 2
Vatag - ay — H { D } = 2.68545 (4.4.37)
Let K(I,n) be Kuzmin’s expected number of coefficients= [ in an ex-
pansion of lengtm. Suppose for some = [0;a4,...,q;,...,a,,...] € K and

for a’s continued fraction expansion tocoefficients, we have; = k for some
i < n, wherek satisfiesn < m. It is clear there exists some € N,

such that(2.68545)" ~ k, and from Equation 4.4.37 and our assumptioa K,
we knowa's coefficient product must tend {@.68545)™. Therefore, if Equation
4.4.37 holds approximately for afl, then the lengthn expansion ofx should
possess roughly (I, n) + p coefficients with value$ = 1 or [ = 2, or a mix
of both! = 1,2, wherep > h (equality holds if allp ‘balancing coefficients’
have valuel). In other words, the coefficiemt = k is balanced out by a greater
than expected number of coefficients with valdesr 2 so thata’s coefficient
product tends td2.68545)". But since Equation 4.4.37 holds in the limit and
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there is always some error associated with truncated continued fraction expan-
sions, we may observe fewer balancing coefficients ghand it is unlikely we

will observe these balancing coefficients in the firsoefficients, but they should
occur somewhere in the expansionaf Finally it is important to mention the
above argument does not preclude the frequent occurrence of large valued digits
k; close together, where the valuesare distinct and close is determined relative

to Kuzmin’s expected frequency of each distihgct
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Chapter 5

Conclusion

This thesis has explored many facets of Kuzmin's Theorem. The first two
chapters provided the necessary background to understand the theory in Chapters
3 and 4. All of the results presented in the early chapters were not absolutely
essential, but every result or proof builds the reader’s intuition about the behavior
of continued fractions; this was the main goal of the first two chapters.

The most theoretical and detailed concept presented in this thesis was Kuzmin’s
Theorem, and while Kuzmin’s Theorem is not elementary, | attempted to present
it in full detail while keeping the arguments self-contained (within this thesis).
The same Theorem was proved by Levy with a different error function. Although
| neglected to include Levy’s proof, | did provide a method for estimating bioth
and\ in his error function for a given set aof over a range ofi. While A and\
are absolute constants in theory, as soon as we attempted to assign numerical val-
ues to these constants, we saw that bbdnd )\ become functions of the range
the beginning:, and the test set ef. Given that these absolute constants became
functions of our data, | suspect we will encounter the same dilemna in answering
what the minimum values ol and X are such that Levy’s inequality holds for a
set of full measure.

Motivated by my work on continued fractions in 2003 [Mi], | wanted to find a
more rigorous definition of the zero measure setor which Kuzmin’s Theorem
does not hold. In addition to the many known subset& oive used some theo-
rems presented in Khintchine’s work [Ki] to argue for the inclusion of two more
sets inZ.

However, in finding these additional subsets, we realized we were on the road
to finding Khintchine’s constant, which allows us to subclassify irrational num-
bers. Finally, there may be additional theory to support the balancing hypothesis
presented in Section 4.4.1, but more empirical work is needed to fully develop the
intuition needed to prove or disprove this hypothesis.
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Chapter 6

Appendix A
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