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1 INTRODUCTION

Everyone knows that BC — before calculators, π was 22/7 and AD — af-
ter decimals, π became = 3.14159265 . . . . In other words, π is quite well
approximated1 by the vulgar fraction 22/7 ; and some of us know that 355/113
does a yet better job since it yields as many as seven correct decimal digits.
The ‘why this is so’ of the matter is this: It happens that

π = 3 + 1
7 + 1

15 + 1
1 + 1

292 + 1
1 + . . .

For brevity, a common flat notation for such a continued fraction expansion is

[3 , 7 , 15 , 1 , 292 , 1 , . . . ] .

1 That π �= 22/7 follows from

0 �=
∫ 1

0

t4(1 − t)4

1 + t2
dt =

22

7
− π .
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The entries 3 , 7 , 15 , . . . are known as the partial quotients, and the truncations,
for example

[3 , 7] = 3 +
1
7

=
22
7

,

or
[3 , 7 , 15 , 1] =

355
113

are known as convergents of π .

The important truth is that the convergents ph/qh , h = 0, 1, 2, . . . yield good
rational approximations, indeed excellent ones relative to the size of the de-
nominator qh . In the present example∣∣∣∣π − 22

7

∣∣∣∣ <
1

15 · 72
and

∣∣∣∣π − 355
113

∣∣∣∣ <
1

292 · 1132
,

instancing the general result that∣∣∣∣π − ph

qh

∣∣∣∣ <
1

ch+1 · q2
h

,

where ch+1 is the next (as yet unused) partial quotient. In particular 22/7 and
355/113 yield unusually good approximations to π because the subsequent
partial quotients, respectively 15 and 292 , are relatively large.

1.1 Or consider the following example: Apéry’s proof, see [8] of the ir-
rationality of ζ(3) alerts one to simple combinatorial proofs for the pair of
formulæ ∞∑

n=1

1
n2

= ζ(2) = 3
∞∑

n=1

1
n2

(
2n
n

)
and ∞∑

n=1

1
n3

= ζ(3) = 5
2

∞∑
n=1

(−1)n−1

n3
(
2n
n

) .

The proofs do not appear to generalise, but it seems natural to experiment and
to ask about the constant c in

∞∑
n=1

1
n4

= ζ(4) = c

∞∑
n=1

1
n4

(
2n
n

) .

Since, of course, ζ(4) = π4/90 , and since the series on the right converges quite
rapidly, it was not a big thing to make a programmable calculator reveal that

c ≈ 2.1176470588 .
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The question is: ‘Have we computed a rational number?’ This appears to raise
a metaphysical problem until continued fractions come to the rescue. We have

c = 2 + 1
8 + 1

2

up to calculator accuracy (the next partial quotient is huge!). Thus, plainly, one
should guess that c = 36/17 and that it is indeed rational2.

1.2 In any event, continued fractions are a good thing and their properties
should be better known. Accordingly we provide a crash introduction to the
subject below. Our object is to describe a congenial method for finding the
continued fraction expansion of algebraic numbers: zeros of polynomials with
rational integer coefficients. An amusing feature turns out to be that the algo-
rithm is proved to work by virtue of deep results from the theory of diophantine
approximation.

If γ = a/b is rational — algebraic of degree 1 — then we set γ = γ0 = a0/b0

and obtain its sequence of complete quotients (γh) by

γh =
ah

bh
= ch +

bh+1

bh
with ch ∈ Z and bh+1 < bh ;

next ah+1 = bh . The continued fraction of γ terminates and its expansion is
equivalent to applying the Euclidean algorithm to the pair of integers a and
b consisting of the numerator and denominator of γ ; that, incidentally, may
explain the term ‘partial quotient’. If γ is a real quadratic irrational then
the algorithm is again easy to describe explicitly. In fact, there is a positive
algebraic integer α , with conjugate denoted by α , and rational integers P and
Q so that we may set

γ =
α + P

Q
with Q

∣∣ (α + P )(α + P ) .

2 This was discovered experimentally in just the way described here; and verified rather later:
AvdP noticed, in the introduction to Lewin’s book [6], that∫ π/3

0

x
(
log(2 sin 1

2
x)

)2
dx =

17π4

6480
.

This must of course be the same 17 . Because

2(sin−1 x)2 =
∑
h≥1

(2x)2h
/ (2h

h

)
,

integration by parts indeed shows this to be the formula we were attempting to establish; see [9].
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One has γ = [c0 , c1 , c2 , . . . ] , where the partial quotients are obtained by
setting γ = γ0 = (α + P0)/Q0 and

γh = (α + Ph)/Qh = ch − (α + Ph+1))/Qh with − 1 < (α + Ph+1))/Qh < 0 ;

so Ph + Ph+1 + (α + α) = chQh . The next complete quotient

γh+1 = (α + Ph+1)/Qh+1

is given by QhQh+1 = −(α+Ph+1)(α+Ph+1) . It is easy to confirm by induction
that the Ph are integers bounded by −α < Ph+1 < −α and that the Qh are
positive integers bounded above by α − α . It follows immediately that there
are only finitely many possibilities for the pairs (Ph, Qh) and that therefore the
continued fraction expansion must be eventually periodic.

1.3 Higher matters, that is the continued fraction expansions of algebraic
numbers of higher degree, are less well understood. Suppose then that γ is
presented as a real zero of a polynomial

f(X) = a0X
r + a1X

r−1 + · · ·+ ar

with a0, a1, . . . , ar ∈ Z and gcd(a0, . . . , ar) = 1 . We can suppose that a0 > 0 ,
and that γ is a simple zero of f since otherwise we deal with the greatest
common divisor of f and f ′ . Thus we may locate γ by the fact that f suffers
a change of sign in an interval containing γ .

Suppose that we have found that the complete quotient γh is the unique positive
zero of the polynomial

fh(X) = ah,0X
r + ah,1X

r−1 + · · ·+ ah,r ,

with rational integers ah,i and ah,0 > 0 . We shall see, surprisingly perhaps,
that this situation is generic — the phenomenon of reduction discussed below
entails that our polynomials have just one positive zero. Then we may search
for the integer ch so that fh(ch) < 0 but fh(ch) > 0 . Having found the partial
quotient ch we then define

fh+1(X) = −Xrfh(X−1 + ch) ,

and find that γh+1 is the unique real positive zero of fh+1 .

It turns out, however, that a simple-minded search for ch , sequentially trying
each positive integer, can be very slow because the partial quotients may be
surprisingly large. For example, with α = 3

√
2 one has, see [5],

c35 = 534 , c41 = 121 , . . . , c571 = 7451 , c619 = 4941 , . . .
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and yet more strikingly

3
√

5 = [1 , 1 , 2 , 4 , 3 , 3 , 1 , 5 , 1 , 1 , 4 , 10 ,

17 , 1 , 14 , 1 , 1 , 3052 , 1 , 1 , 1 , . . . ] .

The continued fraction expansion of the real zero of X3 − 8X − 10 is

[3 , 3 , 7 , 4 , 2 , 30 , 1 , . . . , ch , . . . ]

with, inter alia

c17 = 22986
c33 = 1501790
c59 = 35657
c81 = 49405

c103 = 53460
c121 =16467250
c139 = 48120
c161 = 325927

These examples are admittedly quite exceptional. There is no reason to believe
that the continued fraction expansions of nonquadratic algebraic irrationals
generally do anything other than to faithfully follow Khintchine’s Law as de-
tailed below. Indeed experiment suggests that this is even true for parts, short
relative to the length of the period, of the expansions of quadratic irrationals.
Large partial quotients are statistical accident and warrant the comment that
exception attracts. Mind you, the final example is, as it were, too accident prone
to just be dismissed as statistical fluctuation. Its large partial quotients observed
by Brillhart are more than just happenstance. This is beautifully explained by
Stark [12]. After the initial excitement we detail above, the expansion settles
down to normalcy.

1.4 The transformation T on α : 0 < α < 1 so that Tα = α−1 − �α−1� yields
the complete quotients of α . It can be seen that generally

lim
N→∞

1
N

N∑
1

f(Tnα) =
∫ 1

0

f(x) dµ, with dµ =
1

log 2
dx

1 + x
,

so on taking f as the characteristic function of the interval ( 1
k+1 , 1

k ] we find
that for a random real α = [c0 , c1 , . . . ] the probability that some given partial
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quotient ch equals k is

1
log 2

∫ 1/k

1/(k+1)

dx

1 + x
=

1
log 2

(
log

k + 1
k
− log

k + 2
k + 1

)
, k = 1, 2, . . .

Thus, for example, almost all real α have some 41% of their partial quotients
equal to 1. The interested reader will find an extended discussion of this
and related matters in Knuth [K], §s 4.5.2–3. Remarkably, Gauß had already
guessed the correct form of the invariant measure for the transformation T
accounting for Khintchine’s Law as just described.

Of course, we do not know whether algebraic numbers of degree greater than
2 behave as do almost all real numbers. We believe that to be so, but there
are neither theorems nor examples. Thus it is an open question whether all,
or indeed any, algebraic numbers of degree 3 or more have unbounded partial
quotients.

2 AN INTRODUCTION TO CONTINUED FRACTIONS

As we have already remarked, a continued fraction is an object of the shape

c0 + 1

c1 + 1

c2 + 1
c3 + . . .

which we abbreviate as
[c0 , c1 , c2 , c3 , . . . ] .

2.1 Virtually all principles of the subject are revealed by the following corre-
spondence:

If a sequence c0, c1, c2, . . . defines the sequences (ph) and (qh) by

(
c0 1
1 0

) (
c1 1
1 0

)
· · · · · ·

(
ch 1
1 0

)
=

(
ph ph−1

qh qh−1

)
for h = 0, 1, 2, . . .(1)

then
ph

qh
= [c0 , c1 , . . . , ch] for h = 0 , 1 , 2 , . . . .
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Conversely the sequence of convergents ph/qh define matrices
(

ph ph−1

qh qh−1

)

which decompose as above as a product of matrices displaying the sequence
of partial quotients (ch) .

Since a quotient p/q leaves the pair (p, q) ill-defined we are to interpret that
last remark sympathetically in the sense that the claim is true for some choice
of p and q (in practice, with the two relatively prime and q positive).

The indicated correspondence between continued fractions and special products
of 2×2 matrices is readily established by an inductive argument. Notice firstly
that the sequence of partial quotients (ch) defines the sequences (ph) and (qh)
appearing in the first column of the matrix product. Since the empty product
of 2× 2 matrices is the identity matrix, we are committed to

(
p−1 p−2

q−1 q−2

)
=

(
1 0
0 1

)
.(2)

We may then readily verify by induction on h that the second column of the
product indeed has the alleged entries. Thus we have the recursive formulae

ph+1 = ch+1ph + ph−1

qh+1 = ch+1qh + qh−1 .

(3)

We verify the principal claim by induction on the number h + 1 of matrices
appearing on the left in the product. The claim is easily seen true for h = 0
since, indeed p0 = c0 and q0 = 1 . Accordingly, we suppose that

(
c1 1
1 0

) (
c2 1
1 0

)
· · · · · ·

(
ch 1
1 0

)
=

(
xh xh−1

yh yh−1

)
for h = 0 , 1 , 2 , . . .

if and only if

xh

yh
= [c1 , c2 , . . . , ch] for h = 0 , 1 , 2 , . . . ,

noting that this is a case of just h matrices.

But(
ph ph−1

qh qh−1

)
=

(
c0 1
1 0

) (
xh xh−1

yh yh−1

)
=

(
c0xh + yh c0xh−1 + yh−1

xh xh−1

)
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entails

ph

qh
= c0 +

yh

xh
= c0 +

1
[c1 , . . . , ch]

= [c0 , c1 , . . . , ch] ,(4)

verifying the claim by induction.

2.2 Taking determinants in the correspondence immediately yields the funda-
mental formula

pnqn−1 − pn−1qn = (−1)n+1 or
pn

qn
=

pn−1

qn−1
+ (−1)n−1 1

qn−1qn
.(5)

It is then immediate that

pn

qn
= c0 +

1
q0q1

− 1
q1q2

+ · · ·+ (−1)n−1 1
qn−1qn

.(6)

Almost invariably, but not always, in the sequel the ci are positive integers —
excepting c0 which may have any sign; indeed those are the criteria for partial
quotients to be admissible. However, our description is formal and the actual
nature of the partial quotients is thus of no matter in much of our description,
the next remark being an exception.

It follows from what we have said that one can make sense of nonterminating
continued fractions

γ = [c0 , c1 , . . .] ,

for evidently,

γ = c0 +
1

q0q1
− 1

q1q2
+ · · · = c0 +

∞∑
n=1

(−1)n−1

qn−1qn
(7)

and, this being an alternating series of terms with decreasing size, the series
converges to some real number γ .

2.3 In this context, we recall that the terminating continued fractions

ph

qh
= [c0 , c1 , . . . , ch] h = 0 , 1 , 2 , . . . . . .
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are called convergents of γ and the tails

γh+1 = [ch+1 , ch+2 , . . . ](8)

are known as its complete quotients. Note that we have, formally,

γ = [c0 , c1 , . . . , ch, γh+1] h = 0, 1, 2, . . . .(9)

These remarks immediately yield the approximation properties of the conver-
gents. For we have

γ − ph

qh
= (−1)h

( 1
qhqh+1

− 1
qh+1qh+2

+ · · ·
)
.(10)

This shows that the sequence (qhγ− ph) alternates in sign and that, in absolute
value, it converges monotonically to zero. Less precisely, we see that

∣∣∣∣γ − ph

qh

∣∣∣∣ <
1

qhqh+1

and, recalling (3) : qh+1 = ch+1qh + qh−1 implies yet less accurately that
∣∣∣∣γ − ph

qh

∣∣∣∣ <
1

ch+1q2
h

.

Thus a convergent yields an exceptionally sharp approximation when the next
partial quotient is exceptionally large. This is amply illustrated by the example

π = [3 , 7 , 15 , 1 , 292 , 1 , . . . ] ,

already cited in our introduction, which with

[3 , 7] = 22/7 [3 , 7 , 15 , 1] = 355/113

entails ∣∣∣∣π − 22
7

∣∣∣∣ <
1

15.72

∣∣∣∣π − 355
113

∣∣∣∣ <
1

292.1132
< 10−6

making appropriate the popularity of those rational approximations to π .

2.4 We now return to the beginning. Noting that

γ = [c0 , c1 , . . . ] = c0 +
1

[c1 , c2 , . . . ]
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we see that
c0 = �γ�

and
γ1 = [c1 , c2 , . . . ] = (γ − c0)−1 .

The general step in the continued fraction algorithm is

ch = �γh� and γh+1 = (γh − ch)−1 h = 0 , 1 , 2 , . . .

An infinite partial quotient terminates the expansion. Since

[c0 , c1 , . . . , ch]

is rational it is evident that if the continued fraction of some γ terminates
then that γ is rational. Conversely, since, as is plain from (5), ph and qh

are relatively prime, and, since by (3) the sequences (|ph|) and (qh) are both
monotonic increasing, it follows that if γ is rational then its continued fraction
does terminate. Indeed, for a rational γ = a/b , the continued fraction algorithm
is just the Euclidean algorithm. That is (setting ah+1 = bh ):

a = c0b + b1 0 ≤ b1 < b

a1 = c1b1 + b2 0 ≤ b2 < b2

a2 = c2b2 + b3 0 ≤ b3 < b2

...
ah = chbh

corresponds to

a

b
= [c0 , a1 , . . . , ch] and gcd(a, b) = d = ch

and as we have mentioned, explains the term ‘partial quotient’. Since a/b =
ph/qh with gcd(ph, qh) = 1 we must have dph = a and dqh = b . Moreover, by
(5)

pnqn−1 − pn−1qn = (−1)n+1 so aqn−1 − bpn−1 = (−1)n−1d ,

and this displays the greatest common divisor as a Z-linear combination of a
and b . By |pn−1| < |pn| and qn−1 < qn it follows that this combination is
minimal.

2.5 The entire matter of continued fractions of real numbers could have been
introduced using the following:
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A rational p′/q′ with gcd(p′, q′) = 1 is a convergent of γ if and only if

|q′γ − p′| < |qγ − p| for all integers q < q′ and p .

To see this suppose that n is chosen so that qn−1 < q < qn . Then, by the
unimodularity of the matrix

(
pn pn−1

qn qn−1

)

there are integers a and b so that

apn−1 + bpn =p

aqn−1 + bqn =q

and, necessarily, ab < 0 . Multiplying by γ and subtracting yields

qγ − p = a(qn−1γ − pn−1) + b(qnγ − pn) .

But, by (10), we have (qn−1γ − pn−1)(qnγ − pn) < 0 . Hence

|qγ − p| = |a||qn−1γ − pn−1|+ |b||qnγ − pn| ,

and plainly |qγ − p| > |qnγ − pn| as asserted.

The preceding proposition asserts that the convergents of γ are exactly those
quantities yielding the locally best approximations to γ . One can develop the
entire theory, working backwards in the present program, from the notion of
locally best approximation; once again, the formula (5) plays the fundamental
role.

Moreover, one has the following useful criterion due to Lagrange:

If

|qγ − p| < 1
2q

then p/q is a convergent of γ . Note that this condition is sufficient but not
necessary.

By our previous remark it suffices to show that |qγ − p| is a locally best ap-
proximation. To see that is so take integers r , s with 0 < s < q and notice
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that

1 ≤ |qr − ps| = |s(qγ − p)− q(sγ − r)| ≤ s|qγ − p|+ q|sγ − r|
≤ s

2q
+ q|sγ − r| .

So certainly q|sγ − r| ≥ 1− s/2q > 1/2 and it follows that |qγ − p| < |sγ − r|
as claimed.

Incidentally, this argument shows that when, for example, dealing with contin-
ued fractions of formal power series, one already has that p/q is a convergent
of f if and only if |qf − p| < |q−1| .

2.6 We conclude by applying the matrix correspondence to develop a formu-
laire: From

γ = [c0 , c1 , . . . , ch , γh+1]←→
(

ph ph−1

qh qh1

) (
γh+1 1

1 0

)

we have
γ =

γh+1ph + ph−1

γh+1qh + qh−1
and γh+1 = −qh−1γ − ph−1

qhγ − ph
.

Hence

γ − ph

qh
=

γh+1ph + ph−1

γh+1qh + qh−1
− ph

qh
= (−1)h−1 1

qh(γh+1qh + qh−1)
.(11)

Transposition of(
c0 1
1 0

) (
c1 1
1 0

)
· · · · · ·

(
ch 1
1 0

)
=

(
ph ph−1

qh qh−1

)

yields
ph

ph−1
= [ch , ch−1 , . . . , c0] and

qh

qh−1
= [ch , ch−1 , . . . , c1] .

Hence

−γh+1 =
−γqh−1 + ph−1

γqh + ph
←→ −γh+1 = [0 , ch , ch−1 , . . . , c0 − γ] .(12)

3 CONTINUED FRACTIONS OF ALGEBRAIC NUMBERS

We suppose that γ is presented as a real zero of a polynomial

f(X) = a0X
r + a1X

r−1 + · · ·+ ar
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with a0, a1, . . . , ar ∈ Z and gcd(a0, . . . , ar) = 1 , and that to distinguish it from
other zeros of f we are told that

γ = [c0 , c1 , . . . , cm , . . . ] .

We can suppose that a0 > 0 , and that γ is a simple zero of f since otherwise we
will choose to deal with the gcd of f and f ′ , a polynomial of smaller degree.
Thus we may locate γ by the fact that f suffers a change of sign in an interval
containing γ .

Our method is, in principle, to compute a sequence of polynomials

fh(X) = ah,0X
r + ah,1X

r−1 + · · ·+ ah,r , h = 0, 1, . . . ,

with rational integer coefficients ah,i and ah,0 > 0 having the complete quo-
tients γh as a zero. Indeed, we will have, sequentially,

fh+1(X) = ±Xrfh(X−1 + ch) .

A core observation is that we will eventually obtain a reduced polynomial (and
then the minus sign is always appropriate):

Proposition 1 The zeros βh (say) of fh distinct from γh all satisfy |βh| < 1
and −1 < Re βh < 0 for h sufficiently large.

Proof . Suppose firstly that Re βm < 0 . Evidently Re(βm − cm) < −1 since
cm ≥ 1 , so −1 < Re βm+1 < 0 and |βm+1| < 1 . Secondly, if Re βm−1 < cm−1

then clearly Re βm < 0 . Thirdly, if Re βm−2 > cm−2 + 1 , then evidently
Re βm−1 < 1 < cm−1 . Finally, suppose that cn < Re βn < cn + 1 . Then β
shares its first n partial quotients with γ and that entails |γ − β| < q−2

n−1 . But
that is eventually absurd because β is distinct from γ .

Note. Given f , there evidently is an effective upper bound for m , as described,
in terms of the degree r and the height of the given polynomial f . In practice,
the data γ = [c0 , c1 , . . . , cs , . . . ] required to identify the zero γ uniquely may
well essentially suffice to yield a reduced polynomial.

In the sequel we assume, as we evidently may, that f is reduced from the outset;
thus for each h = 0 , 1 , . . . γ = γ0 , γ1 , . . . is inter alia the unique zero > 1 of
f = f0 , f1 , . . . .

Having obtained the complete quotient γh+1 , thus having

γ = [c0 , c1 , . . . , ch , γh+1] ,
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we now turn to the problem of finding the next partial quotient ch+1 . Recalling
that γh+1 is a zero of

fh+1(X) = ah+1,0X
r + ah+1,1X

r−1 + · · ·+ ah+1,r ,

we may use the fact that fh+1 is reduced to estimate γh+1 ≈ −ah+1,1/ah+1,0 ,
knowing that this cannot involve an error greater than r − 1 . But we can do
much better:

Proposition 2 To avoid notational clutter set qh = q , ph/qh = x , and qh−1 =
q′ . Then

γh+1 =
(−1)h+1

q2

f ′(x)
f(x)

− q′

q
+

(−1)h

q2

∑
f(β)=0

β �=γ

1
x− β

.

Proof . Trivially

γh+1 =
∑

fh+1(αh+1)=0

αh+1 −
∑

fh+1(βh+1)=0
βh+1 �=γh+1

βh+1 .

But by (11), whereby α− x = (−1)h/q(qαh+1 + q′) , we obtain

αh+1 =
(−1)h+1

q2

1
x− α

− q′/q .

Then (as is readily seen by taking the logarithmic derivative)

f ′(x)
f(x)

=
∑

f(α)=0

1
x− α

yields the assertion.

Remark. It is not difficult to obtain increasingly precise estimates for the final
error term in (13). Indeed,

lim
X→γ

(
f ′(X)
f(X)

− 1
X − γ

)
=

f ′′(γ)
2f ′(γ)

entails that in
∑

f(β)=0
β �=γ

1
x− β

=
f ′′(x)
2f ′(x)

+
(

f ′(x)
f(x)

− 1
x− γ

− f ′′(x)
2f ′(x)

)
,
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the error term on the right is of order O(x− γ) = O(q−2) . One can iterate this
idea3 to obtain an expansion

∑
f(β)=0

β �=γ

1
x− β

=
f ′′(x)
2f ′(x)

+ (x− γ)
3
(
f ′′(x)

)2 + 2f ′(x)f ′′′(x)

12
(
f ′(x)

)2 + O
(
(x− γ)2

)

allowing one, in principle, to have an arbitrarily small error in one’s estimate
for γh+1 in terms of ph/qh , qh and qh−1 . However, in practice the error term
is not needed at all, at any rate once h is large.

Indeed, if the error term were to affect the true value of �γh+1� then γh+1 is
extremely close to an integer and evidently either ch+2 = O(q2

h) or ch+2 = 1
and ch+3 = O(q2

h) . In either case we obtain a rational p/q approximating γ to
an accuracy O(q−4) . By Roth’s theorem [11] this is not possible for arbitrarily
large q . Of course Roth’s theorem is ineffective. However for cubic irrationals
γ , thus when r = 3 , we have an effective guarantee from Liouville’s theorem
and for higher degree irrationals we may, if necessary, choose to estimate the
error term to appropriate accuracy, as proposed above, to obtain a definite value
for �γh+1� . In summary:

Theorem 3 Define the (r + 1)× (r + 1) matrices M(c) by

M(c) = −
∥∥∥∥
(

r − j

i

)
cr−j−i

∥∥∥∥
0≤i,j≤r

and denote by a(h) the column (ah,0, . . . , ah,r)
′ of coefficients of the polynomial

fh(X) = ah,0X
r + ah,1X

r−1 + · · ·+ ah,r

given by
M(ch)a(h) = a(h + 1) h = 0, 1, . . . .

If γ > 1 is the unique positive zero of the polynomial f(X) = f0(X) and the
positive integers ch satisfy f(ch) < 0 < f(ch + 1) then γ has the continued
fraction expansion

γ = [c0 , c1 , c2 , . . . ]

3 As was pointed out to one of us by David Cantor.
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and the partial quotients ch are given by ch+1 = �γh+1� where

(13) γh+1 = −ah,1

ah,0
+ (r − 1)

qh−1

qh
+

(−1)h

q2
h

∑
f(β)=0

β �=γ

1
ph

qh
− β

=
(−1)h+1

q2
h

f ′(ph

qh
)

f(ph

qh
)
− qh−1

qh
+

(−1)h

q2
h

∑
f(β)=0

β �=γ

1
ph

qh
− β

.

Example. It is easy to confirm that X3 − 2 is reduced after the initial step of
the algorithm and that indeed 3

√
2 = [1 , c1 , c2 , c3 , . . . ] , with

ch+1 =
⌊

(−1)h+1

qh

3p2
h

p3
h − 2q3

h

− qh−1

qh

⌋
h = 0, 1, 2, . . . ,

where(
ph+1 ph

qh+1 qh

)
=

(
ch+1 1

1 0

) (
ph ph−1

qh qh−1

)
and

(
p0 p−1

q0 q−1

)
=

(
1 1
1 0

)
.

Thus, contrary to received wisdom, there may well be ‘a formula’ for the con-
tinued fraction expansion of an algebraic number of degree greater than 2 .
However, such a formula does not necessarily usefully increase our under-
standing of the nature of the partial quotients of such a number. To make that
manifest one notes that the notorious 3x + 1 problem is readily recast as a
similar, but simpler formula

xh+1 = (1 + xh − 2�xh/2�)xh − �xh/2� with x0 ∈ Z.

John Conway has shown that it is undecidable whether general games of this
sort are unbounded or cycle.

4 COMMENTS

It is not of course a new thought that one should develop the continued fraction
of an algebraic number by finding the sequence of defining polynomials of its
complete quotients. Indeed all we say, other than the ‘explicit’ formulae for
the partial quotients, is applied in the computations of Lang and Trotter [5] and
presumably in earlier work [1], [7] and [10]. Our observations were in part
motivated by our desire not to inconvenience a HP-41 calculator in guessing
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the partial quotients. In the interim, during the ‘maturation’ of our thoughts,
[3] reports apparently related formulas.

Nonetheless, it does not seem to be widely appreciated — presumably because
the cited authors commence with a reduced polynomial without commenting
extensively on that simplification — that the algorithm leads to a reduced
polynomial generalising the phenomenon well known in the quadratic case,
where reduction signals the commencement of periodicity. Mind you, that the
algorithm leads to a reduced polynomial could be better known4. In essence,
it dates back at least to Vincent’s Theorem of 1836. In effect, Vincent shows
that applying our algorithm with arbitrary positive integer ‘partial quotients’
eventually yields a polynomial with at most one positive zero. Of this result
Uspensky [13] writes: ‘This remarkable theorem was published by Vincent
in 1836 in the first issue of Liouville’s Journal, but later [was] so completely
forgotten that no mention of it is found even in such a capital work as the
Enzyclopädie der mathematischen Wissenschaften. Yet Vincent’s theorem is
the basis of the very efficient method for separating real roots . . . ’. The issue
of identifying the particular real zeros to be expanded, with which we deal just
cursorily, is considered in extenso in [2].

Proposition 2 and the subsequent remark yields very precise rational approxi-
mations for the complete quotient. It is immediate that a substantial sequence
of the partial quotients of such a rational coincides with the partial quotients
of γ . Generally speaking, using just Proposition 2, one can expect to be able
to double the number of partial quotients already obtained by expanding the
rational approximation. Whether a partial quotient x obtained in this way is
indeed a partial quotient of γ can be checked by observing that

f(x) ≈ (x− γ)f ′(γ) ,

so that x certainly is a partial quotient whenever f(x) is surprisingly smaller
than f ′(γ) relative to the height of x . However, since the difficulty in applying
the continued fraction algorithm is the exponential growth of the pn and qn ,
it is not clear whether the ability to leap through the expansion is all that
material. Moreover, the rational approximation is of the same quality as the
approximation yielded by the naı̈ve use of Newton approximation.

4 We are indebted for this information to Emery Thomas.
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