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1 INTRODUCTION

Everyone knows that BC — before calculators, = was 22/7 and AD — af-
ter decimals, = became = 3.14159265... . In other words, = is quite well
approximated! by the vulgar fraction 22/7; and some of us know that 355/113
does a yet better job since it yields as many as seven correct decimal digits.
The‘why thisisso’ of the matter isthis. It happens that

T=3+ 1

For brevity, acommon flat notation for such a continued fraction expansion is

3,7,15,1,292 1, ...].

I That = # 22/7 follows from

1

t4(1 —t)% 22
0 dt=="=—r.
7é/0 1+¢2 7 "

137
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Theentries 3, 7, 15, ... areknown asthe partial quotients, and thetruncations,
for example

1 22

3,7 =3+-=—

3.7 =8+2=2,

o 355
[377,1571]:m

are known as convergents of .

The important truth is that the convergents p,/q,, h = 0,1,2,... yield good
rational approximations, indeed excellent ones relative to the size of the de-
nominator ¢, . In the present example

20 _ 1 355 1
TS 15 T3 T 2921132
instancing the general result that

1

27
Ch+1 * G},

ﬂ*lﬁ <

qdh

where ¢, isthe next (asyet unused) partial quotient. In particular 22/7 and
355/113 yield unusually good approximations to = because the subsequent
partial quotients, respectively 15 and 292, are relatively large.

1.1 Or consider the following example: Apéry’s proof, see [8] of the ir-
rationality of ((3) alerts one to simple combinatorial proofs for the pair of

formulee
>~ 1 =1
— =¢(2)=3
and X
— 1 5 (=)
—=(3) =3 o~

The proofs do not appear to generalise, but it seems natural to experiment and
to ask about the constant ¢ in

o0 o0

Zﬁzcu):cZﬁ-

n=1 n=1 n

Since, of course, ¢(4) = 7*/90, and sincethe series on theright converges quite
rapidly, it was not a big thing to make a programmable calculator reveal that

¢~ 2.1176470588 .
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Thequestionis: ‘Have we computed arational number? Thisappearstoraise
ametaphysical problem until continued fractions come to the rescue. We have

c=24+ 1
8+ 1

2

up to calculator accuracy (the next partial quotient ishuge!). Thus, plainly, one
should guessthat ¢ = 36/17 and that it isindeed rational®.

1.2 Inany event, continued fractions are a good thing and their properties
should be better known. Accordingly we provide a crash introduction to the
subject below. Our object is to describe a congenial method for finding the
continued fraction expansion of algebraic numbers: zeros of polynomialswith
rational integer coefficients. An amusing feature turns out to be that the algo-
rithmisproved to work by virtue of deep resultsfrom the theory of diophantine
approximation.

If v =a/bisrational — algebraic of degree 1 — thenwe set v = vy = ag/bo
and obtain its sequence of complete quotients () by

’Yh:Z—::Ch-i-bZZl
next a1 = b,. The continued fraction of + terminates and its expansion is
equivalent to applying the Euclidean algorithm to the pair of integers o« and
b consisting of the numerator and denominator of ~; that, incidentally, may
explain the term ‘partial quotient’. If ~ is a real quadratic irrationa then
the algorithm is again easy to describe explicitly. In fact, there is a positive
algebraic integer o, with conjugate denoted by @, and rational integers P and
Q so that we may set

with cp €7 and brt1 < by;

a+ P

N = WithQ | (a+ P)(@+ P).

2 Thiswas discovered experimentally in just the way described here; and verified rather | ater:
AvdP noticed, in the introduction to Lewin’s book [6], that

/3 4
.1 2 177
/0 a:(log(Q sin 5:v)) de = G480 °
This must of course be the same 17. Because
2h
aa—1 2 _ 2h
2(sin™ " z)* = E (2z) / ( h) ,
h>1

integration by partsindeed shows thisto be the formulawe were attempting to establish; see[9].
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Onehas v = [co,c1,¢2,...], Where the partial quotients are obtained by
setting v = o = (a + P)/Qo and

Yh = (OerPh)/Qh =cp — (a+ Ph—',—l))/Qh with — 1 < (a+ Ph+1))/Qh <0;
SO Py, + Phy1 + (o +@) = ¢,Qy . The next complete quotient

Yht1 = (@ + Pry1)/Qnia

isgivenby Q,Qn+1 = —(a+Pui1)(@+Pyy1). Itiseasy toconfirm by induction
that the P, are integers bounded by —a < P, < —a and that the Q,, are
positive integers bounded above by o — @. It follows immediately that there
areonly finitely many possibilitiesfor the pairs (P, Q) and that therefore the
continued fraction expansion must be eventually periodic.

1.3 Higher matters, that is the continued fraction expansions of algebraic
numbers of higher degree, are less well understood. Suppose then that ~ is
presented as area zero of a polynomial

f(X)=aX"+a X"+ +a,

with ag,ay,...,a, € Z and ged(aq, . . .,a,) = 1. We can suppose that aq > 0,
and that ~ is a simple zero of f since otherwise we deal with the greatest
common divisor of f and f’. Thuswe may locate v by the fact that f suffers
achange of signin aninterval containing .

Supposethat we have found that the complete quotient +, istheunique positive
zero of the polynomial

Sn(X) = anoX" +an 1 X"+ Fan,,

with rational integers a,; and a0 > 0. We shall see, surprisingly perhaps,
that this situation is generic — the phenomenon of reduction discussed below
entails that our polynomials have just one positive zero. Then we may search
for theinteger ¢, sothat f,(cn) < 0 but f,,(c;) > 0. Having found the partial
guotient ¢, we then define

fr(X) = =X"fu(X " +cn),
and find that ~,,; isthe unique real positive zero of f, .

It turns out, however, that a simple-minded search for ¢;, sequentialy trying
each positive integer, can be very slow because the partial quotients may be
surprisingly large. For example, with o = /2 one has, see [5],

C35 = 534, Cq1 = 121, ey Cs71 = 7451, C19 — 4941,
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and yet more strikingly

V5=1[1,1,2,4,3,3,1,5,1,1,4,10,
17,1,14,1,1,3052,1,1,1,...].

The continued fraction expansion of thereal zero of X3 —8X — 10 is

3,3,7,4,2,30,1,...,¢ch,...]
with, inter alia
ci7 = 22986
c33 = 1501790
cs9 = 35657
Ccg1 — 49405
C103 — 53460
C121 =16467250
C139 = 48120

Ci161 = 325927

These examples are admittedly quite exceptional. Thereisno reasonto believe
that the continued fraction expansions of nonquadratic algebraic irrationas
generally do anything other than to faithfully follow Khintchine's Law as de-
tailed below. Indeed experiment suggests that thisis even true for parts, short
relative to the length of the period, of the expansions of quadratic irrationals.
Large partial quotients are statistical accident and warrant the comment that
exception attracts. Mindyou, thefinal exampleis, asit were, too accident prone
tojust bedismissed asstatistical fluctuation. Itslarge partial quotientsobserved
by Brillhart are more than just happenstance. Thisis beautifully explained by
Stark [12]. After theinitial excitement we detail above, the expansion settles
down to normalcy.

1.4 Thetransformation T on a: 0 < a < 1 sothat Ta = a=! — |a7!] yields
the complete quotients of «. It can be seen that generally

1 dx
log2 1+

)
N—o0

1 N 1
i — n = d th du =
lim N El f(T"a) /0 f(z)du, with du

so on taking f as the characteristic function of the interval (45, +] we find

that for arandomrea o = [¢o , c1 , .. .] the probability that some given partial
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guctient ¢;, equals k is

1 /W da 1 k+1 k+2
= (l — log
log2 J1/(kg1y 1+ log2 k k+1

Thus, for example, almost all real o have some 41% of their partial quotients
equal to 1. The interested reader will find an extended discussion of this
and related matters in Knuth [K], §s 4.5.2-3. Remarkably, Gaul3 had already
guessed the correct form of the invariant measure for the transformation T
accounting for Khintchine's Law as just described.

Of course, we do not know whether algebraic numbers of degree greater than
2 behave as do almost all real numbers. We believe that to be so, but there
are neither theorems nor examples. Thusit is an open question whether all,
or indeed any, algebraic numbers of degree 3 or more have unbounded partial
guotients.

2 ANINTRODUCTION TO CONTINUED FRACTIONS

Aswe have already remarked, a continued fraction is an object of the shape

co+ 1
o+ 1
o+ 1
C3+.

which we abbreviate as
[CQ,Cl ,02,037...].

2.1 Virtualy al principles of the subject are revealed by the following corre-
spondence:

If a sequence ¢y, c1,ca, ... defines the sequences (py) and (qn) by
o 1 €1 1 Ch 1 _ (Ph Ph-1 _
(1)(1 0)(1 0) (1 0>_(qh g ) Torh=0.12 ..
then
Pn

— =Jcg,c1,...,¢4] for h=0,1,2,....
dn



Continued fractions of algebraic numbers 143

Conversely the sequence of convergents py, /q;, define matrices

(ph Ph— 1>
dh  4h—1
which decompose as above as a product of matrices displaying the sequence

of partia quotients (cy,).

Since a quotient p/q leaves the pair (p, q) ill-defined we are to interpret that
last remark sympathetically in the sense that the claim is true for some choice
of p and ¢ (in practice, with the two relatively prime and ¢ positive).

Theindicated correspondence between continued fractionsand special products
of 2 x 2 matricesisreadily established by aninductive argument. Noticefirstly
that the sequence of partia quotients (c;,) defines the sequences (py,) and (q)
appearing in the first column of the matrix product. Since the empty product
of 2 x 2 matricesisthe identity matrix, we are committed to

p-1 p—=2)_ (1 O
2) <Q—1 Q—2> n <0 1) ’
We may then readily verify by induction on 4 that the second column of the
product indeed has the alleged entries. Thus we have the recursive formulae

(3) Ph+1 = Ch41Ph + Ph—1
qh+1 = Ch4+19h T qh—1 -

We verify the principal claim by induction on the number » + 1 of matrices
appearing on the left in the product. The claim is easily seen true for A = 0
since, indeed py = ¢ and ¢o = 1. Accordingly, we suppose that

c 1 ca 1 e 1\ (xn xh— B
(1 0)(1 0) ...... (1 O>_<yh yh_1> forh=0,1,2,...
if and only if

w—h:[cl,cz,m,ch} forh=0,1,2,... ,
Yn

noting that thisis a case of just » matrices.

But

Ph Ph-1) _ (co 1\ (xn Th-1) _ (coZn+Yn CoTh-1+ Y1
dn  Gh—1 1 0/ \yn wn Th Th-1
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entails
(4) &:(304—&:004—7
qh Th [C1y~-~,0h

verifying the claim by induction.

2.2 Taking determinantsin the correspondence immediately yieldsthe funda-
mental formula

n+1 or Zﬁ _ Pn-1 + (71 n—1

(5) Pndn—1 — Pn—14n = (*1)

dn qn—1 qn—19n ’
It is then immediate that
n 1 1 _ 1
(6) Bt ()T ——
dn qoq1 4142 dn—19n

Almost invariably, but not always, in the sequel the ¢; are positive integers —
excepting ¢, which may have any sign; indeed those are the criteriafor partial
quotients to be admissible. However, our description is formal and the actual
nature of the partial quotientsis thus of no matter in much of our description,
the next remark being an exception.

It follows from what we have said that one can make sense of nonterminating
continued fractions

7:[007017"'}7

for evidently,

1 1 — (—1)"!
7 Yy=¢+———+-"-=co+ I
@) doq1  G1G2 Z Gn—19n

n=1
and, this being an aternating series of terms with decreasing size, the series
converges to some real number .

2.3 Inthis context, we recall that the terminating continued fractions

P

:[00,017...,Ch] h:O,l,Q, ......
an
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are called convergents of v and thetails

(8) Ynt1 = [Cht1; Chg2 s - -]

are known as its complete quotients. Note that we have, formally,
9) y=[co,C1y. ey ChyYhi1) h=0,1,2,....

These remarks immediately yield the approximation properties of the conver-
gents. For we have

Dh 1 1
(10) 7= ()" -
qn qnqh+1 qh+19h+2

This showsthat the sequence (q,y — py,) aternatesin sign and that, in absolute
value, it converges monotonically to zero. Less precisely, we see that

1
qnqh+1

-2l
dh

and, recaling (3) : gn+1 = chr1qn + qn—1 impliesyet less accurately that

1

< -
Ch+14p,

DPh
‘ry o
qh

Thus a convergent yields an exceptionally sharp approximation when the next
partial quotient isexceptionally large. Thisisamply illustrated by the example

r=1[3,7,15,1,292,1,...],

aready cited in our introduction, which with

3,7 =22/7 [3,7,15, 1] = 355/113
entails
22 1 355 1
_ = - _ e - <10°°
A T ‘” 113‘ < 9021137 ©

making appropriate the popularity of those rational approximationsto .

2.4 We now return to the beginning. Noting that
1

WZ[CO,CI7.“]200—"_—[01702,...]
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we see that
co =[]
and
y=lei,co,...]=(y—co) ™ .
The general step in the continued fraction algorithmis

ch = [7n) and7h+1:(7h70h)71 h=0,1,2,...

An infinite partial quotient terminates the expansion. Since

[C()7C1,..~,Ch]

is rational it is evident that if the continued fraction of some ~ terminates
then that ~ is rational. Conversely, since, as is plain from (5), p, and ¢
are relatively prime, and, since by (3) the sequences (|p,|) and (¢,) are both
monotonic increasing, it followsthat if ~ isrational then its continued fraction
doesterminate. Indeed, for arationa v = a/b, the continued fraction algorithm
isjust the Euclidean algorithm. That is (setting a1 = by):

a=cyb +b; 0<b; <b
a1 = c1by + ba 0<by < by
as = coby + b3 0<b3<by
ap, :Chbh
corresponds to
g:[co,al,.‘.,ch] and ged(a,b) =d = ¢y

b

and as we have mentioned, explains the term ‘partial quotient’. Since a/b =
pr/qn With ged(pp, grn) = 1 we must have dp;, = a and dg, = b. Moreover, by
®)

Prdn—1—DPn-1qn = (=1)""' S0 ag, 1 —bpy—1 = (=1)""'d,
and this displays the greatest common divisor as a Z-linear combination of a

and b. BY |p,—1| < |pn] @d ¢,—1 < g, it follows that this combination is
minimal.

2.5 The entire matter of continued fractions of real numbers could have been
introduced using the following:
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A rational p'/q' with ged(p’,q') =1 is a convergent of v if and only if

l¢'y — p'| < |qy — p| for all integers q < ¢’ and p .

To see this suppose that » is chosen so that ¢,_1 < ¢ < ¢,. Then, by the
unimodularity of the matrix
(n pn—l)
dn Gn-—1

there are integers « and b so that

app—1 + bp, =p
agn—1+bgn, =q

and, necessarily, ab < 0. Multiplying by ~ and subtracting yields
qv —p = a(@n—17 — Pn—-1) + b(gny — Pn) -
But, by (10), we have (¢,_17v — pn_1)(gny — ) < 0. Hence
lgy — p| = lallgn-17 = Pa—1] + [bllgny — Pl ,

and plainly ¢y — p| > ¢, — ps| as asserted.

The preceding proposition asserts that the convergents of v are exactly those
quantities yielding the locally best approximations to ~. One can develop the
entire theory, working backwards in the present program, from the notion of
locally best approximation; once again, the formula (5) plays the fundamental
role.

Moreover, one has the following useful criterion due to Lagrange:

If

then p/q is a convergent of v. Note that this condition is sufficient but not
necessary.

By our previous remark it suffices to show that ¢y — p| isalocally best ap-
proximation. To see that is so take integers », s with 0 < s < ¢ and notice
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that
1< |qr—ps| = [s(qy —p) —q(sy —7)| < slgy —p| +qlsy — 7|

< 5o Halsy =]
— —r|.
=9 q|57

So certainly g|sy —r| > 1 —s/2¢ > 1/2 and it follows that |¢y — p| < |sy — 7|
as claimed.

Incidentally, this argument shows that when, for example, dealing with contin-
ued fractions of formal power series, one already hasthat p/q isaconvergent
of fifandonlyif |¢f —p| < |¢7!].

2.6 We conclude by applying the matrix correspondence to develop aformu-
laire: From

Ph DPh-1)\ [(Th+1 1
=1Co,Cl,---,Ch, —
Y [ 0, C1 h ’Yh+1] <(Zh an, ) ( 1 0)
we have n
— Jh41Ph T Ph=l g hal = _qn—1y T Pho1
Yr+19h + Gh—1 qnY — Ph

Hence

Ph _ Vh+1Ph T Ph—1  DPh _ 1
(11) - = S ()t ~

@ Yh+1qn F a1 Gn an(Vh+19n + h-1)

Transposition of

co 1\ f e 1\ cn 1\ _ (Pn Prha1
1 0/\1 0 10 qn  qr-1

yields
Ph qh
:[Ch,Ch,17...7CO]and Z[ch,ch,l,...,cl].
Ph—1 gh—1
Hence
—Yqh—1 + Ph—1
(12) —Yh+1 = W — —Yh+1 = [070h70h—1 s ---,CO—W]-

3 CONTINUED FRACTIONS OF ALGEBRAIC NUMBERS

We suppose that ~ is presented asarea zero of apolynomial
f(X)=ag X"+ X'+ ta,
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with ag, a1, ...,a, € Z and ged(ay, . .. ,a,) = 1, and that to distinguish it from
other zeros of f we aretold that

Y=1lCo,C1y ey Cmy.-.].

We can supposethat aq > 0, andthat v isasimplezeroof f since otherwisewe
will choose to deal with theged of f and f’, apolynomia of smaller degree.
Thuswe may locate v by thefact that f suffersachange of signin an interval
containing .

Our method is, in principle, to compute a sequence of polynomias
fh(X) = ahpoT +ah71XT71 + - +apsr, h = 0,1, ...,

with rational integer coefficients a,; and a o > 0 having the complete quo-
tients v, asazero. Indeed, we will have, sequentially,

fr (X)) = X" (X4 ¢p).

A core observationisthat we will eventually obtain areduced polynomial (and
then the minus sign is aways appropriate):

Proposition 1 The zeros g, (say) of f, distinct from ~, all satisfy |3,] < 1
and —1 < Re 3, < 0 for h sufficiently large.

Proof. Suppose firstly that Re 3, < 0. Evidently Re(8,, — ¢,,,) < —1 since
Cm >1,% —1 < Refm1 <0 and |B11| < 1. Secondly, if ReB,—1 < ¢m—1
then clearly Res,, < 0. Thirdly, if ReB,_2 > c¢m_o + 1, then evidently
ReBn_1 <1 < ¢p_1. Findly, suppose that ¢, < RefB, < ¢, +1. Then 3
sharesitsfirst n partia quotients with v and that entails |y — 8| < ¢, 2, . But
that is eventually absurd because 3 isdistinct from -~ .

Note. Given f, thereevidently isan effective upper bound for m, asdescribed,
in terms of the degree » and the height of the given polynomia f. In practice,
thedatay =[co,c1,...,cs, ...] requiredtoidentify thezero v uniquely may
well essentially sufficeto yield areduced polynomial.

Inthe sequel we assume, asweevidently may, that f isreduced from the outset;
thusforeach h =0,1,... vy =7, m, ... isinter aiatheuniquezero > 1 of

f=Jor frooon

Having obtained the complete quotient +;, .1, thus having

7:[007617"'76’177h+1]7
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we now turn to the problem of finding the next partial quotient c; ., . Recalling
that ;1 isazero of

fr1(X) = anp1.0X" + a1 a X+t anges

we may use the fact that f,,, isreduced to estimate 7,1 ~ —ap41,1/an+1,0,
knowing that this cannot involve an error greater than » — 1. But we can do
much better:

Proposition 2 To avoid notational clutter set ¢, = ¢, pn/qn =z, and ¢, _1 =
¢ . Then

-1 h+1 g1 / 1 h 1
( ) / (33) q + ( ) Z

2 flx) q q? x—p

Yh+1 =

F(B)=0
B#~

Proof. Trivialy

Yot = >, anp— Y, Brar

frt1(ant1)=0 Fh41(Pp41)=0
Bh+1#Yh+1

But by (11), whereby o — = = (—1)"/q(qan 1 + ¢'), we obtain

(_1)h+1 1
? -«

Qhy1 = - q//(J~

Then (asis readily seen by taking the logarithmic derivative)

Fa) 1
)~ 2 ia

yields the assertion.

Remark. Itisnot difficult to obtain increasingly precise estimates for the final
error termin (13). Indeed,

lim
X —y

(f’(X)_ 1 )_f”(v)
fX) X-—v 2f"(7)
entailsthat in
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the error term on the right is of order O(z — v) = O(¢~2). One can iterate this
idea’ to obtain an expansion

L @) 3(£"(x))° +2f'(2) f" ()
- = + xr —
Z ( 7) 12(f’(:1c))2

= +O0((x —7)?
P T (@=))
BF#y
alowing one, in principle, to have an arbitrarily small error in one’s estimate
for v, intermsof py/qn, qn @nd g,_1. However, in practice the error term

isnot needed at al, at any rate once h islarge.

Indeed, if the error term were to affect the true value of |,41] then 41 IS
extremely close to an integer and evidently either c;2 = O(g?) OF cpio = 1
and ¢35 = O(q?). In either case we obtain arational p/q approximating ~ to
an accuracy O(q—*). By Roth’stheorem [11] thisis not possible for arbitrarily
large ¢. Of course Roth’stheorem isineffective. However for cubicirrationals
~, thuswhen r = 3, we have an effective guarantee from Liouville€'s theorem
and for higher degree irrationals we may, if necessary, choose to estimate the
error term to appropriate accuracy, as proposed above, to obtain adefinite value
for |vp41]. In summary:

Theorem 3 Definethe (r + 1) x (r + 1) matrices M(c) by

(T 7 ]) C'rfj—i
1

and denoteby a(h) thecolumn (a,, o, - - ., a,, ,.)" Of coefficients of the polynomial

M(c)_—‘

0<i,j<r

(X)) =anoX" +ap 1 X"+ an,

given by
M(ep)a(h) =a(h+1) h=0,1,....
If v > 1 isthe unique positive zero of the polynomial f(X) = fo(X) and the

positive integers ¢, satisfy f(cn,) < 0 < f(cn, + 1) then ~ has the continued
fraction expansion

y=leco,c1,c2,...]

3 Aswas pointed out to one of us by David Cantor.
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and the partial quotients ¢, aregivenby c,.1 = |y,41] Where

ap.1 dh—1 (71)h 1
(13) g1 =———+(r—1)=——+
Qh,0 dn % f;() % -8
B#y
_ (—D)r L () _ O (=" Z 1
Q}Ql f(;z_:) qh quL fgiz:o z_: - B

Example. Itiseasy to confirmthat X2 — 2 isreduced after the initial step of
the algorithm and that indeed /2 =[1,¢;, ¢z, ¢3,...], with

(="' 3pp _Qh1J
an Py —243  an

chﬂz{ h=0,1,2,...,

where

<Ph+1 ph) _ <Ch+1 1) <Ph Ph1) and <Po p1) _ <1 1>

dn+1 Gn 10/ \an qn- q q-1 1 0)°
Thus, contrary to received wisdom, there may well be ‘aformula for the con-
tinued fraction expansion of an algebraic number of degree greater than 2.
However, such a formula does not necessarily usefully increase our under-
standing of the nature of the partial quotients of such a number. To make that

manifest one notes that the notorious 3z + 1 problem is readily recast as a
similar, but simpler formula

Thi1 = (1 +xp — QLCCh/QJ)zh — Ll‘h/QJ with o € Z.

John Conway has shown that it is undecidable whether general games of this
sort are unbounded or cycle.

4 COMMENTS

Itisnot of course anew thought that one should develop the continued fraction
of an algebraic number by finding the sequence of defining polynomials of its
complete quotients. Indeed all we say, other than the ‘explicit’ formulae for
the partial quotients, isapplied in the computations of Lang and Trotter [5] and
presumably in earlier work [1], [7] and [10]. Our observations were in part
motivated by our desire not to inconvenience a HP-41 calculator in guessing
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the partia quotients. In the interim, during the ‘maturation’ of our thoughts,
[3] reports apparently related formulas.

Nonetheless, it does not seem to be widely appreciated — presumably because
the cited authors commence with a reduced polynomial without commenting
extensively on that simplification — that the algorithm leads to a reduced
polynomial generalising the phenomenon well known in the quadratic case,
where reduction signals the commencement of periodicity. Mind you, that the
algorithm leads to a reduced polynomial could be better known*. In essence,
it dates back at least to Vincent’s Theorem of 1836. In effect, Vincent shows
that applying our algorithm with arbitrary positive integer ‘partial quotients
eventually yields a polynomial with at most one positive zero. Of this result
Uspensky [13] writes: ‘This remarkable theorem was published by Vincent
in 1836 in the first issue of Liouville's Journal, but later [was] so completely
forgotten that no mention of it is found even in such a capital work as the
Enzyclopadie der mathematischen Wissenschaften. Yet Vincent's theorem is
the basis of the very efficient method for separating real roots... '. Theissue
of identifying the particular real zerosto be expanded, with which we deal just
cursorily, isconsidered in extenso in [2].

Proposition 2 and the subsequent remark yields very precise rational approxi-
mations for the complete quotient. It isimmediate that a substantial sequence
of the partial quotients of such arational coincides with the partial quotients
of v. Generally speaking, using just Proposition 2, one can expect to be able
to double the number of partial quotients already obtained by expanding the
rational approximation. Whether a partial quotient = obtained in this way is
indeed a partial quotient of v can be checked by observing that

f@)~@=7f(),

so that = certainly is a partial quotient whenever f(x) issurprisingly smaller
than f’(v) relativeto the height of =. However, since the difficulty in applying
the continued fraction algorithm is the exponential growth of the p, and ¢,,,
it is not clear whether the ability to leap through the expansion is al that
material. Moreover, the rational approximation is of the same quality as the
approximation yielded by the naive use of Newton approximation.

4We are indebted for this information to Emery Thomas.
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