
An Introduction to Continued Fractions
A. J. van der Poorten

1. Notice that if(
c0 1
1 0

) (
c1 1
1 0

)
· · ·

(
cn 1
1 0

)
=

(
pn pn−1

qn qn−1

)
, n = 0, 1, 2, . . .

then
pn

qn
= c0 +

1

c1 +
1

c2 +
.. . +

1
cn

= [c0, c1, c2, . . . , cn].

This is easy to see by induction: First observe that(
0 1
1 −c

) (
c 0
1 0

)
= I

and that (
0 1
1 −c0

) (
pn pn−1

qn qn−1

)
=

(
qn qn−1

pn − c0qn pn−1 − c0qn−1

)
.

But
qn

pn − c0qn
=

1
pn
qn
− c0

= [c1; c2, . . . , cn]

Our remark sets up a correspondence↔ between certain products of 2×2 matrices
and continued fractions, which we shall exploit below. Of course this correspondence
has an immediate geometric interpretation (cf Stark [1], Chap. 7). However, we
shall obtain the usual properties of the continued fraction algorithm directly from
the formalism rather than from the geometry. For example, we read that

{
pn+1 = cn+1pn + pn−1

qn+1 = cn+1qn + qn−1

n = 0, 1, 2, . . .

and by taking the determinant of the matrix product

pnqn−1 − pn−1qn = (−1)n+1, n = 0, 1, 2, . . .

From this critical formula we readily obtain by induction

pn

qn
= c0 +

1
q0q1

− 1
q1q2

+ · · ·+ (−1)n−1

qn−1qn
.

It follows that given c0 in Z and c1, c2, . . . positive integers, the continued fraction
[c0; c1, c2, . . . ] converges to a real number α satisfying

α− pn

qn
= (−1)n

(
1

qnqn+1
− 1

qn+1qn+2
+ · · ·

)
.

Hence

|qnα− pn| <
1

qn+1
.
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As usual, denote by [x] the greatest integer less than or equal to the real number
x. Set

α0 = α and αn = [cn; cn+1, . . . ], n = 0, 1, 2, . . .

Then
cn = [αn] and αn+1 = (αn − cn)−1

because, evidently, 0 < [0; cn+1, cn+2, . . . ] < 1. This describes the usual regular
continued fraction expansion for α and the algorithm yielding it.

Notice that the correspondences

α↔
(

c0 1
1 0

) (
c1 1
1 0

)
· · · and αn+1 ↔

(
cn+1 1

1 0

) (
cn+2 1

1 0

)
· · ·

imply, on multiplying the corresponding matrices

α =
αn+1pn + pn−1

αn+1qn + qn−1
and αn+1 = −αqn−1 − pn−1

αqn − pn

The latter expression together with αn+1 > 1 entails that the sequence

{qnα− pn}, n = 0, 1, 2, . . .

alternates in sign, a fact that we had noticed earlier.

Next we consider the familiar ‘best approximation’ property. Let qn−1 < q < qn

with q in Z, and take p in Z. Then there are integers a and b so that

p = apn + bpn−1, q = aqn + bqn−1

implying that a and b have opposite signs. Thus

qα− p = a(qnα− pn) + b(qn−1α− pn−1)

yields

|qα− p| = |pqn−1 − qpn−1||qnα− pn|+ |pqn − qpn||qn−1α− pn−1| .

So for all p in Z, qn−1 < q < qn entails

|qα− p| > |qnα− pn| .

A fortiori, since the sequence {|qnα−pn|}, n = 0, 1, . . . is monotonic decreasing, we
see that the convergents pn/qn of α yield locally best approximation to α in that
0 < q < qn implies

|qα− p| > |qnα− pn|, n = 1, 2, . . . .

A more delicate investigation of our argument will show that this inequality con-
tinues to hold for a certain range of q greater than qn.

Given a rational p/q, thus p, q in Z with q > 0, the continued fraction algorithm
is just the Euclidean algorithm:

p = c0q + r0 0 ≤ r0 < q

q = c1r0 + r1 0 ≤ r1 < r0

...
...

rn−2 = cnrn−1
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Then
p

q
= [c0; c1, . . . , cn ] =

pn

qn

and we verify that the continued fraction of α terminates if and only if α is rational.
Moreover suppose that the greatest common divisor (p, q) is ±d. Then an earlier
identity implies

qn−1p− pn−1q = ±d ,

making explicitly the linear combination of p and q yielding their greatest common
divisor. We may also see just why the ci are called partial quotients.

We conclude with the following important fact: If p, q are realtively prime and
|qα − p| < 1/(2q) then p/q is a convergent of α. To see this take integers r, s with
0 < s < q and notice that

1 ≤ |qr − ps| = |s(qα− p)− q(sα− r)|
≤ s|qα− p|+ q|sα− r| ≤ s

2q
+ q|sα− r|

It follows that
|qα− p| < |sα− r|

since certainly

q|sα− r| ≥ 1− s

2q
>

1
2

.

Hence p/q yields a locally best approximation. But above we might have noted that
qn−1 < q < qn also implies

|qα− p| > |qn−1α− pn−1| ,

entailing that only a convergent can yield a locally best approximation.
Of course, the fact that the continued fraction algorithm yields all and only

locally best approximations is its critical property. And it is the failure of this
property to apply to higher dimensional analogues of the algorithm that renders
their theory so much more difficult.

2. We turn now to various formal properties of continued fractions which are
immediate consequences of the correspondence:(

c0 1
1 0

) (
c1 1
1 0

)
· · ·

(
cn 1
1 0

)
=

(
pn pn−1

qn qn−1

)

↔ [c0, c1, c2, . . . , cn] =
pn

qn
, n = 0, 1, 2, . . . .

Firstly observe that each matrix in the product is symmetric. Hence taking the
transpose yields(

cn 1
1 0

)
· · ·

(
c1 1
1 0

) (
c0 1
1 0

)
=

(
pn qn

pn−1 qn−1

)
.

and we read that {
[cn; cn−1, . . . , c0] = pn

pn−1
,

[cn; cn−1, . . . , c1] = qn
qn−1

.

Both formulas are interesting in that they report a pair of consecutive denom-
inators, respectively numerators, contain the total prior ‘history’ of the continued
fraction expansion.
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The following beautiful application of the first of these formulas has been re-
ported elsewhere [2] but warrants repetition here. It is the delightful proof of H. J.
S. Smith [3] that a prime p is a sum of two squares if and only if p ≡ 1 (mod 4) or
p = 2. The case p = 2 is trivial, and the only if part of the claim is plain since the
square of an integer is ≡ 1 or 0 (mod 4).

Now take p prime, p ≡ 1 (mod 4), and consider the set

H =
{

p

2
,

p

3
, . . . ,

p

(p− 1)/2

}

noting that #H = 1
2 (p−1)−1 is odd. We take H to consist of terminating continued

fractions
p

q
= [c0; c1, . . . , cn], q = 2, 3, . . . ,

1
2
(p− 1)

rather than, so to speak, the rationals we display. We have to digress to remark
that there is a possible ambiguity in that if cn > 1

[c0; c1, . . . , cn] = [c0; c1, . . . , cn − 1, 1]

But we resolve that problem by insisting that always cn ≥ 2. Now consider the map
R which reverses terminating continued fractions

R : [c0; c1, . . . , cn] −→ [cn; cn−1, . . . , c0].

Allow R to act on H. Since for p/q in H, p/q > 2 we have c0 ≥ 2. By convention
also cn ≥ 2. Moreover certainly cn ≤ q < 1

2p, and similarly c0 < 1
2p in each case.

But reversing a continued fraction preserves the numerator of the convergent. Thus
R maps the continued fractions of H to continued fractions representing rationals
β with numerator p and

2 < β ≤ 1
2
p.

R is plainly one-one and thus R permutes the elements of H. But of course R2 is
just the identity map. So R is an involution of the set H with H containing an
odd number of elements. Hence a member of H is invariant under R : it has a
symmetric continued fraction.

We pause to consider symmetric continued fractions. For convenience set

−→w = c0c1 . . . cn.

Then a symmetric continued fractionhas the shape [−→w ,←−w ] or [−→w , c,←−w ] according
as it is of even or odd length. In the first case the continued fraction corresponds
to the matrix product(

pn pn−1

qn qn−1

) (
pn qn

pn−1 qn−1

)
=

(
p2

n + p2
n−1 pnqn + pn−1qn−1

pnqn + pn−1qn−1 q2
n + q2

n−1

)
so

[−→w ] =
pn

qn
, [−→w←−w ] =

p2
n + p2

n−1

pnqn + pn−1qn−1
.

In the second case

[−→w , c,←−w ]↔
(

pn pn−1

qn qn−1

) (
c 1
1 0

) (
pn qn

pn−1 qn−1

)

=
(

pn(cpn + 2pn−1) cpnqn + pnqn−1 + pn−1qn

cpnqn + pnqn−1 + pn−1qn qn(cqn + 2qn−1)

)

↔ pn(cpn + 2pn−1)
cpnqn + pnqn−1 + pn−1qn
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Of course, in the second case the numerator is evidently composite whilst the nu-
merators of elements of H are prime. Hence the first case applies and we read
that

p = p2
n + p2

n−1 .

We might note that in so reading we have used the fact that the formula

pnqn−1 − pn−1qn = (−1)n+1

implies that convergents pn/qn are always presented in their ‘lowest terms’; that is,
so that their numerator and denominator are relatively prime.

In any event we have displayed the prime p ≡ 1 (mod 4) as a sum of squares,
proving our allegation and giving a congenial demonstration of the benefits of ap-
plying the correspondence between continued fractions and certain matrix products.

Next we note a further formula. We have(
pn pn−1

qn qn−1

) (
x− qn−1

qn
1

1 0

)
=

(
pnx− (pnqn−1 − pn−1qn)

qn
pn

qnx qn

)

Hence
[−→w ] = [c0; c1, . . . , cn] =

pn

qn

implies that [
−→w , x− qn−1

qn

]
=

pn

qn
+

(−1)n

xq2
n

.

Indeed, we may go on to observe that

x− qn−1

qn
= x− 1 +

qn − qn−1

qn

qn

qn − qn−1
= 1 +

qn−1

qn − qn−1

qn − qn−1

qn−1
= −1 +

qn

qn−1

qn−1

qn
= 0 +

qn−1

qn

qn

qn−1
= [cn; cn−1, . . . , c1]

This suggests it is convenient to change our notation by using −→w to denote the
word

−→w = c1c2 . . . cn .

Then our formula is

pn

qn
+

(−1)n

xq2
n

=
[
c0; −→w , x− qn−1

qn

]
= [c0; −→w , x− 1, 1, −1, 0, ←−w ] .

Note that this is a ‘formal’ formula. Certain of the entries, say x− 1 and −1 and 0
may not be admissible in a regular continued fraction expansion. However, a zero
is never a problem: for(

a 1
1 0

) (
0 1
1 0

) (
b 1
1 0

)
=

(
a + b 1

1 0

)

implies that
[. . . , a, 0, b, . . . ] = [. . . , a + b, . . . ] .
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It seems a pity to eschew an application (see [2] for references and other details).
Consider the sum

1 +
1
2

+
1
8

+
1

128
+ · · · = 2

∞∑
n=0

2−2n

and observe that if some partial sum

2
(
2−1 + 2−2 + · · ·+ 2−2m

)
=

pn

qn

then q = 22m−1, and the next term is

2−2m+1+1 =
1

2q2
n

.

Set −→p = 1, 1, −1, 0 and denote by S�p the operator

S�p : −→w → −→w−→p ←−w .

Our remarks yields the formula

2
∞∑

n=0

2−2n

=
[
1; S∞

�p ·
]

.

with · denoting the empty word. We have just[
1; S∞

�p ·
]

= [1; −→p −→p ←−p −→p −→p ←−p ←−p −→p −→p −→p ←−p ←−p . . . ] .

The arrow sequence is the celebrated paperfolding sequence: again see [2]. We now
need some nontrivial tidying to eliminate inadmissible -1 and 0 entries. It may
constitute a useful challenge to the reader to obtain

2
∞∑

n=0

2−2n

=
[
1; 1, 1, 1, S∞

1,1,1,1,2,1(2, 1, 1, 1)
]
,

contrary to the allegation of [2], observation 2.13, but in accordance with the correc-
tion [4]. The example is remarkable in two respects. Firstly, it is extraordinary that
we can obtain a formula explicitly giving the expansion. Secondly, it is noteworthy
that the only partial quotients that appear are 1 and 2. These properties are shared
by the uncountably many numbers

1 + 2
∞∑

n=1

±2−2n

;

that is, regardless of the sign chosen at each term.

3. PERIODIC CONTINUED FRACTIONS

3.1 In the sequel D is a positive integer and not a square. Suppose we know that
(the so-called) Pell’s equation

X2 −DY 2 = ±1

has a solution (x, y) in positive integers. We shall apply this knowledge to prove
that the continued fraction expansion of

√
D is periodic and to uncover some of the

structure of the period. Set

M =
(

x Dy
y x

)
and J =

(
0 1
1 0

)
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We have, by hypothesis
det M = x2 −Dy2 = ±1 .

Applying the Euclidean algorithm to the rows of the matrix MJ we obtain the
unique expansion

MJ =
(

Dy x
x y

)
=

(
a0 1
1 0

) (
a1 1
1 0

)
· · ·

(
an 1
1 0

)

with positive integers a0, a1, . . . , an. It is evident that

a0 =
[
Dy

x

]
=

[
x

y

]
=

[√
D

]

and because the matrix MJ is symmetric, the word a0a1a2 . . . an is a palindrome
(example: a palindrome is ‘never even’). Hence

a0 = an =
[√

D
]

.

Now consider the periodic continued fraction

δ = [a0; a1, a2, . . . , an−1, 2a0 ] .

This is just to say that

δ = [a0; a1, a2, . . . , an−1, 2a0 + (δ − a0)]

which corresponds to(
a0 1
1 0

)
· · ·

(
an−1 1

1 0

) (
a0 + δ 1

1 0

)
=(

a0 1
1 0

)
· · ·

(
an−1 1

1 0

) (
an 1
1 0

) (
0 1
1 0

) (
δ 1
1 0

)

=
(

Dy x
x y

) (
1 0
δ 1

)
=

(
Dy + δx x
x + δy y

)
↔ δ

So
δ =

Dy + δx

x + δy
or δ2 = D .

This shows that if the Diophantine equation

X2 −DY 2 = ±1

has a nontrivial solution then
√

D has a periodic continued fraction
√

D = [a0; a1, a2, . . . , an−1, 2a0 ] .

with a1a2 . . . an−1 a palindrome. Moreover, every nontrivial solution (x, y) of the
equation is given by a convergent

x

y
= [a0; a1, . . . , an−1] .

We may have
X2 −DY 2 = −1

only if the primitive period of
√

D is of odd length.
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It is of course easy to prove that every periodic continued fraction represents
a quadratic irrational. The converse, Lagrange’s theorem, is a little more difficult.
Assuming, as we have, that Pell’s equation has solutions we know that

√
D has a

periodic expansion. The general quadratic irrational is of the shape

a + b
√

D

c

for integers a, b, c, so that

A =
(

a b
c 0

)
is nonsingular. Then our approach would lead us to attempt to prove Lagrange’s
theorem by showing that a product

A

(
a0 1
1 0

)
· · ·

(
an−1 1

1 0

) (
an 1
1 0

) (
a1 1
1 0

)
· · ·

(
an−1 1

1 0

) (
2a0 1
1 0

)
· · ·

yields a periodic product(
c0 1
1 0

)
· · ·

(
ck 1
1 0

)
· · ·

(
cm 1
1 0

) (
ck 1
1 0

)
· · ·

(
cm 1
1 0

) (
ck 1
1 0

)
· · ·

obtained by commutating A through the given product until it disappears in the · · ·
on the right. The appropriate theory exists. A particularly elegant version is that
of Raney [5]: It is shown that moving A through the product can be represented
by a finite-state transducer acting on R-L words; that is, words on two symbols
R and L. General theory of finite automata shows that finite-state transduction
preserves the nature of the transduced sequence: for example that it is generated by
a finite p-automaton. In particular, periodic sequences are transduced to periodic
sequences. We will return to these notions below. For the present we endeavour to
retrieve somewhat less well-known properties of the continued fraction expansion of√

D.

3.2 Suppose then that (x, y) ∈ Z2 satisfies the equation

x2 −Dy2 = ±2

Just as solutions of Pell’s equation occur at the end of the period of
√

D, we shall
find that solutions of the present equation occur at the middle of the period. The
precise sense of this remark should become clear below. Set

M =
(

x Dy
y x

)

and consider the matrix

M2J = MJMT =
(

x Dy
y x

) (
0 1
1 0

) (
x y

Dy x

)
.

There are two cases, according as D is or is not even.

(a) If 2 | D then 2 | x. We dismantle M to obtain

M =
(

x Dy
y x

)
=

(
x 1

2Dy
y 1

2x

) (
1 0
0 2

)
=

(
x x′

y y′

) (
cm 1
1 0

)
J

(
1 0
0 2

)

with

cm =
[

x

2y

]
, x′ =

1
2
Dy − cmx, y′ =

1
2
x− cmy .
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Now notice that (
1 0
0 2

)
J

(
1 0
0 2

)
=

(
2 0
0 2

)
J = 2J.

Moreover, the matrix

M ′ =
(

x x′

y y′

)
corresponds to some continued fraction, say

M ′ ↔ [c0; c1, . . . , cm−1] .

We have

M2J = MJ3MT = 2M ′
(

cm 1
1 0

) (
0 1
1 0

) (
cm 1
1 0

)
M ′T

and thus 1
2M2J corresponds to the continued fraction

[c0; c1, . . . , cm−1, 2cm, cm−1, . . . , c1, c0]

We conclude the argument after describing the second case.

(b) If 2 � |D then 2 | Dy − x and 2 | x− y. Much as above we obtain

M =
(

x Dy − x
y x− y

) (
1 1
0 1

)
=

(
x 1

2 (Dy − x)
y 1

2 (x− y)

) (
1 0
0 2

) (
1 1
0 1

)

=
(

x x′

y y′

) (
cm 1
1 0

)
J

(
1 0
0 2

) (
1 1
0 1

)

with

cm =
[
x− y

2y

]
, x′ =

1
2
(Dy − x)− cmx, y′ =

1
2
(x− y)− cmy .

It is convenient at this point to introduce the notation

R =
(

1 1
0 1

)
, L =

(
1 0
1 1

)
.

and to note that (
c 1
1 0

)
= RcJ = JLc .

Below we need (
1 0
0 2

)
RLJ

(
1 0
0 2

)
= R

(
2 0
0 2

)
J = 2RJ = 2JL.

With the notation above we find that

M2J = 2M ′RcmJ2RJ3LcmM ′T , Rcm+1JLcm = R2cm+1J

so the unimodular matrix 1
2MJ2 corresponds to the continued fraction

[c0; c1, . . . , cm−1, 2cm + 1, cm−1, . . . , c1, c0] .

In both cases we have

M2J =
(

x Dy
y x

) (
Dy x
x y

)
= 2

(
DY X
X Y

)
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with
2X = x2 + Dy2 and 2Y = 2xy

both divisible by 2. Hence

1
2
M2J =

(
DY X
X Y

)

is a unimodular matrix exactly of the shape of the matrix we discussed in our
analysis of the continued fraction of

√
D. Plainly we have found that if

x2 −Dy2 = ±2

and
x

y
= [c0; c1, . . . , cm−1]

then

2|D
√

D = [c0; c1, . . . , cm−1, 2cm, cm−1, . . . , c1, c0](1)

with cm =
[

x

2y

]
;

2 � |D
√

D = [c0; c1, . . . , cm−1, 2cm + 1, cm−1, . . . , c1, c0](2)

with cm =
[
x− y

2y

]
.

Two simple examples:

• 1562 − 46 · 232 = 2, 156
23 = [6; 1, 3, 1, 1, 2],

[
156

2 · 23

]
= 3.

and √
46 = [6; 1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 12 ]

• 132 − 19 · 32 = −2, 13
3 = [4; 2, 1],

[
13− 3
2 · 3

]
= 1.

and √
19 = [4; 2, 1, 3, 1, 2, 8 ]

3.2 Next suppose that (x, y) ∈ Z satisfies the equation

x2 −Dy2 = ±4 .

Of course we take x, y relatively prime; hence both x, y and D are odd. Set

M =
(

x Dy
y x

)

In this case it is congenial to consider the matrix M3J with the expectation that
solutions of the equation will occur about a third of the way along the period of√

D, and driven by the foresight that

M3J = 8
(

DY X
X Y

)
with 8X = x(x2 + 3Dy2) and 8Y = y(3x2 + Dy2) .

It is easy to see that both X, Y are integers since

x2 + 3Dy2 = (x2 −Dy2) + 4Dy2 ≡ 0 (mod 8)

3x2 + Dy2 = 4x2 − (x2 −Dy2) ≡ 0 (mod 8)
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The unimodular matrix 1
8M3J then yields the period of

√
D in the manner already

described. For the finer detail we proceed by noting that D ≡ 1 (mod 4) so that
both Dy + x and x + y or Dy − x and x − y are divisible by 4. Writing M3J =
MMJMT we dismantle the first, and the third M to obtain

M =
(

x 1
4 (Dy ± x)

y 1
4 (x± y)

) (
1 0
0 4

)
R∓1 = M ′RcA′2R∓1 .

As before

M ′ =
(

x x′

y y′

)

is the matrix corresponding to the convergent x/y, so

c =
[
Dy ± x

4x

]
=

[
x± y

4y

]
.

For convenience we have set

A =
(

2 0
0 1

)
, A′ =

(
1 0
0 2

)
;

we note that AA′ = A′A = 2I. To take advantage of this last observation we
dismantle the middle M as

M = P±1A

(
1
2 (x∓ y) 1

4 (Dy ∓ 2x + y)
y 1

2 (x∓ y)

)
A′R∓1 .

On the left we notice that
A′2R∓1R±1A = 2A′ ,

and on the right, recalling that RT = L, RJ = JL, JA′ = AJ , we find

A′R±1JL∓1A′2 = 2JA′ = 2AJ .

But

A′
(

1
2 (x∓ y) 1

4 (Dy ∓ 2x + y)
y 1

2 (x∓ y)

)
=

(
1
2 (x∓ y) 1

8 (Dy ∓ 2x + y)
2y 1

2 (x∓ y)

)
A′ .

In justification, we remark that, plainly

Dy ∓ x ≡ ±(x∓ y) (mod 8) .

Finally we have obtained

M3J = 8M ′Rc

(
1
8 (Dy ∓ 2x + y) 1

2 (x∓ y)
1
2 (x∓ y) 2y

)
LcM ′T

thus represent 1
8M3J as a product of unimodular matrices which can readily be

made to corresponds to a continued fraction.
We have done too much explicit computation already; so we give only a simple

example:
252 − 69 · 32 = 4 .

Hence

M =
(

25 69 · 3
3 25

)
=

(
25 8
3 1

)
R2A′2R−1, c = 2

11



and

1
8
M3J =

(
25 8
3 1

) (
1 2
0 1

) (
20 11
11 6

) (
1 0
2 1

) (
25 3
8 1

)

=
(

8 1
1 0

) (
3 1
1 0

) (
2 1
1 0

) (
0 1
1 0

) (
1 1
1 0

) (
1 1
1 0

) (
4 1
1 0

)
(

1 1
1 0

) (
1 1
1 0

) (
0 1
1 0

) (
2 1
1 0

) (
3 1
1 0

) (
8 1
1 0

)
↔ [8; 3, 3, 1, 4, 1, 3, 3, 8] .

Of course
25
3

= [8; 3] ,

the next 3 is a highcough about a third of the way along the period and the [1, 4, 1]
has appeared a little mysteriously. We will understand it better from what follows.

3.4 Suppose that (x, y), with x, y relatively prime, satisfies the Diophantine equa-
tion

x2 −Dy2 = ±k

with k <
√

D. Then x/y is a convergent of
√

D because either
∣∣∣y√D − x

∣∣∣ <
1
2y

or
∣∣∣x√D − y

∣∣∣ <
1
2x

.

It will be convenience in the sequel to notice that(
c0 1
1 0

) (
c1 1
1 0

) (
c2 1
1 0

)
· · · = Rc0J · JLc1 ·Rc2J · · · = Rc0Lc1Rc2Lc3 · · ·

because J2 = I. Hence continued fractions correspond to words on the symbols R
and L; in brief, to R-L words. We exploited this clumsily in the preceding section.

As before, set

M =
(

x Dy
y x

)
.

Operating the Euclidean algorithm on the rows of M we obtain a decomposition

M = M1E1

with M1 an R-L word and E1 the remnant, or ejected portion. Other than (perhaps)
for its last entry the continued fraction corresponding to M1 is that of x/y, and E1

is a matrix with |detE1| = k.
Now consider the matrix Mn, n = 1, 2, . . . . On defining

EsMs = Ms+1Es+1, s = 1, 2, . . .

we readily obtain by induction on n

Mn = M1M2 · · ·Mn · EnEn−1 · · ·E1 , n = 1, 2, . . . .

We claim that the R-L word M1M2 · · ·Mn corresponds, except (perhaps) for its
last symbol, to a convergent of

√
D which is n times as far along the expansion of√

D as is x/y. To see this, consider the direct decomposition

Mn = M ′
nE′

n .

12



It is enough to establish the claim for the R-L word M ′
n, since M ′

n is just
M1M2 · · ·Mn together with a further R-L word that may be removable from the
left of EnEn−1 · · ·E1. But suppose

Mn =
(

x Dy
y x

)n

=
(

xn Dyn

yn xn

)
=

(
c0 1
1 0

)
· · ·

(
cm+1 1

1 0

)
E′

n

where the second row of E′
n is no longer dominated by its first row. Then the

continued fraction (note that we omit the last partial quotient)

[c0; c1, . . . , cm] =
p

q

yields both a convergent of xn/yn and Dyn/xn.
The following remark apply for any matrix of the shape(

x Dy
y x

)

with x and y nonnegative integers, so we drop the suffix n. If m is even we have

p

q
<

x

y
and

p

q
<

Dy

x
so

p2

q2
< D implying

p

q
<
√

D .

Similarly if m is odd we obtain
p

q
>
√

D .

Accordingly, if x2 −Dy2 > 0 we find that

p

q
<
√

D <
x

y
or

p

q
>
√

D >
Dy

x
,

and if x2 −Dy2 < 0 then

p

q
<
√

D <
Dy

x
or

p

q
>
√

D >
x

y
,

Since p/q is a convergent of x/y and Dy/x, we see in each case that p/q is also a
convergent of

√
D, as claimed.

Finally, xn/yn and Dyn/xn converge to
√

D so their common convergents are
also close to

√
D. To see this, note that the minimal equation for M is

M2 − 2xM + (x2 −Dy2)I = 0 ,

whence the recurrence relation

Mn+2 = 2xMn+1 ∓ kMn, n = 0, 1, 2, . . . .

It is elementary linear algebra to verify that

2xn =
(
x + y

√
D

)n

+
(
x− y

√
D

)n

,

2yn

√
D =

(
x + y

√
D

)n

−
(
x− y

√
D

)n

.

so, approximately

xn

yn
≈
√

D

(
1 + 2(±k)n

(
x + y

√
D

)−2n
)

13



with a similar estimate on the opposite side of
√

D for Dyn/xn. We have more to
say on these matters in section 4.

3.5 A by-product of our remarks in the following: If

x2 −Dy2 = t

then there are convergents p/q of
√

D which are also convergents of x/y. Thus a
solution x, y > 0 of the given Diophantine equation necessarily arises from a solution
of

p2 −Dq2 = k

with |k| <
√

D, by way of a chain

xiyi−1 − xi−1yi = ±1, i = 1, 2, . . . , m

with x0 = ±p, y0 = ±q and xm = ±x, ym = ±y. More to the point, this observation
yields a practical algorithm: Suppose

x′y − xy′ = ±1 and x′2 −Dy′2 = t′ .

We claim that there is a choice for (x′, y′) so that |t′| < |t|. This claim yields the
above-mentioned algorithms since after, say, m steps we will have |t(m)| <

√
D and

then x(m)/y(m) must be a convergent of
√

D. Indeed, noting that the condition
x′y − y′x = ±1 does not define (x′, y′) uniquely because

(x′ + sx)y − (y′ + sy)x = ±1

for any s ∈ Z. On taking determinants of(
x Dy
y x

) (
x′ −Dy′

−y′ x

)
=

(
xx′ −Dyy′ D(x′y − xy′)
x′y − xy′ xx′ −Dyy′

)

we obtain
(xx′ −Dyy′)2 −D = tt′ .

Since
x(x′ + sx)−Dy(y′ + sy) = (xx′ −Dyy′) + st, s ∈ Z ,

there is no loss of generality in supposing that

|xx′ −Dyy′| < 1
2
|t| .

And since |t| >
√

D, we have
|t′| < |t| .

It suffices to look for squares Q so that
√

Q < 1
2 |t| and tt′ = Q −D. In particular

Q is such that t | (Q −D). If the given equation has a solution, we obtain one or
more values of t′ and new equations

x′2 −Dy′2 = t′

with |t′| < |t|. Repeating the argument if necessary we eventually obtain equations

x(m)2 −Dy(m)2 = t(m)

with
∣∣t(m)

∣∣ <
√

D. These equations can be solved and the solutions traced back to
yield possible solutions (x, y) in Z.
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3.6 Of course one obtains the continued fraction expansion of
√

D from

√
D =

√
D + P0

Q0
= c0 +

√
D − c0Q0 + P0

Q0
, P0 = 0, Q0 = 1, c0 =

[√
D

]
...

√
D + Pm−1

Qm−1
= cm−1 +

√
D − cm−1Qm−1 + Pm−1

Qm−1√
D + Pm

Qm
= cm +

√
D − cmQm + Pm

Qm

...

with Qm−1Qm = D − P 2
m, cm =

[√
D + Pm

Qm

]
,

Pm = cm−1Qm−1 − Pm−1 .

It is easy to confirm, say by induction on m, that the Pm are nonnegative
integers and the Qm positive integers. The theory we sketched at the beginning of
this section, and more, can be recovered by observing that if pm/qm denotes the
convergents of

√
D then

p2
m −Dq2

m = (−1)m+1Qm+1, m = 0, 1, 2, . . . .

The remarks of this subsection are readily generalised to arbitrary real quadratic
irrationals. We will not go into these well-known matters here. However, an example
will yield useful data for use below:

Example : Set α =
√

46. Then

α = 6 + α− 6
α + 6

10
= 1 +

α− 4
10

α + 4
3

= 3 +
α− 5

3
α + 5

7
= 1 +

α− 2
7

α + 2
6

= 1 +
α− 4

6
α + 4

5
= 2 +

α− 6
5

α + 6
2

= 6 +
α− 6

2
... and now an evident symmetry yields, eventually

α + 6 = 12 + α− 6
and we restart the period, having obtained:

√
46 = [6; 1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 12 ] .

Moreover
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n cn pn qn

0 1
1 0

0 6 6 1 62 − 46 · 12 = −10
1 1 7 1 72 − 46 · 12 = 3
2 3 27 4 272 − 46 · 42 = −7
3 1 34 5 342 − 46 · 52 = 6
4 1 61 9 612 − 46 · 92 = −5
5 2 156 23 1562 − 46 · 232 = 2
6 6 · · ·
...

...
...

...
...

4. Multiplying a continued fraction (by a rational)

4.1 Given
α = [c0; c1, c2, . . . ]

and integers a, b, c, d with ad− bc �= 0, it is plain that the continued fraction of

β =
aα + b

cα + d

corresponds to the matrix product(
a b
c d

) (
c0 1
1 0

) (
c1 1
1 0

) (
c2 1
1 0

)
· · · .

But we must transform this product to one corresponding to a continued fraction.
An easy case is(
−1 0
0 1

) (
c0 1
1 0

) (
c1 1
1 0

) (
c2 1
1 0

)
· · · =(

−c0 − 1 1
1 0

) (
1 1
1 0

) (
c1 − 1 1

1 0

) (
c2 1
1 0

)
· · ·

Indeed, say
36
17

= [2; 8, 2] and − 36
17

= [−3; 1, 7, 2]

whilst 53/8 = [6; 1, 1, 1, 2] so

−53
8

= [−7; 1, 0, 1, 1, 2] = [−7; 2, 1, 2] .

In general, there is no such simple formula and we must develop a systematic ap-
proach to the problem of multiplying an R-L word

Rc0Lc1Rc2Lc3 · · ·

on the left by some given matrix and then commuting that matrix through the word
until, so to speak, the matrix disappears in the · · · on the right, leaving some R-L
word on its left. There are two steps to our approach. The first is to recognise
that we need only consider multiplication by matrices of a restricted shape. The
second is to construct simple tables (formulas) to facilitate the commuting process
to which we have alluded.

We will deal only with matrices with just nonnegative integer entries, unless we
say explicitly that we are not. We will see that this loses no generality. Given a
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matrix N , we apply the Euclidean algorithm to its rows until the matrix is row-
balanced: neither row dominates the other. We now apply the Euclidean algorithm
to the columns of the row-balanced matrix until we have a matrix that is also
colum-balanced: neither column dominates the other. We obtain

N = W1MW2

with M doubly-balanced and both W1, W2 finite R-L words. Plainly if we can
multiply by M (thus commute M through R-L words) then we can multiply by N .
Hence it suffices to learn to multiply by doubly-balanced matrices. Going further,
we may restrict ourselves to double-balanced matrices N with detN = p > 0, p
prime. Nevertheless, the remarks below apply somewhat more generally. Indeed
suppose only that N is row-balanced with detN > 0, and

N =
(

a b
c d

)
.

Then a− c > 0 and d− b > 0 whilst

detN = (a− c)(d− b) + c(d− b) + b(a− c) .

Each quantity on the right is nonnegative. It follows that there are only finitely
many possibilities for the entries of N , thus that there are only finitely many
row-balanced matrices of given determinant and a fortiori only finitely many such
doubly-balanced matrices. Moreover, if W is an R-L word with sufficiently many
letters (counted according to multiplicity) then NW has entries too large for it to
be row-balanced: so an R-L word can be withdrawn from its left.
Example 1 : detN = 3.

A =
(

3 0
0 1

)
B =

(
2 1
1 2

)
A′ =

(
1 0
0 3

)
R : R3

A LR : R L2R : RL2

L3 : L
B L : LR R : RL

R3 : R
A′ R2L : LR2 RL : L

L : L3

The table lists the three double-balanced matrices of determinant 3 and their tran-
sitions (commuting properties). In detail, and in a quite different format:

AR = R3A BL = LRA A′L = L3A′

AL2R = RB BR = RLA′ A′RL = LB

AL2R = RL2A′ A′R2L = LR2A

AL3 = LA A′R3 = RA′

Happily, only a few transitions need to be computed directly. In particular, double-
balance is preserved under the transpose, and for example

AR = R3A
T−→ LA = AL3 .

Further, in general: If

M =
(

a b
c d

)
, set M ′ = JMJ =

(
d c
b a

)
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Then

ALR = RB
′
−→ A′RL = LB

A′RL = LB
T−→ RLA′ = BR

In this manner the transitions of A yield the entire transition table in the present
example. Note that the double-transpose ′ preserves both row- and column-balance.
Example 2 : A yet simpler case permits us to illustrate the allegation concluding
section 2. Here det N = 2.

A =
(

2 0
0 1

)
A′ =

(
1 0
0 2

)
R : R2 LR : RL

A L2 : L
R2 : R

A′ RL : LR L : L2

In [2], observation 2.12 we see that

∞∑
h=0

2−2h

= [0; 1, 4, S∞
4,6(2, 4)]

= [0; 1, 4, 2, 4, 4, 6, 4, 2, 4, 6, 2, 4, 6, 4, 4, 2, 4, 6, 2, 4, . . . ]

To obtain the continued fraction of

2
∞∑

h=0

2−2h

we set our work as follows (noticing that we are multiplying by A):

;1 4 2 4 4 6 4 2 4
LR R2 RL LR R2 RL L2 LR R2 R2 RL L2 LR RL L2 LR R2 ...

A A’ A’ A A’ A’ A A A’ A’ A’ A A A’ A A A’ A ...
RL R LR RL R LR L RL R R LR L RL LR L RL R ...
1;1 1 1 2 1 1 11 1 11 2 11 1 1 2 1 1 11

This provides a nice instance of finite-state transducer (the states being A and
A′) transforming a given R-L sequence to a new sequence corresponding to the
continued fraction:

[1; 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, . . . ]

which, with a little more work, turns out to be

[1; 1, 1, 1, S∞
1,1,1,1,2,1(2, 1, 1, 1)] .

Our tabulation of the transduction should be read as

ALR = RLA′, A′R2 = RA′, A′RL = LRA, ALR = RLA′, . . .

The examples do not lie: In general there are exactly p doubly-balanced matrices
of determinant p, and these matrices are readily computed. Indeed suppose that

N =
(

a b
c d

)
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is row-balanced with detN > 0. Set

d− b

a− c
= [a0; a1, . . . , am]

and denote by WN the R-L word corresponding to [a0; a1, . . . , am−1, am − 1].
Then NWN has the special shape(

s + g t
s t + g

)

with g = gcd(d− b, a− c). It follows that

detN = detNWN = g(g + s + t) .

Hence if det N = p we must have g = 1 and s + t = p− 1, yielding p possibilities in
all. Moreover, the set of doubly-balanced matrices of given determinant is in one-
one correspondence with the matrices of that determinant with special shape above.
To see this, one verifies that if N is row-balanced and NW has special shape then
W = WN , whilst conversely if N1, N2 are doubly-balanced and N1WN1 = N2WN2

then WN1 = WN2 so N1 = N2. Finally, every row-balanced matrix, and a fortiori
each of special shape, yields a doubly-balanced matrix by decomposing it by the
Euclidean algorithm on its columns.
Example 3 : The doubly-balanced matrices of determinant 7 are

A =
(

7 0
0 1

)
=

(
7 0
6 1

)
L−6, B =

(
4 1
1 2

)
=

(
6 1
5 2

)
L−2,

C =
(

3 2
1 3

)
=

(
5 2
4 3

)
L−1, D =

(
4 3
3 4

)
,

C ′ =
(

3 1
2 3

)
, B′ =

(
2 1
1 4

)
, A′ =

(
1 0
0 7

)
.

Alternatively, given A, the other matrices may be obtained from

ALR = R3B AL2R = R2C ′ AL3R = RD

AL4R = RLC AL5R = RL2B′ AL6R = RL6A′

a few extra computations, together with the transformations T and ′ yield the entire
transition table.

With these remarks, we are in position to obtain the continued fraction of

β =
aα + b

cα + d

given that of α. It may be helpful to remark that for α < 0 one may change the
multiplier to (

−a b
−c d

)
and deal with −α > 0. Moreover, one may compute −β using(

−a −b
c d

)

and later obtain β. Further, for any k �= 0,(
ka kb
kc kd

)
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yields the same β, so we may always suppose that gcd(a, b, c, d) = 1, and by taking
k = −1 if necessary, that at most two of a, b, c, or d are negative. Replacing α by
α−1 changes the multiplier to (

b a
d c

)
.

allowing one to presume that the multiplier has positive determinant. In any event,
we may decompose the multiplier so that it becomes a product of matrices R, L,
R−1 and L−1 and doubly-balanced matrices with prime determinant. If one wished
one could construct transition tables for the case of composite determinant, but this
may be avoided. Raney [5], from which we have translated all the remarks of this
section, provides a detailed algorithm to transform an arbitrary multiplier to one
of doubly-balanced shape.

4.2 In section 3.5 we allege that given any part of the continued fraction of
√

D
we may obtain more of the period by consider powers of a corresponding matrix.
Example 4 : D = 46, 72 − 46 · 12 = 3.

M =
(

7 46
1 7

)
=

(
7 6
1 1

)
RA′R = R6L ·RA′R ,

where

[6; 1] =
7
1

and A′ =
(

1 0
0 3

)
.

Recall that we write M = M1E1 so M1 = R6LR, E1 = A′R and then sequentially
compute

EsMs = Ms+1Es+1, s = 1, 2, 3, . . .

obtaining
Mn = M1M2 · · ·Mn · EnEn−1 · E1 .

We employ the transition table of Example 1, and the setting-out of Example 2:

R3 R3 RL R R2L R L2R R3 R2L LR
A′R A′ A′ B A′ A AL A′ A′R A B

R6 L R R R L RL LR2 R3 RL2 R LR2 R

6 1 3 1 1 2 6 2 1 1 3
M1 M2 M3 M4 M5

and continuing

L R R R LR R R3 R3 R3 RL R R2L R
B A A A A B A′ A′ A′R2 A′ B A′R A AL
LR3 LR R3 R3 R3 R RL R R R L RL LR2 R3

1 12 1 3 1 1 2
M6 M7 M8 M9

Noting that M3 = M9 = LR5 and E3 = E9 = AL we verify periodicity. Our
computation proves that

√
46 = [6; 1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 12, 1, 3, 1, 1, 2 . . . ];
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note that the final entry 5 we obtain is not necessarily complete, and in this case is
in face an imcomplete quotient.

Example 5 : In section 3.3 we found that
√

69 = [8; 3, 3, 1, 4, 1, 3, 3, 16 ]

with [8; 3] = 25/3 and 252 − 69 · 32 = 4. Then with

M =
(

25 69 · 3
3 25

)

we showed that
1
8
M3J ↔ [8; 3, 3, 1, 4, 1, 3, 3, 8] .

We recall that M3J = M2JMT (because MT = M ′). But

M = R8L3 ·R2

(
1 0
0 4

)
R−1 .

We employ the transition table of Example 2, and multiply twice by

A′ =
(

1 0
0 2

)

R2 R2 R2 RL L2 R R

A′R−1 A′ A′ A′ A A A AA′2R−1

R8L3R2A′2R−1 R R R LR L R2 R2

R2 RL R LR R2

A′ A′ A A A′ A′RAA′2R−1

R3LRLR4AA′2R−1 R LR R2 RL R

We read off that

M2 = R8L3R2 ·RLR4L ·RA′RAA′2R−1 .

But
JMT = J · L−1A′2L2R3L8 = R−1A2R2L3R8J .

The mess we have left resolves itself in that

A′RAA′2R−1 ·R−1A2 = 8I (AA′ = 2I, RA′ = A′R2),

so, indeed, 1
8M3J yields what it should. As suggested back in section 3.3, if we

have x2 − Dy2 = ±4 then the continued fraction of x/y yields (the first) third of
the period of the continued fraction of

√
D and, by symmetry, the last third. The

middle third of the period is, up to slight perturbations at its edges, obtained by
multiplying (or dividing, that being much the same thing) the given third by 4.

Example 6 : In applying these ideas a little care is required. In particular, if the
portion of the continued fraction yielding the matrix we called M in section 3 is of
odd length, we need to keep track of the J . For example, noting

1642 − 61 · 212 = −5,
164
21

= [7; 1, 4, 3, 10] ,

we write

M =
(

164 61 · 21
21 164

)
= R7LR4L3RJ

(
1 0
0 5

)
= R7LR4L3R

(
5 0
0 1

)
L4J .

The transition table for determinant 5 is
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A =
(

5 0
0 1

)
B =

(
3 1
1 2

)
C =

(
3 2
2 3

)
B′ =

(
2 1
1 3

)
A′ =

(
1 0
0 5

)

A R : R5, L5 : L LR : R2 L2R : R L3R : RL L4R : RL4

B L2 : LR R : R LR : RL3

C L : LR2 R : RL2

B′ RL : LR3 L : L R2 : RL

A′ R4L : LR4 R3L : LR R2L : L RL : L2 R5 : R, L : L5

Write, for example

L10 LR L2 L2R R RL R2 L2 RL L LR
AL4 A B A C A′ B′ A′ A′ B′ B A′R3

J : L7RL4R3L R2L2RL3R4 LR14LR3

R7LR4L3R L2 R2 LR R RL2 L2 RL L10 L2 L RL3

7 1 4 3 1 2 2 1 3 4 1 14 1

discovering that
√

61 = [7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14, 1, . . . ] .

We need not go on to see periodicity explicitly since we know the end of the period
to be signalled by the large partial quotient 2[

√
D]; in this case, 14.

4.3 Here and there we have used some extraneous but informative terminology.
Namely, it is evident that multiplication transforms R-L sequences to R-L se-
quences. Moreover, by concentrating on doubly-balanced multipliers, we see that
we can split the multiplication into steps. At each step we have a state (the doubly-
balanced multiplier), part of the sequence is transformed, and we move to some new
state. But this is just a finite-state (there being only finitely many doubly-balanced
matrices of the given determinant) transduction of R-L sequences, familiar from the
theory of finite automata. And from that theory we learn immediately taht certain
properties, in particular periodicity, are preserved under finite-state transduction.

5. The object of these notes has been to mention various facts concerning
continued fractions in a setting that aided a description of Raney’s algorithm that, it
is to be hoped, minimal discourages genaralisation to higher-dimensional analogues.

In particular, the following generalisation of the work on quadratic irrationals
suggests itself: Given a basis θ1, θ2, . . . , θr of a number field K/Q viewed as an
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r-dimensional Q-vector space, each element α of K has a given matrix represen-
tation, namely the r × r matrix (with respect to the given basis) of the Q-linear
transformation

K −→ K : β −→ αβ .

For example, with K = Q
(√

D
)

and θ1 = 1, θ2 =
√

D, the matrix of x + y
√

D is

M =
(

x Dy
y x

)
.

Thus ibn the r-dimensional case on might hope to achieve the following: Given
α = x1θ1 + · · ·+ xrθr yielding a ‘good approximation’ of the basis θ1, . . . , θr (say,
α has small norm relative to the xi in Z):

(i) Obtain the matrix M corresponding to α, as above.

(ii) Decompose M = M1E1 with M1 unimodular, and ‘maximal’ in some sense,
and hence compute

Mn = M1M2 · · ·Mn · EnEn−1 · · ·E1 .

One might expect that in some sense M1M2 · · ·Mn corresponds to some ‘later’
or better approximation than α. More generally, given n not necessarily different
‘good’ approximations one might hope that the product of their corresponding ma-
trices yields new approximations. However it is not as clear just how one should
define and effect the suggested decomposition of M .
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