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Introduction. The purpose of these notes is to support the papers included in this volume
by providing self-contained summaries of related mathematics emphasising those aspects
actually used or required. I have selected two topics that are easily described from first
principles yet for which it is peculiarly difficult to find congenial introductions that warrant
citing.

The theory of continued fractions is less widely known than it should be; yet one can
readily retrieve its fundamental results with little more than the ability to multiply 2 × 2
matrices.

A linear feedback shift register (LFSR) is just a recurrence sequence defined over the field
F2 of 2 elements; or, better, its generating function is a rational function defined over F2 .
It seems useful to interpret familiar activities in the creation of stream ciphers in classical
terms if only to establish a dictionary translating the jargon of stream ciphers into the
language of mathematics.

1. Continued Fractions

1.1 An introduction to continued fractions. A continued fraction is an object of the
shape

a0 + 1
a1 + 1

a2 + 1
a3 + .. .

which we denote in a space-saving flat notation by

[a0 , a1 , a2 , a3 , . . . . . . ] .

Virtually all principles of the subject are revealed by the following correspondence:

Proposition 1 (Fundamental Correspondence). Given a sequence a0, a1, a2, . . . . . .

(1)
(

a0 1
1 0

) (
a1 1
1 0

)
· · · · · ·

(
an 1
1 0

)
=

(
pn pn−1

qn qn−1

)
for n = 0 , 1 , 2 , . . . . . .

if and only if
pn

qn
= [a0 , a1 , . . . . . . , an] for n = 0 , 1 , 2 , . . . . . . .
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Proof: This correspondence is readily established by a thoughtful inductive argument.
Notice firstly that the sequence of partial quotients (ah) defines the sequences (ph) and
(qh) appearing in the first column of the matrix product. Since the empty product of 2×2
matrices is the identity matrix, we are committed to

(2)
(

p−1 p−2

q−1 q−2

)
=

(
1 0
0 1

)
.

We may then readily verify by induction on n that the second column of the product
indeed has the alleged entries. Thus we have the recursive formulae

pn+1 = an+1pn + pn−1

qn+1 = an+1qn + qn−1 .(3)

We verify the principal claim by induction on the number n + 1 of matrices appearing on
the left in the product. The claim is easily seen true for n = 0 since, indeed p0 = a0 and
q0 = 1. Accordingly, we suppose that(

a1 1
1 0

) (
a2 1
1 0

)
· · · · · ·

(
an 1
1 0

)
=

(
xn xn−1

yn yn−1

)
for n = 0, 1, 2, . . . . . .

if and only if
xn

yn
= [a1 , a2 , . . . . . . , an] for n = 0, 1, 2, . . . . . . ,

noting that this is a case of just n matrices.

But (
pn pn−1

qn qn−1

)
=

(
a0 1
1 0

) (
xn xn−1

yn yn−1

)
=

(
a0xn + yn a0xn−1 + yn−1

xn xn−1

)

entails

(4)
pn

qn
= a0 +

yn

xn
= a0 +

1
[a1 , . . . · · · , an]

= [a0 , a1 , . . . . . . , an] ,

verifying the claim by induction.

Taking determinants in the correspondence immediately yields the fundamental formula

(5) pnqn−1 − pn−1qn = (−1)n+1 or
pn

qn
=

pn−1

qn−1
+ (−1)n−1 1

qn−1qn
.

It is then immediate that

(6)
pn

qn
= a0 +

1
q0q1

− 1
q1q2

+ · · · + (−1)n−1 1
qn−1qn

.
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Almost invariably, but not always, in the sequel the ai are positive integers — excepting
a0 which may have any sign.

It follows that we can make sense of nonterminating continued fractions

α = [a0 , a1 , . . . . . .] ,

for evidently,

(7) α = a0 +
1

q0q1
− 1

q1q2
+ · · · = a0 +

∞∑
n=1

(−1)n−1

qn−1qn

and, this being an alternating series of terms with decreasing size, the series converges to
some real number α .

In this context the terminating continued fractions

pn

qn
= [a0 , a1 , . . . . . . , an] n = 0, 1, 2, . . . . . .

are called convergents of α and the tails

(8) αn+1 = [an+1 , an+2 , . . . . . . ]

are known as its complete quotients. Note that we have, formally,

(9) α = [a0 , a1 , . . . . . . , an, αn+1] n = 0, 1, 2, . . . . . . .

These remarks immediately yield the approximation properties of the convergents. For we
have

(10) α − pn

qn
= (−1)n

(
1

qnqn+1
− 1

qn+1qn+2
+ · · · · · ·

)
.

This shows that the sequence (qnα − pn) alternates in sign and that, in absolute value, it
converges monotonically to zero. Less precisely, we see that∣∣∣∣α − pn

qn

∣∣∣∣ <
1

qnqn+1

and, recalling (3) : qn+1 = an+1qn + qn−1 implies yet less accurately that∣∣∣∣α − pn

qn

∣∣∣∣ <
1

an+1q2
n

.

Thus a convergent yields an exceptionally sharp approximation when the next partial
quotient is exceptionally large. For example, reminded that

π = [3 , 7 , 15 , 1 , 292 , 1 , . . . ]
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and noting
[3 , 7] = 22/7 [3 , 7 , 15 , 1] = 355/113

we have ∣∣∣∣π − 22
7

∣∣∣∣ <
1

15.72

∣∣∣∣π − 355
113

∣∣∣∣ <
1

292.1132

making appropriate the popularity of these rational approximations to π .

Because the sequence (qnα − pn) alternates in sign it is clear that one need only consider
every second convergent if one is interested in just those approximations below (underes-
timating), respectively above (overestimating) α . It is an interesting exercise to confirm
that if, say, [a0 , a1 , . . . . . . , an] is a convergent overestimating α , and an > 1, then the
intermediate convergent [a0 , a1 , . . . . . . , an − 1] is a quite good underestimate for α .

We now return to the beginning. Noting that

α = [a0 , a1 , . . . ] = a0 +
1

[a1 , a2 , . . . ]

we see that
a0 = �α�

and
α1 = [a1 , a2 , . . . ] = (α − a0)−1 .

The general step in the continued fraction algorithm is

an = �αn� and αn+1 = (αn − an)−1 n = 0, 1, 2, . . . . . .

An infinite partial quotient terminates the expansion. Since

[a0 , a1 , . . . · · · , an]

is rational it is evident that if the continued fraction of some α terminates then that α is
rational. Conversely, since, as is plain from (5), pn and qn are relatively prime, and, since
by (3) the sequences (|pn|) and (qn) are both monotonic increasing, it follows that if α
is rational then its continued fraction does terminate. Indeed, for a rational α = b/c , the
continued fraction algorithm is just the Euclidean algorithm. Thus

b = a0c + c1 0 ≤ c1 < c

c = a1c1 + c2 0 ≤ c2 < c1

c1 = a2c2 + c3 0 ≤ c3 < c2

...
cn−1 = ancn

corresponds to
b

c
= [a0 , a1 , · · · , an] and gcd(b, c) = d = cn
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and explains the term ‘partial quotient’. Since b/c = pn/qn with gcd(pn, qn) = 1 we must
have dpn = b and dqn = c . Moreover, by (5)

pnqn−1 − pn−1qn = (−1)n+1 so bqn−1 − cpn−1 = (−1)n−1d ,

and this displays the greatest common divisor as a Z -linear combination of b and c . By
|pn−1| < |pn| and qn−1 < qn it follows that this combination is minimal.

This is an appropriate point at which to remark that it will be an easy matter to generalise
the continued fraction algorithm to completions of the quotient field of any Euclidean
domain — for R is just the completion with respect to the usual absolute value | | of the
quotient field Q of the rational integers Z . An evident example replaces Z by the ring of
polynomials over some field and R by the field of Laurent series over that field.

The entire matter of continued fractions of real numbers could have been introduced using
the following

Proposition 2. A rational p′/q′ with gcd(p′, q′) = 1 is a convergent of α if and only if

|q′α − p′| < |qα − p| for all integers q < q′ and p .

Proof: Suppose, as we may, that qn−1 < q < qn . Then, by the unimodularity of the
matrix (

pn pn−1

qn qn−1

)

there are integers a and b so that

apn−1 + bpn =p

aqn−1 + bqn =q

and, necessarily, ab < 0. Multiplying by α and subtracting yields

qα − p = a(qn−1α − pn−1) + b(qnα − pn) .

But, by (10), we have (qn−1α − pn−1)(qnα − pn) < 0. Hence

|qα − p| = |a||qn−1α − pn−1| + |b||qnα − pn| ,

and plainly |qα − p| > |qnα − pn| as asserted.

The proposition asserts that the convergents of α are exactly those quantities yielding the
locally best approximations to α . It is an interesting exercise to develop the entire theory
(working backwards in the present program) from the notion of locally best approximation;
once again, the formula (5) plays the fundamental role.

Moreover, we have the following useful criterion:
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Proposition 3. If

|qα − p| <
1
2q

then p/q is a convergent of α .

Note that this condition is sufficient but not nececessary.

Proof: By proposition 2 it suffices to show that |qα− p| is a locally best approximation.
To see that is so take integers r , s with 0 < s < q and notice that

1 ≤ |qr − ps| = |s(qα − p) − q(sα − r)| ≤ s|qα − p| + q|sα − r|
≤ s

2q
+ q|sα − r| .

So certainly q|sα−r| ≥ 1−s/2q > 1/2 and it follows that |qα−p| < |sα−r| as claimed.

Notice that it is just this criterion that is applied by Worley [7] at §8 of his remarks.

I conclude by applying the matrix correspondence to develop a formulaire: From

α = [a0 , a1 , . . . · · · , an , αn+1] ←→
(

pn pn−1

qn qn1

) (
αn+1 1

1 0

)

we have
α =

αn+1pn + pn−1

αn+1qn + qn−1
and αn+1 = −qn−1α − pn−1

qnα − pn
.

Transposition of (
a0 1
1 0

) (
a1 1
1 0

)
· · · · · ·

(
an 1
1 0

)
=

(
pn pn−1

qn qn−1

)

yields
pn

pn−1
= [an , an−1 , · · · , a0] and

qn

qn−1
= [an , an−1 , · · · , a1] .

Hence
−αn+1 =

−αqn−1 + pn−1

αqn + pn
←→ −αn+1 = [an , an−1 , · · · , a0 , −α] .

1.2 Applying the theory of continued fractions. Suppose one suspects that some
computed number is actually some nice neat vulgar fraction. For example, one’s calculator
has produced the number

α = 2.117647059 . . .

Expanding α as a continued fraction yields

α ≈ [2 , 8 , 2] = 36/17

up to the accuracy of the data, essentially verifying the suspicion that α = 36/17. Thus
the continued fraction algorithm provides an efficient method of converting a decimal to a
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vulgar fraction reversing the more usual algorithm that converts a fraction to a decimal.
The point is, of course, that instead of having to test all possible rational approximations
one only meets very good rational approximations.

This is the spirit of Wiener’s cryptanalytic attack on the use of short secret exponents in
the RSA cipher mentioned by Lidl [4] in this volume. Recall that n = uv (I use u and
v for the unknown primes since I wish to mind my p s and q s for convergents) and one
hopes to guess (u − 1)(v − 1) = n − (u + v) + 1. More precisely, one wishes, given the
public key e to find a secret key d so that

ed ≡ 1 mod lcm(u − 1, v − 1) .

Now this is just

ed = 1 + k(u − 1)(v − 1) =1 + k(n − (u + v) + 1) ,

so certainly

k

d
− e

n
<k(u + v)/nd .

One expects that u 	 v 	 n
1
2 . Then k/d is necessarily a convergent of e/n if n

1
2 
 kd .

The convergents can all be found in polynomial time and, as Lidl points out, each is readily
tested for correctness by parity check and detection of squares. Thus the encryption scheme
is insecure if d < n

1
4 and k is not large. However kn 	 ed , so, indeed, choosing e 
 n

3
2

always protects against the present rather näıve attack.

To save clutter I have not emphasised the fact that k is a rational with denominator
gcd(u − 1, v − 1) rather than an integer as my notation suggests.

1.3 Continued fraction expansion of Laurent series. Suppose now that the partial
quotients ai = ai(X) are polynomials each (other than perhaps a0(X) which may be
constant) of degree at least 1. The formalism is unchanged but one needs to understand
the sense in which a series

(11) α(X) = a0(X) +
1

q0(X)q1(X)
− 1

q1(X)q2(X)
+ · · · = a0(X) +

∞∑
n=1

(−1)n−1

qn−1(X)qn(X)

converges when (qn(X)) is a sequence of polynomials with monotonically increasing degree.
The essence is to so ‘value’ rational functions that the terms of the sum (11) have value
decreasing to zero. It turns out the order of vanishing at infinity yields the appropriate
value. In effect one views the polynomials qi(X) as rational functions in X−1 and then
the sum (11) ‘converges’ as a formal power series in X−1 . The limit α of the continued
fraction is a Laurent series, in fact, the sum of a polynomial a0(X) and a power series in
X−1 . The continued fraction algorithm proceeds by taking the polynomial part (including
the constant term) of the complete quotient and then inverting the remainder to yield the
next complete quotient.
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1.4 Continued fraction expansion of algebraic numbers. It is not difficult to see
that a periodic continued fraction represents a zero of a quadratic polynomial. The con-
verse, Legendre’s Theorem, is somewhat deeper but, indeed, every real quadratic irrational
has a periodic continued fraction expansion. In an important sense the continued fraction
algorithm is tailored to quadratic quantities: that is manifested in the correspondence with
products of 2×2 matrices. Williams [6] alludes at §2 to the manner in which the continued
fraction algorithm yields an information on the ideal class group of a real quadratic field.

For algebraic numbers of higher degree it is conjectured on deep theoretical grounds that
the partial quotients are always unbounded but, in fact, no example displaying that prop-
erty is known (nor, of course, is any counterexample). There is not all that much experi-
mental data and more might prove instructive. On the other hand, surprisingly perhaps,
the analogous situation for Laurent series over a finite field is different [1]. There are
nonperiodic continued fractions all of whose partial quotients are polynomials of degree 1
which represent Laurent series algebraic over the rational functions. Thus, see Lidl [L], §4
for the relevant notion, there are sequences (sn) with perfect linear complexity profile for
which

∑
snX−n is an algebraic function of degree greater than 2.

2. Recurrence Sequences

2.1 Generalised power sums, rational functions and recurrence sequences. A
generalised power sum a(h) , h = 0, 1, 2, . . . . . . is an expression of the shape

(12) a(h) =
m∑

i=1

Ai(h)αh
i , h = 0, 1, 2, . . . . . .

with roots αi , 1 ≤ i ≤ m , distinct non-zero quantities, and coefficients Ai(h) polynomials
of respective degrees ni − 1 , for positive integers ni , 1 ≤ i ≤ m . The generalised power
sum a(h) is said to have order

n =
m∑

i=1

ni .

Set

(13) s(X) =
m∏

i=1

(1 − αiX)ni = 1 − s1X − · · · − snXn .

Then the sequence (ah) with ah = a(h) , h = 0, 1, 2, . . . . . . satisfies the linear homoge-
neous recurrence relation

(14) ah+n = s1ah+n−1 + · · · + snah , h = 0, 1, 2, . . . .

To see this let E : f(h) �→ f(h + 1) be the shift operator and ∆ = E − 1 the difference
operator. Then

(E − α)
(
Ai(h)αh

i

)
= (∆Ai(h))αh+1

i



Continued fractions and recurrence sequences 9

and since ∆Ai(h) has lower degree than does Ai , by linearity of E and induction it is
plain that

m∏
i=1

(E − αi)ni

annihilates the sequence (ah) as asserted. Thus generalised power sums are interesting in
that they coincide with the sequences satisfying the recurrence relations (14). It follows
that there is a polynomial r(x) , of degree less than n , so that the power series

(15)
∞∑

h=0

ahXh =
r(X)
s(X)

is a rational function; to see this multiply by s(X) and note the recurrence relation.

Conversely given a rational function as above, with deg r < deg s , a partial fraction ex-
pansion yields

r(X)
s(X)

=
m∑

i=1

ni∑
j=1

rij

(1 − αiX)j
=

∞∑
h=0


 m∑

i=1

ni∑
j=1

rij

(
h + j − 1

j − 1

)
αh

i


 Xh

and the coefficients of Xh , h = 0, 1, 2, . . . . . . are indeed the values of a generalised power
sum as described.

Accordingly, results on generalised power sums are equivalent to corresponding results for
the Taylor coefficients of rational functions.

A sequence (ah) satisfying a relation (14) is often called a recurrence sequence (or linearly
recursive sequence) of order n ; the polynomial Xns(X−1) reciprocal to the polynomial
(13) is called the characteristic or companion polynomial of the recurrence sequence. Our
“roots” αi are the distinct zeros of the companion polynomial. The archetypal example
of a recurrence sequence is of course the celebrated Fibonacci sequence (fh) defined by

fh+2 = fh+1 + fh , h = 0, 1, 2, . . . with f0 = 0 , f1 = 1 ;

and generated by
X

1 − X − X2 =
∞∑

h=0

fhXh .

The expression (12) for the ah = a(h) as a generalised power sum provides a well known
formula for the terms of a recurrence sequence. One obtains a less well known formula
from directly expanding (15). In terms of the given initial values a0, a1, . . . , an−1 of (ah)
one has

r(X) =
n−1∑
j=0

(
aj −

j∑
i=1

siaj−i

)
Xj ,
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and

s(X)−1 =
∞∑

h=0

∑
j1+2j2···+njn=h

(j1 + j2 · · · + jn)!
j1! . . . jn!

sj1
1 · · · sjn

n Xh .

For the Fibonacci numbers this yields (with the usual conventions for interpreting the
combinatorial symbol)

fh+1 =
∑

j

(
h − j

j

)
.

2.2 Hadamard operations. If
∑

ahXh and
∑

bhXh represent rational functions then
so do their sum

∑
(ah + bh)Xh and their Hadamard product

∑
ahbhXh .

This is not obvious as stated but is an immediate consequence of the fact that the sum
and, respectively, the product of generalised power sums is again a generalised power sum.
Incidentally, it turns out that the Hadamard product of a rational and of an algebraic
power series is algebraic but over a field of characteristic zero the Hadamard product of
algebraic functions is not necessarily algebraic. The most quoted example is

(1 − 4x1)−1/2 =
∑ (

2h

h

)
xh

1 , but
∑ (

2h

h

)2

xh
1

is not algebraic. The first remark is the useful identity

(
2h

h

)
= (−1)h

(− 1
2

h

)

and, with a little work and some elementary calculus one sees that the latter series is given
by the integral

2
π

∫ π/2

0

dt√
(1 − 16x1 sin2 t)

.

This is a complete elliptic integral well known not to represent an algebraic function.

Remarkably, [3] the Hadamard product of algebraic power series defined over a field of
positive characteristic is always again algebraic; in particular this is so for the Hadamard
product of algebraic power series over a finite field. It turns out the sequences of Taylor
coefficients of algebraic functions over finite fields are generated by finite automata, sug-
gesting a rather more subtle source for stream ciphers quite different from those generated
by rational functions. An efficient introduction to the mathematical background may be
found in [5].
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2.3 Recurrence sequences and LFSR s. Recall that (ah) is a recurrence sequence if
and only if its terms are given by a generalised power sum

a(h) = ah =
m∑

i=1

Ai(h)αh
i , h = 0, 1, 2, . . . . . .

and that the recurence sequence has characteristic polynomial

m∏
i=1

(X − αi)ni .

Obviously, for each positive integer d , (adh) again yields a generalised power sum, and it
has characteristic polynomial

m∏
i=1

(X − αd
i )

ni .

A generalised power sum yields a periodic sequence if and only if each root αi is a root of
unity and each coefficient Ai(h) is a periodic function of h . Over a finite field a nonzero
element is a root of unity and in characteristic p a polynomial in h is trivially periodic
with period p . Thus, over a finite field every recurrence sequence is periodic. Conversely, a
periodic sequence with period t is the sequence of Taylor coefficients of a rational function
with denominator 1 − Xt .

Given the characteristic polynomial, the initial values a0 , a1 . . . , an−1 of the recurrence
sequence, the coefficients Ai of the generalised power sum and the numerator of the gen-
erating rational function determine one another. Different recurrence sequences with the
same characteristic polynomial are the sequences of Taylor coefficients of rational functions
with the one denominator but different numerators.

The product of k generalised power sums each with roots αi , but possibly with different
coefficients, is a generalised power sum with roots consisting of all monomials of weight k
in the α s. Hence the non-linear combination of recurrence sequences defined at §4.1 of [2]
is a recurrence sequence with roots consisting of all monomials of weight at most L in the
roots of the original sequence. The Groth sequences mentioned at §4.3 of [2] are sums of
different recurrence sequences each with characteristic polynomial having zeros consisting
of all pairs αiαj .

More generally, each of the sequences mentioned in [D], no matter how apparently complex
its formation rule, is itself a recurrence sequence which, in principle, can be generated by
the one simple LFSR. That follows immediately over the finite field F2 by periodicity,
but in fact, with the exception of the ‘multiplexed sequence’ mentioned at §7.2, would
hold had the generating sequences been defined over any field. The formation rules are
a trade-off between ease of generation and the endeavour to satisfy various ‘randomness’
criteria.
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