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Abstract

A Germain prime is a prime p such that 2p + 1 is also a prime,
in which case we call 2p + 1 a co-Germain prime. Germain primes
are the subject of modern day interest, because given a co-Germain
prime q, q − 1 has a very large prime factor, namely the Germain
prime corresponding to q. The primality testing algorithm of Agrawal,
Kayal, and Saxena uses such numbers in a deterministic primality
test. If the number of Germain primes up to a number N follows
an asymptotic formula conjectured by Hardy and Littlewood, then
the primality testing algorithm of Agrawal, Kayal, and Saxena runs
in O(log6 n) time, where n is the number being tested. We ask two
questions about the behavior of Germain primes. First, do Germain
primes follow the conjecture of Hardy-Littlewood in local intervals?
Second, how are Germain primes distributed in these local intervals?
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1 The local Hardy-Littlewood conjecture

The number of primes up to N is commonly denoted π(N), similarly for
Germain primes, πG(N) is the number of Germain primes up to N . Hardy
and Littlewood [1] conjectured that πG(N) is asymptotic to N/ log2 N . Since
the number of primes up to N is asymptotic to N/ log N by the prime number
theorem, it is reasonable to suppose the Hardy-Littlewood conjecture.

In this paper we will consider the Hardy-Littlewood conjecture on local
intervals. By πG(N, N + l) we denote the number of Germain primes in the
interval [N,N + l], and we conjecture that this is asymptotic to the difference
of the asymptotic formula at N + l with the asymptotic formula at N .

Conjecture 1 (Local Hardy-Littlewood).

πG(N, N + l) ∼ 2T2

(
N + l

log2(N + l)
− N

log2 N

)
,

where T2 = 0.6601618158 · · · is the twin primes constant.

We will derive the Hardy-Littlewood conjecture using a variant of the
method used by Hardy-Littlewood that is due primarily to Vinogradov. Our
derivation will follow the course of Miller [3] and a number of time refer the
reader their for complete proofs. In order to develop an asymptotic formula
for πG we construct a generating function for πG. We will evaluate its integral
on an interval that we decompose into two parts, called the major arcs and
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the minor arcs. We will not be able to evaluate the integral on the minor
arcs, but we will conjecture that the integral over the minor arcs contributes
only lower order terms. Finally, we will show that this conjecture implies the
Hardy-Littlewood conjecture.

1.1 The generating function

We denote the generating function fN(x) for πG to be

fN(x) =
∑
p1≤N

∑
p2≤N

e((−2p1 + p2)x) log p1 · log p2, (1)

where e(x) = e2πix.
We will find that the value of the integral of this function over the interval

[−1/2, 1/2] is equal to πG(N) up to lower order terms. We will evaluate this
integral to get an asymptotic formula for πG.

Let U = [−1/2, 1/2],
∫

U
fN(x)e(−x)dx =

∑
p1≤N

∑
p2≤N

log p1 · log p2

∫

U
e((−2p1 + p2 − 1)x)dx,

=
∑
p1≤N

∑
p2=2p1+1

log p1 · log p2,

=
∑
p1≤N

2p1+1 prime

log p1 · log(2p1 + 1),

where we’ve used the fact that the integral of e(ax) is 0 when a 6= 0 and 1
when a = 0.

Now let
G(N) =

∑
p≤N

2p+1 prime

log p · log(2p + 1).

Obviously,
G(N) ≤ log2 N · πG(N)

For the bound in the other direction, we can use partial summation to
get the formula

G(N) ≥ log2 N · πG(N)−O

(
N

log log N

log N

)
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Thus, up to lower order terms,

log2 N · πG(N) ≈
∫

U
fN(x)e(−x) dx.

1.2 The major and minor arcs

We can find an asymptotic formula for this integral by breaking up U into
numbers that are well approximated by rationals, and those numbers that
are not. These two sections are called, respectively, the major and minor
arcs.

Let Q = logB N , and 1 ≤ a ≤ q ≤ Q where (a, q) = 1, then the major
arc of a/q is,

M(q, a) = {α ∈ U : |α− a/q| < Q/N},
where B can be chosen large enough to make certain terms lower order.

So the elements of the major arcs are the real numbers that are within
Q/N of a rational that has a denominator no greater than Q. The major
arcs are pairwise disjoint, and we define the major arcs M as the union of
every major arc.

The minor arcs are the intervals in U, not covered by the major arcs, so

m = U\M.

From the definition of the major and minor arcs it follows that
∫

U
fN(x)e(−x) dx =

∫

M
fN(x)e(−x) dx +

∫

m
fN(x)e(−x) dx (2)

We will show that the major arcs contribute a constant times N2 plus
lower order terms. We will also see by evaluation that fN(x) is large on the
minor arcs. Although the major arcs take up most of U it is our hope that
there is some type of cancellation on the minor arcs so that fN(x) is small on
these portions of U. Thus, all we would need to show is that the integral over
the minor arcs fN(x) is at most o(N2), but this is in fact the most difficult
part of the circle method. The following conjecture is equivalent to the local
Hardy-Littlewood conjecture

Conjecture 2. The integral over the major arcs contributes lower order
terms, so ∫

U
fN(x)e(−x) dx ∼

∫

M
fN(x)e(−x) dx
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1.3 The generating function at a rational

We now consider the value of fN at a rational a/q. Splitting the sums up
from above equation we get

fN(a/q) =
∑
p1≤N

e(−2p1a/q) log p1

∑
p2≤N

e(p2a/q) log p2

Dividing the indices of the sum into the congruence classes of q, we get

fN(a/q) =

q∑
r1=1

∑
p1≤N

p1≡r1(q)

e(−2p1a/q) log p1

q∑
r2=1

∑
p2≤N

p2≡r2(q)

e(p2a/q) log p2

Since e(k) = 1 for any integer k, we can replace p1 with r1 and p2 with r2

and remove them from the inner sums, so

fN(a/q) =

q∑
r1=1

e(−2r1a/q)
∑
p1≤N

p1≡r1(q)

log p1

q∑
r2=1

e(r2a/q)
∑
p2≤N

p2≡r2(q)

log p2 (3)

Now p1 ≡ r1 (mod q) so p1 = kq + r1, for 0 ≤ k < r1. If (r1, q) = d > 1,
then p1 = d(kq′ + r′1) where q = dq′ and r1 = dr′1. So there is at most one
prime p1 such that (r1, q) > 1, and this prime occurs only when r1 itself is
prime. Thus, the number of values for r1 such that (r1, q) > 1 is very small.
The same is true for r2.

fN(a/q) =

q∑
r1=1

(r1,q)=1

e(r1(−2a)/q)
∑
p1≤N

p1≡r1(q)

log p1

q∑
r2=1

(r2,q)=1

e(r2a/q)
∑
p2≤N

p2≡r2(q)

log p2 (4)

Theorem 3 (Siegel-Walfisz). For B, C > 0, (a, q) = 1, and q ≤ logB N ,

∑
p≤N

p≡a(q)

log p =
N

φ(q)
+ O

(
N

logC N

)
,

where the constant depends only on B and C.

Notice that Siegel-Walfisz allows us to make sure that the error is very
small, because given any B > 0 we can find a C > 0 such that the theorem
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holds. Notice also that although we may make the denominator of the error
term very large, since the constant depends on B and C, the constant may
become large also, but as N approaches infinity this won’t matter. We use
this to keep this correction term as a lower order contribution.

A Ramanujan Sum, denoted cq(a) is

cq(a) =

q∑
r=1

(r,q)=1

e(ra/q)

Using the Siegel-Walfisz theorem and the definition of a Ramanujan sum,
Eq. (4) becomes

fN(a/q) ≈ N2

φ2(q)
cq(−2a)cq(a),

where the approximation holds up to lower order terms.

1.4 The generating function on the major arcs

Now that we have a formula with very good control on the error for the
generating function at a rational with a small denominator, we want to know
what the value of the generating function is over that rational’s major arc,
again with a good control on the error.

We now rewrite Eq. (4) as

fN(a/q) = Cq(a)u(0),

where

u(x) =
∑
p1≤N

∑
p2≤N

e((−2p1 + p2)x), (5)

Cq(a) =
cq(−2a)cq(a)

φ2(q)

So Cq(a)u(0) agrees perfectly with fN(a/q) and it is our hope that if α is
near a/q then Cq(a)u(α− a/q) is near fN(α).

Let
Sa,q = fN(α)− Cq(a)u(α− a/q).

Since both fN(α) and u(α − a/q) are sums over p1, p2 by Eqs. (1) and (5)
respectively, we can incorporate their difference into one single sum over
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p1, p2. Using partial summation, we can separate this sum into an integral
and another sum. Evaluating the contribution over this integral and sum we
get the next lemma.

Lemma 4. If α ∈ M(q, a) then

fN(α) = Cq(a)u(α− a/q) + O

(
N2

logC−2B N

)
.

Now by Siegel-Walfisz we can chose C such that C > 2B so that this
error term is lower order. A complete proof of this lemma is given by Miller
[3].

1.5 The integral over the major arcs

We must now evaluate the integral of Cq(a)u(α − a/q) over the major arcs.
Since Cq(a) depends only on a and q we can remove it from the integral and
worry about it later. We may break up the integral over the major arcs into
several parts and evaluate each part.

Lemma 5. ∫

M(q,a)

u(α− a/q)e(−α) dα ≈ N

2
e(−a/q)

Again a complete proof of this lemma is given by Miller [3].
Now we compute the value of the integral of the generating function over

the major arcs up to lower order terms.
∫

M
fN(x)e(−x) dx ≈ 2

∑
q≤Q

q∑
a=1

(a,q)=1

∫ a/q+Q/N

a/q−Q/N

fN(α)e(−α) dα

= 2
∑
q≤Q

q∑
a=1

(a,q)=1

∫ a/q+Q/N

a/q−Q/N

Cq(a)u(α− a/q)e(−α) dα

≈ N
∑
q≤Q

q∑
a=1

(a,q)=1

Cq(a)e(−a/q)

Let

ρq =

q∑
a=1

(a,q)=1

Cq(a)e(−a/q).
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We call the sum of the ρq the singular series of πG,

SN =

Q∑
q=1

ρq.

Substituting in the above definitions it follows immediately that

∫

M
fN(x)e(−x) dx ≈ NSN

1.6 The singular series

We will now show that ρq is a multiplicative sequence, and for any multi-
plicative sequence

∑
q

ρq =
∏

p

(
1 +

∞∑

k=1

ρpk

)
(6)

because each q in the left hand sum can be decomposed into its prime factors.
We can then eliminate certain elements from the sum over the powers of p
on the basis of the properties of ρpk . What we are left with is a product over
primes that converges to the twin prime constant T2. Thus, we will come to
the identity

SN = 2T2.

In order to prove that ρq is multiplicative we first need two corollaries.

Corollary 6. If r ≤ q and (r, q) = 1, then

r ≡ r1q2 + r2q1 (mod q1q2),

where 1 ≤ r1 ≤ q1, (r1, q1) = 1, and 1 ≤ r2 ≤ q2, (r2, q2) = 1.

Corollary 7. If (q1, q2) = 1, then

Cq1(a) = Cq1(a1q2 + a2q1) = Cq1(a1q2),

where 1 ≤ a1 ≤ q1, (a1, q1) = 1, and 1 ≤ a2 ≤ q2, (a2, q2) = 1.

Lemma 8. ρq is multiplicative
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Proof. In order to show that ρq is multiplicative, we first show that a Ra-
manujan sum is multiplicative with respect to q. Throughout this proof, q1

and q2 are assumed to be relatively prime.
Using Cor. 6 we can separate cq1q2(a) into two different sums, which are

equal to cq1(a) and cq2(a).

cq1q2(a) =

q1q2∑
r=1

(r,q1q2)=1

e(ra/q1q2),

=

q1∑
r1=1

(r1,q1)=1

q2∑
r2=1

(r2,q2)=1

e((r1q2 + r2q1)a/q1q2),

=

q∑
r1=1

(r1,q)=1

e(r1a/q)

q∑
r2=1

(r2,q)=1

e(r2a/q),

= cq1(a)cq2(a).

Since

Cq1q2(a) =
cq1q2(a)cq1q2(−2a)

φ2(q1q2)
,

and φ is obviously multiplicative, Cq(a) is also multiplicative.
The proof follows easily using the fact that Cq(a) is multiplicative, and

Cor. 7 repeated times.

ρq1q2 =

q1q2∑
a=1

(a,q1q2)=1

Cq1q2(a)e(−a/q1q2),

=

q1q2∑
a=1

(a,q1q2)=1

Cq1(a)Cq2(a)e(−a/q1q2),

=

q1∑
a=1

(a,q1)=1

q2∑
a=1

(a,q2)=1

Cq1(a1q2 + a2q1)Cq2(a1q2 + a2q1)e(−(a1q2 + a2q1)/q1q2),

=

q1∑
a=1

(a,q1)=1

Cq1(a1q2)e(−a1/q1)

q2∑
a=1

(a,q2)=1

Cq2(a2q1)e(−a2/q2),

= ρq1ρq2 .
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Since ρq is multiplicative, Eq. 6 holds and we need only to simplify this
expression to get a product which converges to the twin primes constant.

Lemma 9. ∞∑

k=1

ρpk = ρp

Proof. The lemma is equivalent to saying ρpk = 0, for all k ≥ 2. It follows
because cq(a) = µ(q) for (a, q) = 1, where µ is the moebius function. This
can be shown using elementary properties of the moebius function. Since
µ(pk) = 0 for all k ≥ 2, the lemma follows.

ρ2 =
2∑

a=1
(a,2)=1

C2(a)e(−a/2)

=
c2(1)c2(−2)

φ2(2)
e(−1/2)

=
e(1/2)e(−1)

1
e(−1/2)

= 1.

Now if p > 2, then cp(a) = cp(−2a) = µ(p) since (a, p) = 1. For any
prime p, µ2(p) = 1, and φ(p) = p− 1, so

ρp =

p−1∑
a=1

1

(p− 1)2
e(−a/p),

=
1

(p− 1)2

[
−e(−0/p) +

p−1∑
a=0

e(−a/p)

]
,

=
−1

(p− 1)2
.

Lemma 10.
SN = 2T2
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Proof. As N goes to infinity, so does Q = logB N , and thus

|SN −
∑

q

ρq|

goes to zero as N goes to infinity. Thus,

SN =
∏

p

(1 + ρp),

= (1 + ρ2)
∏
p>2

(1 + ρp),

= 2
∏
p>2

(
1− 1

(p− 1)2

)
,

= 4T2.

Thus, assuming Conjecture 2 we have reformulated the local Hardy-
Littlewood conjecture,

πG(N, N + l) ∼ 2T2

(
N + l

log2(N + l)
− N

log2 N

)
,

where T2 = 0.6601618158 · · · is the twin primes constant.

1.7 Numerical observations

In order to observe the local Hardy-Littlewood conjecture numerically, we
must first chose an appropriate intervals to examine. Since the local Hardy-
Littlewood conjecture relies on an asymptotic formula, the optimal place to
examine this conjecture is as far out on the number line as is computationally
possible. Computationally, there isn’t much difficulty going out to extremely
high numbers for the starting point of an interval, like say 1050. In the end,
the biggest computational limitation is the interval size. No matter where we
start, whether it be 10 or 1050 we must look at as many numbers as our inter-
val size is. All of the computations presented in this paper were performed
on a Sun Ultra-80 workstation. Testing for Germain primes was done in C
using the GNU Multiple Precision package. To test all the Germain primes
in an interval of length 108 took approximately 5 hours, and an interval of
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length 109 took over a third of a day. Thus at this rate it is possible to
test intervals of length 1010, although it would take a great amount of time.
Any larger interval size however is quite insurmountable with the computing
considerations of this paper.

As mentioned earlier, we now have quite a bit of freedom concerning
where we look at these intervals of size 108 and 109. Since there is an error
of approximately

√
N in the prime number theorem, it seems reasonable to

look at intervals starting at no greater than 1020. If there were the same error
in our derivation, this may lead to completely unpredictable results with our
chosen interval size. However, considerations from the following section will
force us to chose intervals which begin after 1020.

10
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10
28

0

0.005

0.01

0.015

0.02

0.025
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0.035

0.04

N

d(N, 108)
d(N, 109)

Figure 1: Convergence of c(N, N + l) to πG(N,N + l)

The first property we observed numerically was the convergence of the
asymptotic formula to the actual number of Germain primes. Let

C(N, N + l) =
N + l

log2(N + l)
− N

log2 N
,

then the distance between C(N, N + l) and πG(N,N + l), denoted d(N, l) is

d(N, l) = log

∣∣∣∣
πG(N, N + l)

2T2C(N, N + l)
− 1

∣∣∣∣ .
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Fig. 1 is a measure of d(N, l) for N from 1018 to 1028 and l of 108 and 109.
Although we hoped that the plot for 108 would have somewhat less jitter,

these numerics support our conjecture that C(N,N + l) is an asymptotic
formula for πG(N,N + l). If we were to increase the interval size to 1010, one
would expect that convergence plot would have even less jitter than the 109

plot, and the jitter would slowly decrease as interval size increases until it
was undetectable.
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Figure 2: Measured πG(N, N + 108) against asymptotic formula

Figs. 2 and 3 are plots of πG(N,N+l) versus C(N, N+l). If our conjecture
is correct the data should follow a straight line of slope 2T2. Notice that the
bottom axis has been reversed, since as N increases with l constant, the value
of C(N, N + l) decreases. We wanted to show how the data behaved as N
increased, so the reversed plot is more fitting. Each dotted line represents
a value of N starting from 1018 and ending at 1028. These figures reaffirm
what we saw in Fig. 1.
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Figure 3: Measured πG(N, N + 109) against asymptotic formula

2 Distances between Germain primes

Now that we have a general understanding of the average spacing, of Germain
primes, we examine how these spacings are distributed. Notice that these
are two mutually exclusive questions. It could be that the spacings between
every two Germain primes are exactly the average spacing. We conjecture
that the Germain primes are distributed not at exactly the average spacing,
but like the prime numbers. Thus, the space between two Germain primes
should not affect the space between their adjacent Germain primes.

2.1 Poisson Distributions

Elements distributed such that spacing between two elements does not effect
their adjacent spacings are said to follow a Poisson distribution.

Conjecture 11. The Germain primes are a Poisson distribution.

Assuming this Conjecture, we can describe how Germain primes should
be distributed in an interval.

Consider the interval [N, N + l], and let ε denote the probability that
an integer x in the interval is a Germain prime. The probability of having
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exactly r Germain primes in the interval [N,N + l] is. So as our x we can
take the distance between two Germain primes, and our r is just k − 1, or
how many Germain primes we expect to find in between.

Pk =

(
l

k − 1

)
εk−1(1− ε)l−k−1

=
l(l − 1) · · · (l − (k − 2))

(k − 1)!
εk−1(1− ε)l−k−1

≈ lk−1

(k − 1)!
εk−1(1− ε)l−k−1

≈ lk−1

(k − 1)!
εk−1(1− ε)l

=
xk−1

(k − 1)!
(1− x

l
)l

Now for l À r we can make the following two approximations Using these
approximations and noticing ε = x/l. Taking the limit as l goes to infinity
gives us the probability distribution of the k-th spacings of Germain primes
is

Pk(x) =
xk−1

(k − 1)!
e−x dx.

Notice that for any positive integer k this is a probability distribution,
because we can repeatedly reduce the power of x in the integral of this
probability using integration by parts until we are left with integral whose
value is 1.

∫ ∞

0

Pk(x) =

∫ ∞

0

xk−1

(k − 1)!
e−x dx

=
−xk−1

(k − 1)!
e−x

∣∣∣∣
∞

0

+

∫ ∞

0

xk−2

(k − 2)!
e−x dx

=

∫ ∞

0

xk−2

(k − 2)!
e−x dx

...

=

∫ ∞

0

e−x dx

= 1

15



∞∑

k=1

Pk(x) = dxe−x

∞∑

k=0

xk

k!

= dxe−xex

= dx

So for any number x, the sum of the probabilities for each spacing k is 1.

2.2 Numerical observations

In order to observe the distribution of the Germain primes with as best
precision as possible, it is necessary to consider intervals [N,N + l], where
N À l. If the Hardy-Littlewood conjecture is correct, then for intervals where
N + l is significantly larger than N , the density of the Germain primes at N
is considerably larger than N + l. Since we are concerned with a distribution
whose density is essentially constant, we cannot have an interval length l
that is comparable to N . Thus, we are forced to deal with the contradictory
demand of having interval lengths no smaller than

√
N , yet much less than

N . We thus chose to examine the intervals 1018 to 1028, because it was the
closest set of intervals meeting this demand.

We can see in Figures 4–6 that the distribution of Germain primes is very
close to the distribution of a Poissonian process. The actual distribution was
plotted using a histogram of values. Since the area under the curve of the
actual distribution is equal to the bin size used in creating the histogram mul-
tiplied by the number of Germain primes in the interval, and the Poissonian
curves have unit area, we multiply the Poissonian curves in each Figure by
C = 755774/12 which is the product of the bin size and number of Germain
primes, respectively.

Finally, the error bars in Figures 2 and 3 represent the fact that if the
Germain primes were placed on the number line as a Poissonian process, then
this amount of error would be present if they were plotted like the values in
Figures 2 and 3.
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Figure 4: Distribution of the 11st spacings of Germain primes
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Figure 5: Distribution of the 2nd spacings of Germain primes
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Figure 6: Distribution of the 3rd spacings of Germain primes
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