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Abstract

In 2001, two numerical experiments were performed to observe whether
or not the second largest eigenvalue of the adjacency matrix for the random
cubic bipartite graph approaches2

√
2 as the size of the graph increases.

In the first experiment, by Kevin Chang, the graphs were chosen using an
algorithm that constructed entirely new graphs at each step using three ran-
dom permutations, in contrast to the second experiment, by Peter Richter,
which used a random walk in the space of simple cubic connected bipartite
graphs. Although the walk in Richter’s experiment was random, in that two
randomly chosen edges were swapped, the eigenvalues of the graphs from
two consecutive steps of the walk are shown here to be correlated. A walk
in which the eigenvalues are uncorrelated is used here in a similar exper-
iment. In addition, an experiment similar to Kevin Chang’s experiment is
performed in which graphs are constructed using an algorithm that is proven
to choose uniformly at random from the space of simple cubic connected bi-
partite graphs. The distributions of the eigenvalues, after being normalized
to have mean zero and standard deviation one, appear to be stable but not
symmetric, similar to the Tracy-Widom distributions. The mean and stan-
dard deviation appear to approach2

√
2 and zero, respectively, according to

power laws with the mean approachig quicker than the standard deviation.
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From this, a conjecture is made that the probability that a random connected
cubic bipartite graph is Ramanujan approaches .52 as the size of the graph
increases to infinity.

1 Introduction

This report is the culmination of a new course at NYU called Undergraduate Math
Laboratory, in which we learned about some unsolved problems in pure math, and
performed numerical experiments to investigate the problems. The results of this
paper pertain to a particular problem in graph theory, and so we start with an
introduction to the theory needed to understand the results

1.1 Graph Theory

A graphG is described by a set of verticesV and a set of edgesE, where elements
of E are pairs of vertices(vi, vj) = (vj, vi). Any two vertices,vi andvj, are said
to be adjacentif and only if the pair(vi, vj) is an element ofE. A graph is
considered to besimpleif all the elements of E are distinct (no multiple edges),
and is considered to beconnectedif the vertices cannot be partitioned into two
sets, A and B, such that no vertex from A is adjacent to a vertex from B. A graph
is said to bebipartite, or bicolourable, if one could associate one of two colors
with every vertex, and yet have no two adjacent vertices be associated with the
same color. Finally, a graph is said to bek-regular if every vertex is adjacent to
exactlyk vertices.

Associated with a graphG is its adjacency matrix, A(G). The adjacency
matrix is constructed very simply: label the verticesv1...vn, and in the entries
(i, j) and(j, i) of A, put the multiplicity of the edge(vi, vj) = (vj, vi). Thus, for
a simple graph, the adjacency matrix contains only zeros and ones. Furthermore,
the sum of any row or column of the adjacency matrix for a simplek-regular graph
is k. (Note thatA(G) is not unique, for it depends on the labeling of the vertices.
The eigenvalues ofA(G) remain the same regardless of the labeling, however, and
that is all that we will be interested in here.)

Also associated with a graphG is theexpanding constanth(G), a measure
of the connectivity ofG. Graphs with large expanding constants are desirable in
many applications of graph theory, including information networks, whereh is a
measure of how quickly information propagates on a network.
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It can be shown that if ak-regular graphG is connected and bipartite, then the
eigenvalues ofA(G) will form a set that is symmetric about the origin, withk as
the unique largest element. Furthermore,h(G) can be estimated using the second
largest eigenvalue ofA, λ1(G), with the Cheeger-Buser inequalities:

k − 1

2
≤ h(G) ≤ 2

√
2k(k − λ1(G)) (1)

In fact,G need not be bipartite for the above inequality to hold.
It can also be shown that for any sequence, orfamily, Gm of connectedk-

regular graphs such that the size (number of vertices) of the graphs goes to infinity,

lim inf
m→∞

λ1(Gm) ≥ 2
√

k − 1 (2)

Thus a family ofk-regular graphsGm which satisfies the conditionλ1(Gm) ≤
2
√

k − 1 for all m is the ideal family in terms the bounds placed onh(g) by (1).
Such a family is called aRamanujan Family, and in fact any graphG with the
propertyλ1(G) ≤ 2

√
k − 1 is said to be aRamanujan Graph.

1.2 The Tracy-Widom Distributions

The Tracy-Widom distributions were discovered in 1995 by Craig Tracy and Harold
Widom. In their paper, On Orthogonal and Symplectic Matrix Ensembles, they
derive explicitly the probability density functions (see Figure 1) for the largest
eigenvalue of a random member of three classes of Gaussian ensembles (orthog-
onal, unitary, and symplectic) in terms of aPainlevé function. Although these
probability density functions apply only in the limit as the size of the matrices
goes to infinity, computer simulations indicate that they are good approximations
of the probability density functions for finite matrices of sizeN ≥ 200.

2 Statement of Problem

Given the importance of Ramanujan graphs, a natural question arises:What is
the probability that the randomk-regular graph is Ramanujan?Here, two ex-
periments are performed in order to formulate a conjecture regarding the answer
to this problem for the set of3-regular graphs that are simple, connected, and
bipartite.
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The first experiment is a refinement of an experiment described inRichter
2001. In Richter’s experiment, graphs were chosen by constructing an initial sim-
ple, bipartite, connected 3-regular graph, calculating the second largest eigenvalue
of the adjacency matrix, swapping two randomly chosen edges, calculating the
second largest eigenvalue of the new adjacency matrix, swapping two randomly
chosen edges again, and so on. Figure 1 shows the autocorrelation of a sequence
of eigenvalues obtained using this method. Clearly one needs to do many more
than one swap to get uncorrelated eigenvalues. The first experiment here is per-
formed using a similar random walk, but with a number of edge-swaps at each
step such that the eigenvalues obtained are relatively uncorrelated (seeMethods).

The second experiment is similar to the experiment inChang 2001except that
the algorithm used here isprovento choose uniformly at random from the set of
simple, bipartite, connected,3-regular graphs. Also, much larger graphs are used
here (up to 20,000; Chang only went up to 1,000) and a more careful statistical
analysis of the data is presented here.

3 Methods

3.1 Experiment 1: The Random Walk

The sizes of the graphs, which ranged from 200 to 2,000, were logarimically
spaced. To determine how many swaps were to be used to get uncorellated eigen-
values for a given graph size, the first value at which the autocorrelation function
achieves zero was taken. Then, to be on the safe side, the number was increased
until it was larger than the number of swaps to be used for all smaller graphs. The
original experiment is then repeated, with the appropriate number of edge-swaps
performed at each step. The eigenvalues were calculated to machine precision
using the theeigsfunction in MATLAB, which implements the Arnoldi Method
through ARPACK.

3.2 Experiment 2: Choosing Graphs Uniformly at Random

The sizes of the graphs, which ranged from 200 to 20,000, were logarimically
spaced. For the graph sizes up to 2000, 10,000 graphs were constructed, and for
sizes above 2000, only 1000 graphs were constructed, because the time needed to
compute more eigenvalues of the large adjacency matrices would have exceeded
the time constraint of this project. The eigenvalues were calculated to machine
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precision using the theeigsfunction in MATLAB, which implements the Arnoldi
Method through ARPACK.

3.3 The Configuration Model Algorithm

The algorithm that was used to randomly sample the space of simple3-regular
bipartite graphs is based on Bollobas’ "configuration model" for simplek-regular
graphs (not neccessarily bipartite). The configuration model algorithm was altered
so that bipartite graphs were produced. The altered algorithm is as follows:

Let N be the size of the graph, andk be the degree of regularity.

1. Create two vectorsx1 andx2, each random permutations of the integers
from 1 toNk/2.

2. Reassign all the entries in the vectors with their values modN/2, thus mak-
ing each vector have exactly three instances of each integer from 1 toN/2.

3. Add N/2 to all the entries inx2, so thatx2 has exactly three instances of
each of the integers from(N/2 + 1) to N .

4. Construct the graph by defining verticesv1, v2...vn, and defining edges from
the vertices labelled by corresponding entries inx1 andx2. (Thus if the first
entries ofx1 andx2 area andb, then an edge is defined connectingva to vb.

5. If the graph is not simple, repeat steps 1-4 until a simple graph is created.

Since any simple,k-regular bipartite graph can be constructed from exactly
k!N/2 choices ofx1 andx2, this algorithm will choose uniformly at random (u.a.r.)
from the space of simple,k-regular, bipartite graphs so long as the permutations
in Step 1 are chosen u.a.r. It should be noted that without Step 5, the algorthim
would NOT choose u.a.r. from the space of3-regular bipartite graphs. This is
because graphs with multiple edges can be constructed from less possible choices
of x1 andx2 than simple graphs. (In fact, the number of choices for a simple graph
exceeds the number of choices for a non-simple graph withm k-tuples by a factor
of k!m.)

4 Results

Based on the results of the experiments (see Figures), several conjectures can be
made:
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1. For future experiments, edge-swapping can be used to obtain a sampling
of eigenvalues similar to the one obtained when choosing uniformly at ran-
dom, provided that the number of edge-swaps between graph samples yields
uncorrelated eigenvalues. Support for this is the similarity of the results ob-
tained in the two experiments: the difference in the standard deviations and
the means obtained from the two experiments were negligible. Comparing
Figures 2 and 3 with Figures 5 and 6 is convincing of this as well.

2. The distribution of the second largest eigenvalue of the adjacency matrix
for a random simple, connected, bipartite,3-regular graph is stable (once
normalized for mean and variance) and can be approximated by one of the
similarly normalized Tracy-Widom distributions. This is supported by Fig-
ures 5 and 6 (and if you believe the first conjecture, by Figures 2 and 3).
It is natural to also conjecture that the approximation becomes exact in the
limit as the size of the graphs goes to infinity, although it is not clear which
of the Tracy-Widom distributions it approaches, since they are so similar.
One could speculate, however, that it is the distribution for the GOE, given
the symmetry of the adjacency matrix.

3. The probability that a random simple, connected, bipartite,3-regular graph
is Ramanujan approaches a fixed probability, approximately .52, as the size
of the graph goes to infinity. This is supported by the data in Figure 7. The
reasoning is this: It appears that the standard deviationσ and the meanµ
are well approximated by the equations

σ(N) = cσN
α (3)

and
µ(N) = µ∞ + cµN

γ (4)

whereα ≈ −.697, γ ≈ −.778 andµ∞ = 2
√

2. If this is true then

lim
N→∞

µ(N)− µ∞
σ(N)

= lim
N→∞

cµ

cσ

Nγ−α = 0 (5)

and so the distribution tends towards a distribution centered aroundµ∞ =
2
√

2. (In fact (5) holds so long asγ < α.) So (3) and (4) are true approxi-
mations as N goes to infinity, and if the previous conjecture is true, then the
probability of a random simple, connected, bipartite3-regular graph being
Ramanujan is the fraction of the area under the Tracy-Widom probability
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density function which lies to the left of the mean. This was calculated
numerically to be approximately .52.

It is important to note that the third conjecture is the least certain (though prob-
ably the most important, if true.) Linear fits were made for the firstm data points,
with m going from 3 to 20, and there was a general tendency for the difference
|α − γ| to decrease as more data points were included, though it increased with
the last couple of fits. This simply highlights how reliant the fits are on each data
point, and thus the uncertainty of the third conjecture.

Given this uncertainty, it is also important to note what the probability of the
random simple, connected, bipartite3-regular graph being Ramanujan would be
if the true values ofγ andα turn out to be equal, or ifγ turns out to begreater
thanα. In the case whereγ = α (that is to say, asN goes to infinity, theγ and
α needed to satisfy (3) and (4) approach the same limit), the probability would
be some number be .52 and 1. This is because the limit in (5) would tend tocµ

cσ
,

and soµ∞ would tend to fallcµ

cσ
standard deviations away fromµ(N) in the limit

as N approaches infinity. Thus the probability of the graph being Ramanujan
would tend to the fraction of the area under the Tracy-Widom probability density
function that lies to the left ofcµ

cσ
standard deviations to the right of the mean.

The general rule, of course, is that the limit in (5) determines how many standard
deviations to the right of the mean we must go before we reach the portion of the
distribution that is not Ramanujan, as N goes to infinity. Thus, ifγ > α, the limit
in (5) would be infinity, and the probability of the graph being Ramanujan would
tend to 1.

5 Future Work

Much more work can be done to investigate the nature of these random graphs.
The experiment which uses the altered Bollobas algorithm should be repeated
with the unaltered algorithm in order to see if/how the results change if the graphs
are not necessarily bipartite. Investigations into graphs with greater degrees of
regularity should be conducted as well. As we increase the degree of regularity,
however, the Bollobas algorithm will take much longer to produce simple graphs,
so edge-swapping may be considered as an alternative method.

7



6 Acknowledgements

Thanks to Peter Sarnak for introducing me to this exciting experience. Thanks
to Steven Miller for enlightening conversations. Thanks to Craig Tracy for send-
ing me code to produce the Tracy-Widom distributions. Supreme thanks to Alex
Barnett for insight and guidance at every step of the process.

References

[Ch] Kevin Chang,An Experimental Approach to Studying Ramanujan Graphs,
Unpublished Undergraduate Thesis, see Princeton Website.2001

[DSV] Giuliana Davidoff, Peter Sarnak, Alain Valette,Elementary Number The-
ory, Group Theory, and Ramanujan Graphs, Unpublished Notes.

[JLR] Svante Janson, Tomasz Luczak, Andrzej Rucinski,Random Graphs, John
Wiley & Sons, Inc., New York 2000.

[Ri] Peter Richter,An Investigation of Expanders and Ramanujan Graphs along
Random walks of Cubic Bipartite Graphs, Student Thesis, see Princeton
Website.2001.

[Tra] Craig Tracy, Harold Widom,On Orthogonal and Symplectic Matrix En-
sembles, Communications in Mathematical Physics, 1996

8



0 50 100 150 200 250 300 350 400 450 500
−0.2

0

0.2

0.4

0.6

0.8

Edge Swaps

C
oe

ffi
ci

en
t o

f A
ut

o−
C

or
re

la
tio

n

Auto−Correlation

|G|=250
|G|=632

Figure 1: Shows the coefficient of autocorrelation for the sequence ofλ1(G) found
using Richter’s experiment with single edge-swaps at every step (for two values
of N ). One can clearly see that consecutive eigenvalues are highly correlated,
and the lag required for statistically uncorrelated eigenvalues is significant (on the
order of102 for these values ofN ).
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Figure 2: Shows the distributions ofλ1(G) for a few different graphs sizes, col-
lected using the appropriate number of edge-swaps at each step. Note that the
distribution gets thinner as the graph size increases, and also that the distribution
is slowly shifting to the right.
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Figure 3: Shows the distributions of Figure 3, normalized to have mean=0, vari-
ance=1, and area=1. Plotted as well is the Tracy-Widom distribution for beta=1,
but the distribution for beta=2 may as well have been plotted, for as one can see
in Figure 4, the two are practically indistinguishable once normalized. The distri-
butions ofλ1 are clearly not symmetric about their mean, but rather possess the
same sort of asymmetry as the Tracy-Widom distributions.
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Figure 4: The dotted curves are the Tracy-Widom distributions for “β = 1” (GOE)
and “β = 2” (GUE), as they were presented in the original paper by Tracy et al,
and the solid curves are the same curves normalized to have mean=0, variance=1,
and area=1.
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Figure 5: This figure is analgous to Figure 2, except that the data here was col-
lected using the modified Bollobas algorithm, as opposed to the random walks
used to collect the data in Figure 2.
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Figure 6: This figure is analgous to Figure 3, except that the data here was col-
lected using the modified Bollobas algorithm, as opposed to the random walks
used to collect the data in Figure 3.
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Figure 7: Shows the rates at which the mean and standard deviation (from Exper-
iment 2) approach2

√
2 and zero respectively.
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