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Abstract. Dice odds in the board game RISK were first investigated by Tan, fixed by Osbourne, and

extended by Blatt. We generalized dice odds further, varying the number of sides and the number of dice

used in a single battle. We show that the attacker needs two more than 86% of the defending armies to have
an over 50% chance to conquer an enemy territory. By normal approximation, we show that the conquer

odds transition rapidly from low chance to high chance of conquering around the 86% + 2 threshold.

1. Introduction

RISK is a board game introduced by Parker Brothers in 1957, where players compete with the objective of
conquering the world. The game dynamics offer a rich yet tractable venue for complex interactions to unfold.
We view RISK as a toy model for agents competing for resources; indeed, the Air Force recently used RISK
to model a prototypical wargame [3]. The majority of the game consists of battles for individual territories
on the game board. Because battles are fought by rolling dice, wise decision-making relies on understanding
the chances of conquering an enemy territory. We refer to such probabilities as “conquer odds”. Conquer
odds in RISK were first investigated by Tan [5]. However, that derivation contained a discrepancy that was
corrected by Osborne [4] and extended by Blatt [1]. In each of [5],[4],[1], conquer odds were calculated using
Markov chains; our methods are combinatorial. Many RISK -like websites exist online and some of these
sites allow players to modify, e.g., the number of territories, connections between those territories, and sides
of dice rolled during battle. Inspired by those sites, we extend single attack odds to an arbitrary number of
sides for attack and defense (cf. 6). In section 3 we derive a practical formula for conquer odds (cf. 3) and
make several observations from this formula.

2. Background, Statement of Results

Those unfamiliar with the rules of RISK are directed to Tan’s article [5] for a clear introduction. A
typical game board has 42 territories occupied by armies. In a single round of RISK, players take turns in
the attacker role, placing armies on controlled territories according to how much of the board is controlled
by the attacker at the beginning of attacker’s the turn. Then the attacker may elect to attack from an
occupied territory to any adjacent enemy territory. In a single attack, the attacker decides whether to roll
1, 2, or 3 6-sided dice and the defender can roll 1 or 2 dice, contingent on the number of armies contained
within their respective territories. The top die on either side are compared, and if both sides rolled at
least two dice, the next highest die are compared. For each comparison, if the attacker die is larger then
the defender loses an army, otherwise the attacker loses an army. This concludes a single attack. The
attacker may repeat an attack from that territory until one unit remains, or may declare an attack from
another controlled territory to an adjacent enemy territory. The attacker conquers an enemy territory once
all defending armies are eliminated, thereby taking control of that territory. The game is over when one
player controls all 42 territories on the board after eliminating all opponents; this usually takes several rounds.

For the rest of the paper, an engagement is a single attack and a battle between a single pair of adjacent
territories is a sequence of consecutive engagements that ends when one side is defeated. The Conquer odds
of a battle are the chances that the attacker conquers the enemy territory. Calculating conquer odds rest
on determining probabilities of unit losses in an engagement. In [5], [4], engagement odds for 6-sided dice
were considered as well as conquer odds. In [1], engagement odds were extended to s-sided dice, s ∈ N.
We generalize engagement odds by allowing m a-sided dice for the attacker, n d-sided dice for the defender
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(m,n, a, d ∈ N). For any k ∈ N we choose, with 0 < k ≤ min{a, d}, an engagement is resolved by ranking
the top k dice of either side and comparing pairwise: maximum to maximum, 2nd largest to 2nd largest,
and so on. For each comparison, we remove one defending army if the defender’s die is less than the attacker
die, else we remove one attacking army. So ties are a win for the defender, and k total armies are removed
after an engagement. Table 6 in section 6 specializes the engagement odds to each possible engagement in
RISK (k = 1, 2).

3. Conquer Odds

With engagement odds in hand 6, we ask: ”What is the probability that Â attacking armies defeats D̂
defending armies?” We first mention a few conventions to ease calculations. As before, an engagement
consists of a single attack, roll of the dice, resolution, and loss of units. In RISK, the attacker has the
option to stop attacking after each engagement; we will only consider battles. Another rule of RISK is the
decreasing number of dice a player can roll in subsequent low-unit engagements Â = 3, 2, 1 or D̂ = 1 (c.f.
[5]). From Table 6, one could quickly verify that it is always advantageous to roll with the maximum number

of dice permitted. So we assume Â > 4, D̂ > 2, where sides should roll with the maximum number of dice
permitted. Thus engagement odds remain the same in a battle until Â ≤ 3 or D̂ = 1. Instead of dealing
with Â, D̂ directly, let A be the number of units the attacker can lose until forced to roll less dice on the
subsequent engagement, D be the number of units the defender can lose until forced to roll with less dice
on the subsequent engagement. If we assume k armies (k = 1, 2) are lost per battle and the attacker cannot

attack with the last unit then Â = A+ (k + 1), D̂ = D + k. Thus, a virtual battle of A attackers against D
defenders is a sequence of engagements that terminates once A ≤ 0, or D ≤ 0. We declare that A attackers
virtually conquers (VC) D defenders once D ≤ 0, A > 0, and a declare a virtual loss if A ≤ 0, D > 0. Indeed,
VC odds calculate the probability that the defender loses the opportunity to roll with the highest number
of dice permitted before the attacker does. We shall see that a battle that terminates when A = 0, D = 0
can be included or ignored to obtain an estimate of VC odds by sums of random variables. One could easily
adapt the virtual formulas to obtain exact formulas and table 4 compares VC odds to exact conquer odds
when (k = 2). One benefit of VC odds will be the derivation of the 86% + 2 rule which is easy to state and
matches closely to the 50% cutoff for actual conquer odds.

3.1. One army at stake per engagement. To illuminate the derivation, consider the simpler case that
only one army can be lost per engagement (k = 1), then A = Â− 2, D̂ − 1 = D. To simplify notation, let p
be the probability that the defender loses one army in an engagement, q = 1 − p. Then A attackers VC D
defenders if the attacker wins D engagements before losing A engagements. This is nothing more than the
cumulative distribution of a negative binomial distribution:

(3.1) Pr(A attackers VC D defenders) = pD
A−1∑
k=0

(
D + k − 1

D − 1

)
qk.

The probability mass function

p(q,D,A) =

(
D +A− 1

D − 1

)
pDqA

has mean µA = qD/p, and standard deviation σA =
√
qD/p. Further, the discrete (left) differential

p(q,D,A)− p(q,D,A− 1) = pDqA−1
(D +A− 2)!

(D − 1)!(A− 1)!

(
D +A− 1

A
q − 1

)
,

changes sign from positive to negative across the threshhold A∗ = (D − 1)q/p < µA. This means that near
A∗, VC odds increase the fastest; adding additional units near A∗ yields the most “bang for the buck”. We
explain a visual method for calculating VC that will be useful when k = 2 armies are lost per engagement
in the next section. If we denote by L the length of the battle, then it is clear min{A,D} ≤ L < A + D.
Instead of terminating the battle once all armies on one side are lost, engage A + D times, allowing for
negative units. These extended battles are enumerated by lattice paths that start at (0, 0), terminate on the
line y = (a + d) − x. These paths take a unit step north when the attacker loses one army and a unit step
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east if the attacker kills one army. For 0 ≤ k ≤ A + D, the probability that an extended battle terminates
at (k, (A+D)− k) is

b(A+D, p, k) =

(
A+D

k

)
pkq(A+D)−k.

Extended battles of A+D engagements are binomially distributed along lattice points in the first quadrant
that lie on the diagonal y = A + D − x. In an ordinary battle, the attacker wins when a lattice paths
terminates on the conquer line x = D prior to crossing the defeat line y = A. In an extended battle, the
attacker wins when a lattice path crosses the conquer line x = d prior to crossing the defeat line y = A.
Each lattice path that terminates on y = (A + D) − x crosses exactly one of the lines x = D, y = A with
one exception. Lattice paths terminating at (A,D) represent extended battles of mutual destruction (MD).
By Pascal’s formula:

Pr(MD in (A+D) turns, A att, D def) =

(
A+D

D

)
pDqA

=

(
A+D − 1

A− 1

)
pDqA +

(
A+D − 1

D − 1

)
pDqA(3.2)

The left term of (3.2) consists of MD that take a final step north; these are the MD’s where the defender
lost all its units first and thus contributes to VC odds. Combining the two contributions two VC odds yields

(3.3) Pr(A attackers VC D defenders) =

(
A+D − 1

A− 1

)
pDqA +

A−1∑
k=0

(
A+D

k

)
p(A+D)−kqk

We now show that the two formulas for VC odds (3.1), (3.3), are equal.

Proposition 3.1. For all A > 0, D > 0, the probability that A attackers VC D defenders is

(3.4) pD
A−1∑
k=0

(
D + k − 1

D − 1

)
qk =

(
A+D − 1

A− 1

)
pDqA +

A−1∑
k=0

(
A+D

k

)
p(A+D)−kqk

Proof. Our proof is bijective. Observe,

pD
A−1∑
k=0

(
D + k − 1

D − 1

)
qk = pD

A−1∑
k=0

(
D + k − 1

D − 1

)
qk1A−k

= pD
A−1∑
k=0

(
D + k − 1

D − 1

)
qk(p+ q)A−k

= pD
A−1∑
k=0

(
D + k − 1

D − 1

)
qk

A−k∑
l=0

(
A− k
l

)
pA−k−lql

=

A−1∑
k=0

A−k∑
l=0

(
D + k − 1

D − 1

)(
A− k
l

)
qk+lpD+A−(k+l)

Consider one term in this double summation(
D + k − 1

D − 1

)(
A− k
l

)
qk+lpD+A−(k+l).

Notice, If we let h = k+l be the height of the terminal vertex of an extended battle, then this term represents
the probability that an extended battle terminates at ((A + D) − h, h), taking k north steps prior to first
passage through x = D, then l north steps after. When h < A, the probability that an extended battle
terminates at ((a+ d)−h, h) is partitioned over all (k,l) pairs satisfying h = k+ l, and when h = A only the
extended battles reaching x = D before reaching y = A contribute to VC. These terms are all accounted for
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in the double summation. Reindexing,

A−1∑
k=0

A−k∑
l=0

(
D + k − 1

D − 1

)(
A− k
l

)
qk+lpD+A−(k+l) =

A−1∑
h=0

∑
l+k=h

(
D + k − 1

D − 1

)(
A− k
l

)
pA−k−lqk+l

+ pD
A−1∑
k=0

(
D + k − 1

D − 1

)
qkqA−k

=

(
D +A− 1

A− 1

)
pDqA +

A−1∑
h=0

(
A+D

h

)
qhpA+D−h �

Prop 3.1 is interesting in its own right, expressing the negative binomial distribution as a binomial distibution
plus the additional term

(
D+A−1
A−1

)
pDqA, and

0 <

(
D +A− 1

A− 1

)
pDqA <

(
D +A

A

)
pDqA.

yields the fundamental estimate

(3.5)

A−1∑
h=0

(
A+D

h

)
qhpA+D−h < Pr(A attackers VC D defenders) <

A∑
h=0

(
A+D

h

)
qhpA+D−h

3.2. Two armies at stake per engagement. Those familiar with RISK know that the most common
engagement has two armies are at stake (k = 2). This happens when the attacker rolls m = 3 dice and the

defender rolls n = 2 dice so we specialize to this case. Let Â− 3 = A, D̂ − 2 = D. Following section 3.1, we
outline an enumeration strategy. Picture the part of Z3 that lies in the nonnegative first octant. Call a lattice
path in (Z+)3 any path from (0, 0, 0) to (x, y, z) ∈ (Z+)3 that takes unit steps in the e1, e2, or e3 directions.
After an engagement, take a unit step in the e1 direction if the defender lost 2 armies, a unit step in the
e2 direction if each lost 1 army and a unit step in the e3 direction if the attacker lost 2 armies. Under this
identification, a lattice path records the history of a particular battle. Tracing any lattice path terminating
at (x, y, z) shows, of the 2x + 2y + 2z armies lost, 2x + y were defenders, and y + 2z were attackers. So
calculating Pr(A VC D) amounts to finding the probability that a lattice path of length at most (A+D)/2
crosses the “conquer plane” 2x+ y = D before reaching the “defeat plane” y + 2z = A. If we let X be the
random variable for the number of defenders lost in an engagement, given by

X probability
2 p = Pr(Defender loses 2)
1 q = Pr(Defender loses 1)
0 r = Pr(Defender loses 0)

then the probability that a lattice path terminates at (x, y, z) is

(3.6) p(x, y, z) =

(
x+ y + z

x+ y

)(
x+ y

y

)
pxqyrz =

(x+ y + z)!

x!y!z!
pxqyrz.

Thus

Pr(A VC D) =
∑

2x+y≥D
y+2z<A

p(x, y, z)

which suffices to determine VC odds with a simple program. We are interested in a simple rule that is easily
to remember. To this end, notice that X has mean µ = E[X] = 2p+ q, and variance

(3.7) σ2 = p(2− (2p+ q))2 + q(1− (2p+ q))2 + r(0− (2p+ q))2 = pq + 4pr + qr.

We assume A + D is even, leaving A + D odd for the reader. Similar to the k = 1 case in section 3.1, we
consider extended (virtual) battles of (A + D)/2 total engagements and loan units to a defeated player if
necessary. Thus one side may have negative units after an extended battle is over. Each lattice path of
length (A + D)/2 terminates at a point on the plane 2x + 2y + 2z = A + D and crosses exactly one of the
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planes 2x + y = D, y + 2z = A, with the exception of lattice paths that terminate on the line of mutual
destruction (MD) given by

{(x, y, z) ∈ (Z+)3 | 2x+ y = D and y + 2z = A}.
If we let Xi be random variable of defenders lost at engagement i, then the number of defenders lost in an
extended battle of (A+D)/2 engagements is precisely

Z(A+D)/2 = X1 +X2 + . . .+X(A+D)/2.

Whether we include the MD odds Pr(Z(A+D)/2 = D) provides the fundamental estimate of VC odds:

(3.8) Pr(Z(A+D)/2 > D) < Pr(A VC D) < Pr(Z(A+D)/2 ≥ D)

The benefits of 3.8 is that classical results about sums of independent and identically distributed random
variables can be brought to bear on VC odds. To begin, fix D and allow A to vary. The mean of Z(A+D)/2

is D exactly when A∗ is the solution of

D = (A∗ +D)µ/2 = (2p+ q)(A∗ +D)/2,

or

(3.9) A∗ =
q + 2r

2p+ q
D =

2− µ
µ

D.

Rewriting (3.9) as
A∗

D
=

(2− µ)(A∗ +D)/2

µ(A∗ +D)/2
.

allows us to interpret this result in RISK : A∗ attackers are expected to VC D defenders at the threshold
of mutual destruction, when the expected proportion of attackers lost to defenders lost after (A∗ + D)/2
engagements is equal to the proportion of attackers to defenders at the beginning of the battle.
Now we find an interval of (A1, A2) around A∗ that quantifies the change in VC odds. For any s > 0, solving

D = (A+D)µ/2± sσ
√

(A+D)/2

for A yields two solutions

(3.10) A1 = A∗ +
sσ

µ2
(sσ −

√
4Dµ+ (sσ)2)

(3.11) A2 = A∗ +
sσ

µ2
(sσ +

√
4Dµ+ (sσ)2)

A1 represents the number of attackers required so that D is s standard deviations below E[Z(A1+D)/2], and
A2 the number of attackers for D to be s standard deviations above E[Z(A2+D)/2]. Notice A1 < A∗ < A2

and (A1, A2) is symmetric about A∗ + (sσ/µ)2.
Thus, (3.8),(3.10),(3.11) allow us to approximate the change in VC odds near A∗ by direct calculation for
low-unit battles and normal approximation for big battles. Indeed, the Central Limit Theorem says Z(A+D)/2

is well-approximated (in distribution) by the normal random variable

Z = N

(
(A+D)

2
µ,

√
(A+D)

2
σ

)
,

when A+D is sufficiently large. A reasonable criterion for normal approximation is to choose A+D large

enough so that 0 is less than 3 standard deviations below E[Z] = (A+D)µ
2 and 2(A + D) is more than 3

standard deviations above E[Z]. This yields the inequality

(3.12) A+D > max

{
18σ2

µ2
,

9σ2

2(1− µ/2)2

}
whence we make the approximation

(3.13) Pr(A attackers VC D defenders) ≈ Pr(Z(A+D)/2 > D)

Normal approximation allows for decisive answers to two major questions related to VC odds.

(1) By (3.9) A∗ is the (approximate) 50% cutoff for VC odds when A∗ +D is sufficiently large (3.12).
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(2) When A1 +D is large enough (3.12), so is A2 +D, and by the empirical rule,

Pr(A2 VC D)− Pr(A1 VC D)

≈Pr(ZA2+D > D)− Pr(ZA1+D > D)

≈Pr(Z > −s)− Pr(Z > s) = Pr(|Z| < s)

Observe,

(3.14) A2 −A1 =
2sσ

µ2

√
4Dµ+ (sσ)2.

If the attacker has A1 armies, then a percentage increase of

(3.15)
A2

A1
− 1 =

2
2−µ
2sσ

√
Dµ− 1

≈ 4sσ

(2− µ)
√
Dµ

in attacking armies yields an increase in VC odds approaching Pr(|Z| < s). Notice that this per-
centage tends to 0 as D →∞

4. Back to RISK once more

We specialize the results of section 3.2 to the rules of ordinary RISK, where the attacker rolls three six-
sided dice (a = 6,m = 3) and the defender rolls two six-sided dice (d = 6, n = 2). Engagement odds were
correctly stated in [4] as

x Pr(X = x)
2 p = 2890/7776 ≈ .3717
1 q = 2611/7776 ≈ .3357
0 r = 2275/7776 ≈ .2926

Alternatively, one could specialize (6.4) and (6.5) to get the table above. By (3.7),

µ = 2p+ q =
8391

7776
≈ 1.08, and

σ2 = pq + 4pr + qr =
4420535

6718464
≈ .657968

In view of (3.8), (3.13), we approximate Z(A+D)/2 by the normal distribution when

A+D > max{10.17, 13.97}.

Whence (3.9) yields

A∗ =
2− µ
µ

D =
7161

8391
≈ .853D

Thus A∗ = 7161
8391D are expected to VC D defenders. For large battles (A + D > 14) normal approximation

says that A∗ armies have an over 50% chance to VC D defenders. Recalling A∗ = Â∗ − 3,D = D̂ − 1 covert
attackable units to actual units at the outset of a battle, we have the rule

An attacker with at least Â∗ = 7161
8391 (D̂ − 1) + 3 armies to has an over 50% chance of VC D̂ defenders.

A conservative rule would then be for the attacker to have 86% of the defending armies plus two additional
units. For low-unit battles, table 4 compares VC odds and actual conquer odds (AC). We see that VC odds
are a close match to AC odds, but conservative. One can check that the 86% + 2 rule is a serviceable rule
for small unit battles as well.

Conquer odds exhibit a phase transition around the 86% + 2 threshold. Fix s > 0; normal approximation
(3.8) and equation show that the interval capturing a Pr(|Z| < s) change in VC odds has length O(

√
D).

Further, for low-unit battles, one can inspect table 4 directly to see that a transition from low VC odds
to high VC odds also occurs over a small interval around A∗ relative to D. We conclude with several
implications of the 86% + 2 rule:
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Defenders (D̂) CO 20% 30% 40% 50% 60% 70% 80%

2
VC 4 4 5 5 5 5 6
AC 3 3 4 4 4 5 6

3
VC 4 4 5 6 6 6 8
AC 3 3 4 5 5 6 7

4
VC 5 5 6 6 7 8 9
AC 4 4 5 6 6 7 8

5
VC 5 6 6 7 8 9 10
AC 4 5 5 6 7 8 9

6
VC 6 7 7 8 9 10 11
AC 5 6 6 7 8 9 10

7
VC 6 7 8 9 10 11 12
AC 5 6 7 8 9 10 11

8
VC 7 8 9 10 11 12 13
AC 6 7 8 9 10 11 12

9
VC 8 8 10 10 12 13 14
AC 7 8 9 10 11 12 13

10
VC 8 9 10 11 13 14 15
AC 7 8 10 10 12 13 15

11
VC 9 10 11 12 13 15 16
AC 8 9 10 11 13 14 16

12
VC 9 11 12 13 14 16 17
AC 9 10 11 12 14 15 17

13
VC 10 12 13 14 15 17 18
AC 9 11 12 13 15 16 18

14
VC 11 12 13 15 16 18 19
AC 10 11 13 14 15 17 19

15
VC 12 13 14 16 17 18 20
AC 11 12 13 15 16 18 20

Table 1. VC odds versus AC odds. Each cell lists the minimum number of attacking armies
(Â) required to have an n% chance of conquering D̂ defenders.

• The 50% cutoff A∗ is an unstable tipping point for conquer odds. Any percent deviation from A∗

results in a rapid departure from 50% as the units are scaled up by a positive factor. For example,
10 attackers have a 51.3% chance to (virtually) conquer 9 armies, but 100 attacking armies have a
92.3% chance of (virtually) conquering 90 defenders. This makes the 86% + 2 rule essential when

deciding to attack. Moreover, the precise rule Â∗ = (7161/8391)(D̂ − 1) + 3 becomes less pedantic
as the battalions grow in size.

• In a cold war scenario, armies grow proportionally (based on bonus) between opponents with no
attacks. The player with a bonus of at least 86% of an opponent gains an overall attacking advantage
on that opponent that increases each round.

• When attacking a chain of T connected territories, the attacker has to leave at least 1 unit behind
when transferring units into the conquered territory. If we assume full aggression, then the attacker
needs approximately

Â∗ = 0.86(D̂ − T − 1) + 3 + T

units to virtually conquer D̂ defenders spread out over T connected territories.
• In a two player game, we obtain the counterintuitive result that the player with less units could be

the likely victor. In particular, if the defender occupies T connected territories and the attacker has
one large battalion of at least 0.86(D̂ − T − 1) + 3 + T units, the attacker has an over 50% chance
of victory.
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Figure 1. Column M is the distribution of ZM = X1 + · · ·+XM , where M = (A+D)/2.
The height of box x in column M represents the probability that an attacker kills x armies in
M attacks. The height of the stack of boxes above box x is the probability that an attacker
kills more than x armies in M attacks. In each column, we see that box D crosses the 50%
line near 2M −D = .86D (= A∗), yeildiing the 86% + 2 rule.

• The proportion 7161/8391 = (2 − µ)/µ is the ratio of expected attacking armies lost to expected
defenders lost in a single engagement. This proportion says that each unit is 8391/7161− 1 ≈ 17%
more lethal in the attacker role than on defense.

5. Conclusion

We applied two approximations: VC odds as an approximation to conquer odds, and normal approx-
imation to VC odds, yielding the 86% + 2 rule. The method of normal approximation could be used to
yield asymptotic results for generalized engagements, e.g., the attacker rolls four dice and the defender rolls
three dice per engagement. The calculation of VC odds in the for the two-armies-at stake case section 3 is
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a generalization of the so called “problem of points” REFERENCE whose solution set probability theory
in motion. The method of normal approximation could be used to obtain an asymptotic solution for this
generalized problem. Now that we understand the true nature of conquer odds, we can delve more deeply
into the strategy behind RISK. Questions range from mathematical to psychologocial, including:

• How much does initial placement determine a winner?
• Does luck play a factor?
• Can we quantify Aggressive/Vengeful/Passive play?
• What percent of an enemy’s stake in the game must you destroy to guarantee retaliation?
• Can we determine good play? Do good players adhere to the 86% + 2 rule?
• Alliances? Cards?

We hope that this paper illuminated the 86% + 2 rule, as well as its importance in RISK strategy. When
coupled with the points above, one has in RISK a rich gameplay that many have enjoyed for many years.

6. Appendix: Engagement Odds

Let Xi (0 ≤ i ≤ m) be i.i.d. random variables taking values in {1, 2, ..., a}, Yj (0 ≤ j ≤ n) be i.i.d. random
variables taking values {1, 2, ..., d}. We think of Xi as the face showing up on the attacker’s i-th die, Yj as the
face showing up on the defender’s j-th die. Let {Xi}m = {X1, X2, ...., Xm} be the collection of faces showing
up on m attack dice, X(i) = maxi{X1, X2, ...., Xm} be the ith largest die from {Xi}m. Define {Yj}n, Y (j)

similarly. To compare from a collection of random variables similar to RISK, we introduce the comparison
operator >k,l, defined as follows: {Xi}m >k,l {Yj}n if exactly l of the k comparisons

X(1) > Y (1), X(2) > Y (2), . . . , X(k) > Y (k)

are true. We derive the generalized engagement odds promised in 2, that is,

Pr ({Xi}m >k,l {Yj}n) ,

for various k, l,m, n. We will only consider the cases k = 1, 2. The technicality in deriving these formulas
stems from reconciling ties; In RISK, ties go to the defender, and >k,l adopts this convention. Reconciling
ties is compounded as the number of comparisons increases and we leave k ≥ 3 cases for future research.
When Xi, Yj are continuous distributions, Pr(at least one tie) = 0 and one can find a closed formula for
all admissible m,n, k, l ([2]). The upcoming proofs of Propositions 6.1, 6.3, 6.4 are standard, conditioning
on Y (1), . . . , Y (k) then summing over the possible values Y (1), . . . , Y (k) can take. This enumeration scheme
separates into two cases, a > d and a ≤ d. We are only dealing with 1 or 2 comparisons, so let y1, y2 be the
respective values of Y (1), Y (2).

Proposition 6.1. For m,n ∈ N,

Pr ({Xi}m >1,1 {Yj}n) =

min{a,d}∑
y=1

(am − ym)(yn − (y − 1)n)

amdn

Proof. Evaluating

(6.1) Pr ({Xi}m >1,1 {Yj}n) =
∑
y

Pr
(
X(1) > y

)
Pr
(
Y (1) = y

)
amounts to calculating a typical summand, then summing over suitable y. Consider first, the case a > d.
Clearly, Pr

(
Y (1) = y

)
= 0 unless 1 ≤ y ≤ d, where we have

(6.2) Pr
(
Y (1) = y

)
= Pr

(
Y (1) ≤ y

)
− Pr

(
Y (1) ≤ y − 1

)
=
yn − (y − 1)n

dn

Furthermore, observe that

(6.3) Pr
(
X(1) > Y (1)|Y (1) = y

)
= 1− Pr

(
X(1) ≤ y

)
=
am − ym

am

is also nonzero for all 1 ≤ y ≤ d = min{a, d}. Thus, the proposition holds in this case.
Now, assume a ≤ d. Notice that

Pr
(
X(1) > Y (1)|Y (1) = y

)
9



is nonzero only when 1 ≤ y ≤ a − 1. By virtue of formula (6.3), we may sum equation (6.1) from y = 1 to
a = min{a, d} and substitute into the formulas (6.2), (6.3) as stated. �

Corollary 6.2. For m,n ∈ N,

Pr
(
{Xi}m >1,0 {Yj}n

)
= 1−

min{a,d}∑
y=1

(am − ym)(yn − (y − 1)n)

amdn

Proof. This result follows from Prop. 6.1, and the observation that

Pr
(
{Xi}m >1,0 {Yj}n

)
+ Pr

(
{Xi}m >1,1 {Yj}n

)
= 1.

�

Proposition 6.3. For m,n ∈ N and m,n ≥ 2,

Pr
(
{Xi}m >2,2 {Yj}n

)
=

min{a,d}∑
y1=2

y1−1∑
y2=1

n
(
yn−12 − (y2 − 1)n−1

)(
am − ym1 −m(a− y1)(y2)m−1

)
amdn

+

min{a,d}∑
y1=1

(
yn1 − (y1 − 1)n − n(y1 − 1)n−1

)(
am + (m− 1)ym1 − (am)(y1)m−1

)
amdn

(6.4)

Proof. Adhering to our counting strategy, we sum the conditional probabilites over all values the pair Y (1),
Y (2) can assume, to obtain

Pr
(
{Xi}m >2,2 {Yj}n

)
=

min{a,d}∑
y1=2

y1−1∑
y2=1

Pr
(
X(1) > y1, X

(2) > y2

)
Pr
(
Y (1) = y1, Y

(2) = y2

)

+

d∑
y1=1

Pr
(
X(1) > y1, X

(2) > y1

)
Pr
(
Y (1) = y1, Y

(2) = y1

)

We begin with the case a ≥ d, let 1 ≤ y2 ≤ y1 ≤ d. Recall that one should treat yi as a value of Y (i). Notice,
when y2 < y1,

Pr
(
Y (1) = y1 and Y (2) = y2

)
= Pr

(
Yj = y1 for some j and max

i6=j
{Yi} = y2

)
=
n
(
yn−12 − (y2 − 1)n−1

)
dn

.

When y1 = y2,

Pr
(
Y (1) = y1 and Y (2) = y1

)
= Pr

(
Y (1) ≤ y1

)
− Pr

(
Y (1) ≤ (y1 − 1)

)
− Pr

(
Y (1) = y1 and Y (2) ≤ (y1 − 1)

)
=
yn1 − (y1 − 1)n − n(y1 − 1)n−1

dn
.

For the pair X(1) and X(2), we compute that for 1 ≤ y2 ≤ y1 ≤ d

Pr
(
X(1) > y1 and X(2) > y2

)
= 1− Pr

(
X(1) ≤ y1

)
− Pr

(
X(1) > y1 and X(2) ≤ y2

)
=
am − ym1 −m(a− y1)(y2)m−1

am
.
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Therefore, we have computed that

Pr
(
{Xi}m >2,2 {Yj}n

)
=

d∑
y1=2

y1−1∑
y2=1

n
(
yn−12 − (y2 − 1)n−1

)(
am − ym1 −m(a− y1)(y2)m−1

)
amdn

+

d∑
y1=1

(
yn1 − (y1 − 1)n − n(y1 − 1)n−1

)(
am + (m− 1)ym1 − (am)(y1)m−1

)
amdn

Substituting d = min{a, d} affirms formula (6.4) in this case.
Finally, we note that when a < d, min{a, d} = a, and Pr

(
X(1) > y1 and X(2) > y2

)
= 0 whenever y1 > a.

Thus, nonzero contributions to the sum can occur only when 1 ≤ y1 ≤ a. The derivation of summands and
the range of y2 are identical to the d ≤ a case, thus formula (6.4) holds for this case as well. �

Proposition 6.4. For m,n ∈ N and m,n ≥ 2,

Pr
(
{Xi}m >2,0 {Yj}n

)
=

=

d∑
y1=2

y1−1∑
y2=1

n
(
yn−12 − (y2 − 1)n−1

)(
m(y1 − y2)ym−12 + ym2

)
amdn

(6.5)

+

d∑
y1=1

(
yn1 − (y1 − 1)n − n(y1 − 1)n−1

)(
ym1
)

amdn

when a ≥ d and

Pr
(
{Xi}m >2,0 {Yj}n

)
=

=

a∑
y1=2

y1−1∑
y2=1

n
(
yn−12 − (y2 − 1)n−1

)(
m(y1 − y2)ym−12 + ym2

)
amdn

+

a∑
y1=1

(
yn1 − (y1 − 1)n − n(y1 − 1)n−1

)(
ym1
)

amdn
(6.6)

+

d∑
y1=a+1

a∑
y2=1

n
(
yn−12 − (y2 − 1)n−1

)(
m(a− y2)ym−12 + ym2

)
amdn

+
amdn − n(d− a)an+m−1 − am+n

amdn

when a ≤ d.

Proof. As always, we first restrict to the case a ≥ d and consider which values Y (1), Y (2) can assume. For
each pair of values 1 ≤ y2 ≤ y1 ≤ d,

Pr
(
{Xi}m >2,0 {Yj}n

)
=

d∑
y1=2

y1−1∑
y2=1

Pr
(
X(1) ≤ y1, X(2) ≤ y2

)
Pr
(
Y (1) = y1, Y

(2) = y2

)

+

d∑
y1=1

Pr
(
X(1) ≤ y1, X(2) ≤ y1

)
Pr
(
Y (1) = y1, Y

(2) = y1

)
.

As the calculations of

Pr
(
Y (1) = y1, Y

(2) = y2

)
,

Pr
(
Y (1) = y1, Y

(2) = y1

)
11



are identical to those contained in the proof of proposition 6.3, it only remains to calculate

Pr
(
X(1) ≤ y1 and X(2) ≤ y2

)
= Pr

(
y2 < X(1) ≤ y1 and X(2) ≤ y2

)
+ Pr

(
X(1) ≤ y2

)
=
m(y1 − y2)ym−12 + ym2

am
.

Thus, by summing over all permissible pairs y1 and y2, we have that

Pr
(
{Xi}m >2,0 {Yj}n

)
=

d∑
y1=2

y1−1∑
y2=1

n
(
yn−12 − (y2 − 1)n−1

)(
m(y1 − y2)ym−12 + ym2

)
amdn

+

d∑
y1=1

(
yn1 − (y1 − 1)n − n(y1 − 1)n−1

)(
ym1
)

amdn

which is exactly formula (6.5).
Next, we consider the case where a ≤ d. To proceed, we must consider three cases for the values Y (1), Y (2)

can take. The first is 1 ≤ y2 ≤ y1 ≤ a, which is exactly formula (6.5) except for the change in bound d→ a.
The second case is 1 ≤ y2 ≤ a < y1 ≤ d. For this case, we note that

Pr
(
X(1) ≤ y1 and X(2) ≤ y2

)
= Pr

(
X(1) ≤ y2

)
+ Pr

(
y2 < X(1) ≤ a and X(2) ≤ y2

)
=
ym2 +m(a− y2)ym−12

am

In the third case a < y2 ≤ y1 ≤ d, notice

Pr
(
X(1) ≤ a and X(2) ≤ a

)
= 1,

with

Pr
(
a < Y (1) ≤ d and a < Y (2) ≤ d

)
= 1− Pr

(
a < Y (1) ≤ d and Y (2) ≤ a

)
− Pr

(
Y (1) ≤ a

)
= 1− n(d− a)an−1

dn
− an

dn

=
amdn − n(d− a)an+m−1 − am+n

amdn

Collecting the terms contributed from each case, we conclude

Pr
(
{Xi}m >2,0 {Yj}n

)
=

=

a∑
y1=2

y1−1∑
y2=1

n
(
yn−12 − (y2 − 1)n−1

)(
m(y1 − y2)ym−12 + ym2

)
amdn

+

a∑
y1=1

(
yn1 − (y1 − 1)n − n(y1 − 1)n−1

)(
ym1
)

amdn

+

d∑
y1=a+1

a∑
y2=1

n
(
yn−12 − (y2 − 1)n−1

)(
m(a− y2)ym−12 + ym2

)
amdn

+
amdn − n(d− a)an+m−1 − am+n

amdn
�

With equations 6.5, 6.4, in hand, the k = 2, l = 1 probability can be calculated handily, using

(6.7) Pr
(
{Xi}m >2,1 {Yj}n

)
= 1− Pr

(
{Xi}m >2,2 {Yj}n

)
− Pr

(
{Xi}m >2,0 {Yj}n

)
With the aid of classical summation formulas, Propositions 6.1, 6.3, 6.4, Corollary 6.2, and (6.7) can be
specialized to the six probability distributions arising in the game RISK, when the attacker rolls a-sided dice
and the defender rolls d-sided dice. The results are summarized in table 6.
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m = # att dice, n = # def dice, a = sides per att die, d = sides per def die

m n k l Prob case Specialization of:

1 1 1 1
2a−d−1

2a a ≥ d
Prop. 6.1

a−1
2d a ≤ d

1 1 1 0
d+1
2a a ≥ d

Cor. 6.2
2d−a+1

2d a ≤ d

2 1 1 1
6a2−2d2−3d−1

6a2 a ≥ d
Prop. 6.1

4a2−3a−1
6ad a ≤ d

2 1 1 0
2d2+3d+1

6a2 a ≥ d
Cor. 6.2

6ad−4a2+3a+1
6ad a ≤ d

3 1 1 1
4a3−d3−2d2−d

4a3 a ≥ d
Prop. 6.1

3a2−2a−1
4ad a ≤ d

3 1 1 0
d3+2d2+d

4a3 a ≥ d
Cor. 6.2

4ad−3a2+2a+1
4ad a ≤ d

1 2 1 1
6ad−4d2−3d+1

6ad a ≥ d
Prop. 6.1

2a2−3a+1
6d2 a ≤ d

1 2 1 0
4d2+3d−1

6ad a ≥ d
Cor. 6.2

6d2−2a2+3a−1
6d2 a ≤ d

2 2 2 2
6a2d−4ad2−6ad−2a+2d2+3d+1

6a2d a ≥ d
Prop. 6.3

2a3−4a2+a+1
6ad2 a ≤ d

2 2 2 1
4ad2+6ad+2a−2d3−6d2−4d

6a2d a ≥ d
Equ. 6.7−2a3+4a2d+6a2−6ad−4a+2d

6ad2 a ≤ d

2 2 2 0
2d3+4d2+d−1

6a2d a ≥ d
Prop. 6.4−4a2d−2a2+6ad2+6ad+3a−2d−1

6ad2 a ≤ d

3 2 2 2
12a3d−6ad3−12ad2−12ad−6a+3d3+10d2+9d+2

12a3d a ≥ d
Prop 6.3

6a4−9a3−2a2+3a+2
12a2d2 a ≤ d

3 2 2 1
30ad3+60ad2+60ad+30a−12d4−45d3−70d2−45d−8

60a3d a ≥ d
Equ. 6.7−42a4+60a3d−60a2d+75a3−10a2−15a−8

60a2d2 a ≤ d

3 2 2 0
6d4+15d3+10d2−1

30a3d a ≥ d
Prop 6.4

6a4−30a3d−15a3+30a2d2+30a2d+10a2−1
30a2d2 a ≤ d

Table 2. Generalized Engagement (single-attack) odds in RISK
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