The mathematics of the board game RISK

Corey Manack

March 21, 2011
RISK: The game of global domination

Invented by French film director Albert Lamorisse in 1957.
Invented by French film director Albert Lamorisse in 1957.
Basics

Objective is to conquer the world.

Combination of strategy and randomness.

42 territories. Starting placement is random.

Typical turn: place armies in controlled territories, attack neighboring territories, make a fortification.

Controlling continents provides bonus armies:

- Australia +2
- South America +2
- Africa +3
- North America +5
- Europe +5
- Asia +7

Additional bonus for number of territories held at the start of a turn (t/3, round down).

cards.
- Objective is to conquer the world.
Objective is to conquer the world.

Combination of strategy and randomness.
Basics

- Objective is to conquer the world.
- Combination of strategy and randomness.
- 42 territories. Starting placement is random.

Typical turn: place armies in controlled territories, attack neighboring territories, make a fortification.

Controlling continents provides bonus armies:
- Australia +2
- South America +2
- Africa +3
- North America +5
- Europe +5
- Asia +7

Additional bonus for number of territories held at the start of a turn (\(\frac{t}{3}\), round down).
- Objective is to conquer the world.
- Combination of strategy and randomness.
- 42 territories. Starting placement is random.
- Typical turn: place armies in controlled territories, attack neighboring territories, make a fortification.
Basics

- Objective is to conquer the world.
- Combination of strategy and randomness.
- 42 territories. Starting placement is random.
- Typical turn: place armies in controlled territories, attack neighboring territories, make a fortification.
- Controlling continents provides bonus armies:
 - Australia +2
 - South America +2
 - Africa +3
 - North America +5
 - Europe +5
 - Asia +7

Additional bonus for number of territories held at the start of a turn (\(\frac{t}{3}\), round down).
Objective is to conquer the world.

- Combination of strategy and randomness.
- 42 territories. Starting placement is random.
- Typical turn: place armies in controlled territories, attack neighboring territories, make a fortification.

- Controlling continents provides bonus armies:
 - Australia +2
 - South America +2
 - Africa +3
 - North America +5
 - Europe +5
 - Asia +7

- Additional bonus for number of territories held at the start of a turn ($t/3$, round down).
Objective is to conquer the world.

Combination of strategy and randomness.

42 territories. Starting placement is random.

Typical turn: place armies in controlled territories, attack neighboring territories, make a fortification.

Controlling continents provides bonus armies:
- Austraila +2
- South America +2
- Africa +3
- North America +5
- Europe +5
- Asia +7

Additional bonus for number of territories held at the start of a turn ($t/3$, round down).

cards.
An attacker with three or more attacking armies rolls three dice, two armies rolls two dice, only one army rolls one die. A defender with two or more armies rolls two dice, and one with one army rolls one die.
An attacker with three or more attacking armies rolls three dice, two armies rolls two dice, only one army rolls one die. A defender with two or more armies rolls two dice, and one with one army rolls one die. Attacker may choose to attack again, or withdraw.
An attacker with three or more attacking armies rolls three dice, two armies rolls two dice, only one army rolls one die. A defender with two or more armies rolls two dice, and one with one army rolls one die. Attacker may choose to attack again, or withdraw. If defender runs out of armies before attacker, territory is conquered.

EX: Attacker rolls three dice, defender rolls two. Two armies at stake.
An attacker with three or more attacking armies rolls three dice, two armies rolls two dice, only one army rolls one die. A defender with two or more armies rolls two dice, and one with one army rolls one die. Attacker may choose to attack again, or withdraw. If defender runs out of armies before attacker, territory is conquered.

EX: Attacker rolls three dice, defender rolls two. Two armies at stake.

Match top dice from each roll. Defense wins splits.
An attacker with three or more attacking armies rolls three dice, two armies rolls two dice, only one army rolls one die. A defender with two or more armies rolls two dice, and one with one army rolls one die. Attacker may choose to attack again, or withdraw. If defender runs out of armies before attacker, territory is conquered.

EX: Attacker rolls three dice, defender rolls two. Two armies at stake.

Match top dice from each roll. Defense wins splits.

A: 4 1 6 D: 4 5
An attacker with three or more attacking armies rolls three dice, two armies rolls two dice, only one army rolls one die. A defender with two or more armies rolls two dice, and one with one army rolls one die. Attacker may choose to attack again, or withdraw. If defender runs out of armies before attacker, territory is conquered.

EX: Attacker rolls three dice, defender rolls two. Two armies at stake.

Match top dice from each roll. Defense wins splits.

- A: 4 1 6 D: 4 5
- A: 6 4 1 D: 5 4
Attack resolution

- An attacker with three or more attacking armies rolls three dice, two armies rolls two dice, only one army rolls one die. A defender with two or more armies rolls two dice, and one with one army rolls one die. Attacker may choose to attack again, or withdraw. If defender runs out of armies before attacker, territory is conquered.

- EX: Attacker rolls three dice, defender rolls two. Two armies at stake.
- Match top dice from each roll. Defense wins splits.
- A: 4 1 6 D: 4 5
- A: 6 4 1 D: 5 4
- Attacker loses 1 army, Defense loses 1 army.
Attack resolution

- An attacker with three or more attacking armies rolls three dice, two armies rolls two dice, only one army rolls one die. A defender with two or more armies rolls two dice, and one with one army rolls one die. Attacker may choose to attack again, or withdraw. If defender runs out of armies before attacker, territory is conquered.

- EX: Attacker rolls three dice, defender rolls two. Two armies at stake.
- Match top dice from each roll. Defense wins splits.
- A: 4 1 6 D: 4 5
- A: 6 4 1 D: 5 4
- Attacker loses 1 army, Defense loses 1 army.
- A: 1 4 5 D:6 6 Attacker loses 2
An attacker with three or more attacking armies rolls three dice, two armies rolls two dice, only one army rolls one die. A defender with two or more armies rolls two dice, and one with one army rolls one die. Attacker may choose to attack again, or withdraw. If defender runs out of armies before attacker, territory is conquered.

EX: Attacker rolls three dice, defender rolls two. Two armies at stake.

Match top dice from each roll. Defense wins splits.

- A: 4 1 6 D: 4 5
- A: 6 4 1 D: 5 4
- Attacker loses 1 army, Defense loses 1 army.
- A: 1 4 5 D: 6 6 Attacker loses 2
- A: 3 2 1 D: 2 2 Defender loses 2.
A game (that I won)
Green places 3
A: 5 2 1, D: 4 3
Turn 4

A: 6 6 3 D:6 1
Turn 5

A: 5 3 3, D: 5
Turn 6

A: 4 2, D: 1
Turn 575

[Diagram with numbered tiles and symbols for Keen, Bagda, Picif, and Helmu]
Turn 751
Turn 900
Turn 1000
Turn 1478 (uh oh...)

[Diagram with numbers and symbols indicating different units or elements, such as Keen, Bagd..., Picif., Helmu...].
Turn 1650
Turn 1863
Turn 1983
Suppose, at a contested border, there are n attacking armies and m defending armies. What is the probability the attacker can conquer the defending territory?

Analyzed using Markov chains, once the probabilities of a single attack are determined. (Tan, 1997) When $n = m$, attacker has less than a 50% chance to conquer.

A: 6 _ _ D: 1 _ _ D: 5 _ _ (Osbourne, 2003) When $n = m$, attacker has over than 50% chance to conquer, $\Pr(\text{att. kills 2}) \approx 0.259$, $\Pr(\text{Each lose 1}) \approx 0.504$, $\Pr(\text{att. loses 2}) \approx 0.237$ (Blatt, 2002).

s-sided dice. (Manack, Hoffman, soon) p-sided att. dice, q-sided def. dice.
Suppose, at a contested border, there are n attacking armies and m defending armies. What is the probability the attacker can conquer the defending territory?

- Analyzed using Markov chains, once the probabilities of a single attack are determined.
Suppose, at a contested border, there are n attacking armies and m defending armies. What is the probability the attacker can conquer the defending territory?

Analyzed using Markov chains, once the probabilities of a single attack are determined.

(Tan, 1997) When $n = m$, attacker has less than a 50% chance to conquer.
Suppose, at a contested border, there are n attacking armies and m defending armies. What is the probability the attacker can conquer the defending territory?

- Analyzed using Markov chains, once the probabilities of a single attack are determined.

- (Tan, 1997) When $n = m$, attacker has less than a 50% chance to conquer.

- Mistake. Comparing largest die and 2nd largest die are NOT independent events.
Suppose, at a contested border, there are \(n \) attacking armies and \(m \) defending armies. What is the probability the attacker can conquer the defending territory?

Analyzed using Markov chains, once the probabilities of a single attack are determined.

(Tan, 1997) When \(n = m \), attacker has less than a 50% chance to conquer.

Mistake. Comparing largest die and 2nd largest die are NOT independent events.

A: 6 _ _ D: 1 _
6 _ _ D: 5 _
Suppose, at a contested border, there are n attacking armies and m defending armies. What is the probability the attacker can conquer the defending territory?

Analyzed using Markov chains, once the probabilities of a single attack are determined.

(Tan, 1997) When $n = m$, attacker has less than a 50% chance to conquer.

Mistake. Comparing largest die and 2nd largest die are NOT independent events.

A: 6 _ _ D: 1 _
 6 _ _ D: 5 _

(Osbourne, 2003) When $n = m$ Attacker has over than 50% chance to conquer,

\[
\begin{align*}
\Pr(\text{att kills 2}) & \approx .259 \\
\Pr(\text{Each lose 1}) & \approx .504 \\
\Pr(\text{att loses 2}) & \approx .237
\end{align*}
\]
Suppose, at a contested border, there are n attacking armies and m defending armies. What is the probability the attacker can conquer the defending territory?

Analyzed using Markov chains, once the probabilities of a single attack are determined.

(Tan, 1997) When $n = m$, attacker has less than a 50% chance to conquer.

Mistake. Comparing largest die and 2nd largest die are NOT independent events.

A: 6 _ _ D: 1 _
 6 _ _ D: 5 _

(Osbourne, 2003) When $n = m$ Attacker has over than 50% chance to conquer,

\[\Pr(\text{att kills 2}) \approx 0.259 \]
\[\Pr(\text{Each lose 1}) \approx 0.504 \]
\[\Pr(\text{att loses 2}) \approx 0.237 \]

(Blatt, 2002) s sided dice.

(Manack, Hoffman, soon) p sided att dice, q sided def dice.
Variations

- Border Modifications (p sided attack dice vs. q sided defense dice)
Variations

- Border Modifications (p sided attack dice vs. q sided defense dice)
- Different layouts
Variations

- Border Modifications (p sided attack dice vs. q sided defense dice)
- Different layouts
- Elimination bonus
Variations

- Border Modifications (p sided attack dice vs. q sided defense dice)
- Different layouts
- Elimination bonus
- Unit caps
Max 2 units in every territory except the bottom row and Doomsday
Bottom row attacks Doomsday 6v7. Doomsday attacks back at 6v6, and attacks Chips at 6v1
Graph: a set of points and edges.
Graph: a set of points and edges.
Initial placement and the four color theorem

- **Graph**: a set of points and edges.

- **Planar graph**: a graph that can be drawn in such a way that no edges cross each other.

- **Four color theorem**: Using at most 4 colors, the vertices of a planar graph (without loops) can be colored so that no two vertices of the same color share an edge.
Initial placement and the four color theorem

- **Graph**: a set of points and edges.

- **Planar graph**: a graph that can be drawn in such a way that no edges cross each other.

- **Four color theorem**: Using at most 4 colors, the vertices of a planar graph (without loops) can be colored so that no two vertices of the same color share an edge.
The fair placement problem

- Continent: A connected subgraph containing at least two vertices.
The fair placement problem

- Continent: A connected subgraph containing at least two vertices.
- Fair placement problem (for m players): Given a graph and a set of continents, is there any way to assign territories to m players so that no player starts with a continent bonus?
The fair placement problem

- **Continent**: A connected subgraph containing at least two vertices.

- **Fair placement problem (for m players)**: Given a graph and a set of continents, is there any way to assign territories to m players so that no player starts with a continent bonus?

- $m = 4$, continents run over all pairs of adjacent vertices, and the graph is planar, Fair placement problem reduces to Four Color Theorem.
The fair placement problem

Continent: A connected subgraph containing at least two vertices.

Fair placement problem (for m players): Given a graph and a set of continents, is there any way to assign territories to m players so that no player starts with a continent bonus?

$m = 4$, continents run over all pairs of adjacent vertices, and the graph is planar, Fair placement problem reduces to Four Color Theorem.
We would like to schedule n players into m player games, so that every player faces all opponents exactly once.
We would like to schedule n players into m player games, so that every player faces all opponents exactly once.

(Petlesohn, 1939) (n,3) tournaments
We would like to schedule n players into m player games, so that every player faces all opponents exactly once.

(Petlesohn, 1939) $(n,3)$ tournaments
We would like to schedule n players into m player games, so that every player faces all opponents exactly once.

(Petlesohn, 1939) $(n,3)$ tournaments

- error correcting codes, design of experiments.
Determining a winner

\[
\begin{bmatrix}
0 & 0 & 1/3 & 1/3 & 0 & 1/3 & 0 \\
0 & 0 & 1/3 & 1/3 & 1/3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1/3 & 0 & 1/3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1/2 \\
0 & 0 & 0 & 1/2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1/2 \\
\end{bmatrix}
\]

Player 3: $12/6$, Player 6: $13/6$, Player 7: $13/6$.

Square of transition matrix: Player 3: $13/6$, Player 6: $14/6$, Player 7: $15/6$.
Determining a winner

Transition matrix.

Player 3: \(\frac{12}{6} \), Player 6: \(\frac{13}{6} \), Player 7: \(\frac{13}{6} \).

Square of transition matrix: Player 3: \(\frac{13}{6} \), Player 6: \(\frac{14}{6} \), Player 7: \(\frac{15}{6} \).
Determining a winner

Transition matrix:

\[
\begin{pmatrix}
0 & 0 & 1/3 & 1/3 & 0 & 1/3 & 0 \\
0 & 0 & 1/3 & 1/3 & 0 & 0 & 1/3 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1/2 & 1/2 \\
0 & 0 & 1/3 & 0 & 0 & 1/3 & 1/3 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

Square of transition matrix:

Player 3: $\frac{13}{6}$, Player 6: $\frac{14}{6}$, Player 7: $\frac{15}{6}$.
Determining a winner

Transition matrix.

\[
\begin{pmatrix}
0 & 0 & 1/3 & 1/3 & 0 & 1/3 & 0 \\
0 & 0 & 1/3 & 1/3 & 0 & 0 & 1/3 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1/2 & 1/2 \\
0 & 0 & 1/3 & 0 & 0 & 1/3 & 1/3 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

Player 3 : 12/6, Player 6 : 13/6 Player 7 : 13/6
Determining a winner

Transition matrix:

\[
\begin{pmatrix}
0 & 0 & 1/3 & 1/3 & 0 & 1/3 & 0 \\
0 & 0 & 1/3 & 1/3 & 0 & 0 & 1/3 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1/2 & 1/2 \\
0 & 0 & 1/3 & 0 & 0 & 1/3 & 1/3 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

- Player 3: 12/6, Player 6: 13/6, Player 7: 13/6
- Square of transition matrix: Player 3: 13/6, Player 6: 14/6, Player 7: 15/6.