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Introduction
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Statement

A finite set of integers, |A| its size.

The sumset: A + A = {ai + aj |ai ,aj ∈ A}.

The difference set: A− A = {ai − aj |ai ,aj ∈ A}.

Definition
A finite set of integers. A is called sum-dominated or
MSTD (more-sum-than-difference) if |A + A| > |A− A|,
balanced if |A + A| = |A− A| and difference-dominated
if |A + A| < |A− A|.
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False conjecture

Natural to think that |A + A| ≤ |A− A|.

Each pair (x , y), x 6= y gives two differences:
x − y 6= y − x , but only one sum x + y .

However, sets A with |A + A| > |A− A| do exist!
Conway (1969): {0,2,3,4,7,11,12,14}.
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Martin and O’Bryant ’06

Theorem
Consider In = {0,1, ...,n − 1}. The proportion of MSTD
subsets of In is bounded below by a positive constant
c ≈ 2 · 10−7.
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Results
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Distribution of the Number of Missing Sums (Uniform Model)

Figure: Frequency of the number of missing sums (q is probability of
not choosing an element). The distribution is not unimodal. From
Lazarev-Miller-O’Bryant.
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Distribution of the Number of Missing Sums (Different Models)

Figure: Missing sums (q is probability of not choosing an element)
from simulating 1,000,000 subsets of {0,1,2, ...,255}.
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Sets of Missing Sums

Let In = {0,1,2, ...,n − 1}.

Form S ⊆ In randomly with probability p of picking an
element in In (q = 1− p: the probability of not
choosing an element).

Bn = (In + In)\(S + S) is the set of missing sums, |Bn|:
the number of missing sums.
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Distribution of Missing Sums

Fix p ∈ (0,1), study P(|B| = k) = limn→∞ P(|Bn| = k).
(Zhao proved that the limit exists.)

P(|B| = k): the limiting distribution of missing sums.

Divot
For some k ≥ 1, have divot at k if
P(|B| = k − 1) > P(|B| = k) < P(|B| = k + 1).
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Example of Divot at 3

Figure: Frequency of the number of missing sums for subsets of
{0,1,2, ...,400} by simulating 1,000,000 subsets with p = 0.6.
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Numerical Analysis for p = 1/2

Figure: Frequency of the number of missing sums for all subsets of
{0,1,2, ...,25}.
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Lazarev-Miller-O’Bryant ’11

Divot at 7
For p = 1/2, there is a divot at 7:
P(|B| = 6) > P(|B| = 7) < P(|B| = 8).
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Question

Existence of Divots
For a fixed different value of p, are there other divots?

Answer: Yes!
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Numerical analysis for different p ∈ (0,1) : p = 0.6

Figure: Distribution of |B| = k by simulating 1,000,000 subsets of
{0,1,2, . . . ,400} with p = 0.6.
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Numerical analysis for p = 0.7: divots at 1 and 3

Figure: Distribution of |B| = k by simulating 1,000,000 subsets of
{0,1,2, . . . ,400} with p = 0.7.
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Numerical analysis for different p = 0.8: divot at 1

Figure: Distribution of |B| = k by simulating 1,000,000 subsets of
{0,1,2, . . . ,400} with p = 0.8.
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Numerical analysis for different p = 0.9: divot at 1

Figure: Distribution of |B| = k by simulating 1,000,000 subsets of
{0,1,2, . . . ,400} with p = 0.9.
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Main Result

Divot at 1 [CLMSX’18]
For p ≥ 0.68, there is a divot at 1:
P(|B| = 0) > P(|B| = 1) < P(|B| = 2). Empirical evidence
predicts the value of p such that the divot at 1 starts to
exist is between 0.6 and 0.7.
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Sketch of Proof
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Key Ideas

Want P(|B| = 0) > P(|B| = 1) < P(|B| = 2).

Establish an upper bound T 1 for P(|B| = 1).

Establish lower bounds T0 and T2 for P(|B| = 0) and
P(|B| = 2), respectively.

Find values of p such that T2 > T 1 < T0.
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Fringe Analysis

Most of the missing sums come from the fringe: many
more ways to form middle elements than fringe
elements.

Fringe analysis is enough to find good lower bounds
and upper bounds for P(|B| = k).
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Setup

Consider S ⊆ {0,1,2, ...,n − 1} with probability p of
each element being picked.

Analyze fringe of size 30.

Write S = L ∪M ∪ R, where
L ⊆ [0,29], M ⊆ [30,n − 31] and R ⊆ [n − 30,n − 1].
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Notation

Write S = L ∪M ∪ R, where
L ⊆ [0,29], M ⊆ [30,n − 31] and R ⊆ [n − 30,n − 1].

Lk : the event that L + L misses k sums in [0,29].

La
k : the event that L + L misses k sums in [0,29] and

contains [30,48].

Similar notations applied for R.
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Upper Bound

Given 0 ≤ k ≤ 30,

P(|B| = k) ≤
k∑

i=0

P(Li)P(Lk−i) +
2(2q − q2)15(3q − q2)

(1− q)2 .
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Lower Bound

Given 0 ≤ k ≤ 30,

P(|B| = k) ≥
k∑

i=0

[
1− (a− 2)(qτ(L

a
i ) + qτ(L

a
k−i ))

− 1 + q
(1− q)2 (q

min La
i + qmin La

k−i )

]
P(La

i )P(La
k−i).
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Our Bounds Are Fairly Sharp (p ≥ 0.7)

Figure: We cannot see the blue line because our upper bound is so
sharp that the orange line lies on the blue line.
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Our Bounds Are Bad (p ≤ 0.6)

Figure:
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Divot at 1

Figure: For p ≥ 0.68, the lower bounds for P(|B| = 0) and P(|B| = 2)
are higher than the upper bound for P(|B| = 1). There is a divot at 1.
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A Powerful Family of MSTD sets
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Why Powerful?

Have appeared in the proof of many important results
in previous works.

Give many sets with large log |A + A|/ log |A− A|.

Economically way to construct sets with fixed
|A + A| − |A− A| (save more than four times of what
previous construction has).

A is restricted-sum-dominant (RSD) if its restricted
sum set is bigger than its difference set. Improve the
lower bound for the proportion of RSD sets from
10−37 to 10−25.
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A different notation

We use a different notation to write a set; was first
introduced by Spohn (1973).

Given a set S = {a1,a2, . . . ,an}, we arrange its
elements in increasing order and find the differences
between two consecutive numbers to form a
sequence.

For example, S = {2,3,5,9,10}. We write
S = (2|1,2,4,1).
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F family

F family

Let Mk denote 1,4, . . . ,4︸ ︷︷ ︸
k -times

,3. Our family is

F : = {1,1,2,1,Mk1 ,Mk2 , . . . ,Mk` ,M1 : `, k1, . . . , k` ∈ N},

where M1 is either 1,1 or 1,1,2 or 1,1,2,1.

Conjecture
All sets in F are MSTD.

We proved that the conjecture holds for a periodic family.
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Periodic Family [CLMS’18]

Sk ,` = (0|1,1,2,1,4, . . . ,4︸ ︷︷ ︸
k -times

,3, . . . ,1,4, . . . ,4︸ ︷︷ ︸
k -times

,3

︸ ︷︷ ︸
`-times

,1,1,2,1)

has |Sk ,` + Sk ,`| − |Sk ,` − Sk ,`| = 2`.

S′k ,` = (0|1,1,2,1,4, . . . ,4︸ ︷︷ ︸
k -times

,3, . . . ,1,4, . . . ,4︸ ︷︷ ︸
k -times

,3

︸ ︷︷ ︸
`-times

,1,1,2)

has |S′k ,` + S′k ,`| − |S′k ,` − S′k ,`| = 2`− 1.
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First Application

Sets A with fixed |A + A| − |A− A|
Given x ∈ N, there exists a set A ⊆ [0,12 + 4x ] such that
|A + A| − |A− A| = x . (Previous was [0,17x ]).

We save more than four times!

Method: Explicit constructions using Sk ,` and S′k ,`.
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Second Application

Lower bound for restricted-sum-dominant sets
For n ≥ 81, the proportion of RSD subsets of
{0,1,2, . . . ,n − 1} is at least 4.135 · 10−25. (Previous was
about 10−37).

Method: Sk ,` reduces the needed fringe size from 120 to
81.
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Future Research
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Distribution of Missing Sums

Figure: Shift of Divots....
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Future Research

Prove there are no divots at even numbers.

Is there a value of p such that there are no divots?

What about missing differences?

What if probability of choosing depends on n?

Work supported by NSF Grants DMS1561945 and
DMS1659037, the Finnerty Fund, the University of
Michigan, Washington and Lee, and Williams College.
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