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Statement

e Afinite set of integers, |A| its size.
e The sumset: A+ A= {a + gja;, g € A}

e The difference set: A— A= {a, — gj|a;, g € A}.

Definition

A finite set of integers. A is called sum-dominated or
MSTD (more-sum-than-difference) if |A+ A| > |A— A|,
balanced if |A + A| = |A — A| and difference-dominated
if[A+A <|A—A.
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False conjecture

e Natural to think that A+ A| < |A— A|.

e Each pair (x, y), x # y gives two differences:
X —y #y — X, butonly one sum x + y.

@ However, sets A with |A+ A| > |A — A| do exist!
Conway (1969): {0,2,3,4,7,11,12,14}.
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Martin and O’Bryant 06

Consider I, = {0,1,...,n— 1}. The proportion of MSTD
subsets of /, is bounded below by a positive constant
c~2-107"7.
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Distribution of the Number of Missing Sums (Uniform Model)
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Figure: Frequency of the number of missing sums (q is probability of
not choosing an element). The distribution is not unimodal. From
Lazarev-Miller-O’'Bryant.
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Distribution of the Number of Missing Sums (Different Models)
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Figure: Missing sums (q is probability of not choosing an element)
from simulating 1,000,000 subsets of {0, 1,2, ...,255}.
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Sets of Missing Sums

o Let/,={0,1,2,...,n—1}.

e Form S C I, randomly with probability p of picking an
elementin I, (g = 1 — p: the probability of not
choosing an element).

@ B, = (Ih+ I,)\(S+ S) is the set of missing sums, |B,|:
the number of missing sums.
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Distribution of Missing Sums

@ Fix p € (0,1), study P(|B| = k) = lim,_,.. P(|By| = k).
(Zhao proved that the limit exists.)

e P(|B| = k): the limiting distribution of missing sums.
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Distribution of Missing Sums

@ Fix p € (0,1), study P(|B| = k) = lim,_,.. P(|By| = k).
(Zhao proved that the limit exists.)

e P(|B| = k): the limiting distribution of missing sums.

For some k > 1, have divot at k if
P(|B|=k—-1)>P(|B| = k) <P(|B|=k+1).




Example of Divot at 3
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Figure: Frequency of the number of missing sums for subsets of
{0,1,2,...,400} by simulating 1,000,000 subsets with p = 0.6.
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Numerical Analysis for p = 1/2
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Figure: Frequency of the number of missing sums for all subsets of
{0,1,2,...,25}.
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For p = 1/2, there is a divot at 7:
P(|B| = 6) > P(|B| = 7) < P(|B| = 8).




Question

Existence of Divots
For a fixed different value of p, are there other divots?




Question

Existence of Divots
For a fixed different value of p, are there other divots?

Answer: Yes!




Numerical analysis for different p € (0,1) : p=0.6
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Figure: Distribution of |B| = k by simulating 1,000,000 subsets of
{0,1,2,...,400} with p = 0.6.
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Numerical analysis for p = 0.7: divots at 1 and 3
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Figure: Distribution of |B| = k by simulating 1,000,000 subsets of
{0,1,2,...,400} with p = 0.7.
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Numerical analysis for different p = 0.8: divot at 1
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Figure: Distribution of |B| = k by simulating 1,000,000 subsets of
{0,1,2,...,400} with p=0.8.
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Numerical analysis for different p = 0.9: divot at 1
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Figure: Distribution of |B| = k by simulating 1,000,000 subsets of
{0,1,2,...,400} with p = 0.9.
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Divot at 1 [CLMSX’18]

For p > 0.68, there is a divot at 1:

P(|B| =0) > P(|B| = 1) < P(|B| = 2). Empirical evidence
predicts the value of p such that the divot at 1 starts to
exist is between 0.6 and 0.7.
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Sketch of Proof for Divot at 1
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o Want P(|B| = 0) > P(|B| = 1) < P(|B| = 2).




Sketch of Proof for Divot at 1
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o Want P(|B| = 0) > P(|B| = 1) < P(|B| = 2).

e Establish an for P(|B| = 1).
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e WantP(|B| =0) > P(|B|=1) < P(|B| = 2).
e Establish an for P(|B| = 1).

e Establish for P(|B| = 0) and
P(|B| = 2), respectively.




Sketch of Proof for Divot at 1
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e WantP(|B| =0) > P(|B|=1) < P(|B| = 2).
e Establish an for P(|B| = 1).

e Establish for P(|B| = 0) and
P(|B| = 2), respectively.

e Find values of psuchthat T, > T' < To.
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Fringe Analysis

@ Most of the missing sums come from the fringe: many
more ways to form middle elements than fringe
elements.




Sketch of Proof for Divot at 1
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Fringe Analysis

@ Most of the missing sums come from the fringe: many
more ways to form middle elements than fringe
elements.

e Fringe analysis is enough to find good lower bounds
and upper bounds for P(|B| = k).
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@ Consider S C {0,1,2, ..., n— 1} with probability p of
each element being picked.

@ Analyze fringe of size 30.

@ Write S= LU MU R, where
L C[0,29], M C [30,n—31]and R C [n—30,n—1].
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Notation

e Write S=LUMU R, where
L C[0,29], M C [30,n—31]and R C [n—30,n—1].

@ Ly : the event that L + L misses k sums in [0, 29].

@ [2: the event that L + L misses k sums in [0, 29] and
contains [30, 48].

e Similar notations applied for R.
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Upper Bound

Given 0 < k < 30,

k _ ~2\15 2
BB =k) < > B(L)P(Li) + 229 (j’)_;f;’ 7)
i=0
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Lower Bound

Given 0 < k < 30,

k
P(Bl=k) > ) {1 —(a—2)(qg"™) 4+ g H-))y
i=0
_ 1T+ q min L2 minL2_; a a
= q)z(q +q ) | P(L)P(L_)-
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Our Bounds Are Fairly Sharp (p > 0.7)
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Figure: We cannot see the blue line because our upper bound is so

sharp that the orange line lies on the blue line.
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Sketch of Proof for Divot at 1
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Our Bounds Are Bad (p < 0.6)
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Divot at 1
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Figure: For p > 0.68, the lower bounds for P(|B| = 0) and P(|B| = 2)
are higher than the upper bound for P(|B| = 1). There is a divot at 1.
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A Powerful Family of MSTD sets
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A Powerful Family of MSTD sets
°

Why Powerful?

@ Have appeared in the proof of many important results
in previous works.

e Give many sets with large log |[A + A|/log |A — A|.

@ Economically way to construct sets with fixed
|A+ A] — |A — Al (save more than four times of what
previous construction has).

@ Ais restricted-sum-dominant (RSD) if its restricted
sum set is bigger than its difference set. Improve the
lower bound for the proportion of RSD sets from
1073 t0 102,

e TGS -




A Powerful Family of MSTD sets
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A different notation

@ We use a different notation to write a set; was first
introduced by Spohn (1973).

e Givenaset S={a;,a,...,an}, we arrange its
elements in increasing order and find the differences
between two consecutive numbers to form a
sequence.

@ For example, S = {2,3,5,9,10}. We write
S=1(2/1,2,4,1).
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F family

F family

Let M denote 1,4, ...,4,3. Our family is
——

k-times
F = {1,1,2,1,Mk1,Mk2,...,MkZ,M1 3€,k1,...,ke€N},
where M, is either 1,1 or1,1,20r1,1,2,1.

v

All sets in F are MSTD.

We proved that the conjecture holds for a periodic family.
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Periodic Family [CLMS’18]

Ske = (01,1,2,1,4,...,4,3,...,1,4,...,4,3,1,1,2,1)
S—— S——

k-times k-times

K—ti;es
has Sk, + Skl — [Ske — Skl = 2.
o = (011,1,2,1,4 ....43,...,1,4,...,431,12)
’ ~—— ~——

k-times k-times

>
¢-times

has |S; , + Sk, — |S;<,e - //<,z| =2(—1.
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A Powerful Family of MSTD sets
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First Application

Sets A with fixed |[A+ A| — |A— A|

Given x € N, there exists a set A C [0, 12 + 4x] such that
|A+ A] — |A— A] = x. (Previous was [0, 17x]).

We save more than four times!

Method: Explicit constructions using Sk, and S ,.
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Second Application

Lower bound for restricted-sum-dominant sets

For n > 81, the proportion of RSD subsets of
{0,1,2,...,n—1} is at least 4.135 - 10-2°. (Previous was
about 10~%7).

Method: Sk, reduces the needed fringe size from 120 to
81.
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Distribution of Missing Sums
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Figure: Shift of Divots....
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Future Research

@ Prove there are no divots at even numbers.

@ Is there a value of p such that there are no divots?

e What about missing differences?

e What if probability of choosing depends on n?
Work supported by NSF Grants DMS1561945 and

DMS1659037, the Finnerty Fund, the University of
Michigan, Washington and Lee, and Williams College.
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