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Abstract. Using elementary results from Fourier analysis, we provide an
alternate proof of a necessary and sufficient condition for the sum of M in-
dependent continuous random variables modulo 1 to converge to the uniform
distribution in L1([0, 1]), and discuss generalizations to discrete random vari-
ables. A consequence is that if X1, . . . , XM are independent continuous random
variables with densities f1, . . . , fM , for any base B as M → ∞ for many choices
of the densities the distribution of the digits of X1 · · ·XM converges to Ben-
ford’s law base B. The rate of convergence can be quantified in terms of the
Fourier coefficients of the densities, and provides an explanation for the preva-
lence of Benford behavior in many diverse systems. To highlight the difference
in behavior between identically and non-identically distributed random vari-
ables, we construct a sequence of densities {fi} with the following properties:
(1) for each i, if every Xk is independently chosen with density fi then the
sum converges to the uniform distribution; (2) if the Xk’s are independent but
non-identical, with Xk having distribution fk, then the sum does not converge
to the uniform distribution.
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1. Introduction

We investigate necessary and sufficient conditions for the distribution of a
sum of random variables modulo 1 to converge to the uniform distribution.
This topic has been fruitfully studied by many previous researchers. Our pur-
pose here is to provide an elementary proof of prior results, and explicitly
connect this problem to related problems in the Benford’s Law literature con-
cerning the distribution of the leading digits of products of random variables.
As this question has motivated much of the research on this topic, we briefly
describe that problem and its history, and then state our results.

For any base B we may uniquely write a positive x ∈ R as x = MB(x) ·Bk,
where k ∈ Z and MB(x) (called the mantissa) is in [1, B). A sequence of
positive numbers {an} is said to be Benford base B (or to satisfy Benford’s
Law base B) if the probability of observing the base-B mantissa of an of at
most s is logB s. More precisely,

lim
N→∞

#{n ≤ N : 1 ≤ MB(an) ≤ s}
N

= logB s. (1.1.1)

Benford behavior for continuous systems is defined analogously. Thus base 10
the probability of observing a first digit of j is log10(j +1)− log10(j), implying
that about 30% of the time the first digit is a 1.

Benford’s Law was first observed by Newcomb in the 1880s, who noticed that
pages of numbers starting with 1 in logarithm tables were significantly more
worn than those starting with 9. In 1938 Benford [Ben] observed the same digit
bias in 20 different lists with over 20,000 numbers in all. See [Hi1, Rai] for
a description and history. Many diverse systems have been shown to satisfy
Benford’s law, ranging from recurrence relations [BrDu] to n! and

(
n
k

)
(0 ≤

k ≤ n) [Dia] to iterates of power, exponential and rational maps [BBH, Hi2]
to values of L-functions near the critical line and characteristic polynomials
of random matrix ensembles [KoMi] to iterates of the 3x + 1 Map [KoMi, LS]
to differences of order statistics [MN]. There are numerous applications of
Benford’s Law. It is observed in natural systems ranging from hydrology data
[NM] to stock prices [Ley], and is used in computer science in analyzing round-
off errors (see page 255 of [Knu] and [BH]), in determining the optimal way to
store numbers2 [Ha], and in accounting to detect tax fraud [Nig1, Nig2]. See
[Hu] for a detailed bibliography of the field.

In this paper we consider the distribution of digits of products of independent
random variables, X1 · · ·XM , and the related questions about probability den-
sities of random variables modulo 1. Many authors [Sa, ST, AS, Adh, Ha, Tu]
have observed that the product (and more generally, any nice arithmetic oper-
ation) of two random variables is often closer to satisfying Benford’s law than

2If the data is distributed according to Benford’s Law base 2, the probability of having
to shift the result of multiplying two numbers if the mantissas are written as 0.x1x2x3 · · ·
is about .38; if they are written as x1.x2x3 · · · the probability is about .62.
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the input random variables; further, that as the number of terms increases,
the resulting expression seems to approach Benford’s Law.

Many of the previous works are concerned with determining exact formulas
for the distribution of X1 · · ·XM ; however, to understand the distribution of
the digits all we need is to understand logB |X1 · · ·XM | mod 1. This leads to
the equivalent problem of studying sums of random variables modulo 1. This
formulation is now ideally suited for Fourier analysis. The main result is a vari-
ant of the Central Limit Theorem, which in this context states that for “nice”
random variables, as M → ∞ the sum3 of M independent random variables
modulo 1 tends to the uniform distribution; by simple exponentiation this is
equivalent to Benford’s Law for the product (see [Dia]). To emphasize the
similarity to the standard Central Limit Theorem and the fact that our sums
are modulo 1, we refer to such results as Modulo 1 Central Limit Theorems.
Many authors [Bh, Bo, Ho, JR, Lev, Lo, Ro, Sc1, Sc2, Sc3] have analyzed this
problem in various settings and generalizations, obtaining sufficient conditions
on the random variables (often identically distributed) as well as estimates on
the rate of convergence.

Our main result is a proof, using only elementary results from Fourier anal-
ysis, of a necessary and sufficient condition for a sum modulo 1 to converge
to the uniform distribution in L1([0, 1]). We also give a specific example to
emphasize the different behavior possible when the random variables are not
identically distributed. We let ĝm(n) denote the nth Fourier coefficient of a
probability density gm on [0, 1]:

ĝm(n) =

∫ 1

0

gm(x)e−2πinxdx. (1.1.2)

Theorem 1.1. (The Modulo 1 Central Limit Theorem for Independent Con-
tinuous Random Variables) Let {Ym} be independent continuous random vari-
ables on [0, 1), not necessarily identically distributed, with densities {gm}. A
necessary and sufficient condition for the sum Y1 + · · ·+ YM modulo 1 to con-
verge to the uniform distribution as M → ∞ in L1([0, 1]) is that for each n �= 0
we have limM→∞ ĝ1(n) · · · ĝM (n) = 0.

As Benford’s Law is equivalent to the associated base B logarithm being
equidistributed modulo 1 (see [Dia]), from Theorem 1.1 we immediately obtain
the following result on the distribution of digits of a product.

Theorem 1.2. Let X1, . . . , XM be independent continuous random variables,
and let gB,m be the density of logB MB(|Xm|). A necessary and sufficient con-
dition for the distribution of the digits of X1 · · ·XM to converge to Benford’s

3That is, we study sums of the form Y1 + · · · + YM . For the standard Central Limit
Theorem one studies

�
m Ym−E[

�
m Ym]

StDev(
�

m Ym) . We subtract the mean and divide by the standard
deviation to obtain a quantity which will be finite as M → ∞; however, sums modulo 1 are
a priori finite, and thus their unscaled value is of interest.
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Law (base B) as M → ∞ in L1([0, 1]) is for each n �= 0 that
limM→∞ ĝB,1(n) · · · ĝB,M (n) = 0.

As other authors have noticed, the importance of results such as Theorem
1.2 is that they give an explanation of why so many data sets follow Benford’s
Law (or at least a close approximation to it). Specifically, if we can consider the
observed values of a system to be the product of many independent processes
with reasonable densities, then the distribution of the digits of the resulting
product will be close to Benford’s Law.

We briefly compare our approach with other proofs of results such as Theo-
rem 1.1 (where the random variables are often taken as identically distributed).
If the random variables are identically distributed with density g, our condi-
tion reduces to |ĝ(n)| < 1 for n �= 0. For a probability distribution, |ĝ(n)| = 1
for n �= 0 if and only if there exists α ∈ R such that all the mass is contained
in the set {α, α + 1

n
, . . . , α + n−1

n
}. (As we are assuming our random variables

are continuous and not discrete, the corresponding densities are in L1([0, 1])
and this condition is not met; in Theorem 1.3 we discuss generalizations to
discrete random variables.) In other words, the sum of identically distributed
random variables modulo 1 converges to the uniform distribution if and only if
the support of the distribution is not contained in a coset of a finite subgroup
of the circle group [0, 1). Interestingly, Levy [Lev] proved this just one year
after Benford’s paper [Ben], though his paper does not study digits. Levy’s
result has been generalized to other compact groups, with estimates on the
rate of convergence [Bh]. Stromberg [Str] proved that4 the n-fold convolution
of a regular probability measure on a compact Hausdorff group G converges to
the normalized Haar measure in the weak-star topology if and only if the sup-
port of the distribution is not contained in a coset of a proper normal closed
subgroup of G.

Our arguments in the proof of Theorem 1.1 may be generalized to indepen-
dent discrete random variables, at the cost of replacing L1-convergence with
weak convergence. Below δα(x) denotes a unit point mass at α.

Theorem 1.3. (Modulo 1 Central Limit Theorem for Certain Independent
Discrete Random Variables) Let {Ym} be independent discrete random vari-
ables on [0, 1), not necessarily identically distributed, with densities

gm(x) =
rm∑
k=1

wk,mδαk,m
(x), wk,m > 0,

rm∑
k=1

wk,m = 1. (1.1.3)

Assume that there is a finite set A ⊂ [0, 1) such that all αk,m ∈ A. A neces-
sary and sufficient condition for the sum Y1 + · · · + YM modulo 1 to converge
weakly to the uniform distribution as M → ∞ is that for each n �= 0 we have
limM→∞ ĝ1(n) · · · ĝM (n) = 0.

4The following formulation is taken almost verbatim from the first paragraph of [Bh].
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In §2 we prove Theorem 1.1 using only elementary facts from Fourier anal-
ysis, showing our condition is a consequence of Lebesgue’s Theorem (on L1-
convergence of the Fejér series) and a standard approximation argument. We
give an example of distinct densities {fi} with the following properties: (1)
for each i, if every Xk is independently chosen with density fi then the sum
converges to the uniform distribution; (2) if the Xk’s are independent but non-
identical, with Xk having distribution fk, then the sum does not converge to
the uniform distribution. This example illustrates the difference in behavior
when the random variables are not identically distributed: to obtain uniform
behavior for the sum it does not suffice for each random variable to satisfy Levy
or Stromberg’s condition (the distribution is not concentrated on a coset of a
finite subgroup of [0, 1)). We conclude in §3 by sketching the proof of Theorem
1.3, and in Appendix A we comment on alternate techniques to prove results
such as Theorem 1.2 (in particular, why our arguments are more general than
applying the standard Central Limit Theorem to logB |X1| + · · · + logB |XM |
to analyze the distribution of digits of |X1 · · ·XN |).

2. Analysis of Sums of Continuous Random Variables

We recall some standard facts from Fourier analysis (see for example [SS]).
The convolution of two functions in L1([0, 1]) is

(f ∗ g)(x) =

∫ 1

0

f(y)g(x− y)dy =

∫ 1

0

f(x − y)g(y)dy. (2.2.1)

Convolution is commutative and associative, and the nth Fourier coefficient of
a convolution is the product of the two nth Fourier coefficients.

Let g1 and g2 be two probability densities in L1([0, 1]). If Zi is a random
variable on [0, 1) with density gi, then the density of Z1 + Z2 mod 1 is the
convolution of g1 with g2.

Definition 2.1 (Fejér kernel, Fejér series). Let f ∈ L1([0, 1]). The N th Fejér
kernel is

FN(x) =
N∑

n=−N

(
1 − |n|

N

)
e2πinx, (2.2.2)

and the N th Fejér series of f is

TNf(x) = (f ∗ FN)(x) =

N∑
n=−N

(
1 − |n|

N

)
f̂(n)e2πinx. (2.2.3)

The Fejér kernels are an approximation to the identity (they are non-negative,

integrate to 1, and for any δ ∈ (0, 1/2) we have limN→∞
∫ 1−δ

δ
FN (x)dx = 0).

Theorem 2.2 (Lebesgue’s Theorem). Let f ∈ L1([0, 1]). As N → ∞, TNf
converges to f in L1([0, 1]).

Lemma 2.3. Let f, g ∈ L1([0, 1]). Then TN(f ∗ g) = (TNf) ∗ g.
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Proof. The proof follows immediately from the commutative and associative
properties of convolution.

We can now prove Theorem 1.1.

Proof of Theorem 1.1. We first show our condition is sufficient. The density
of the sum modulo 1 is hM = g1 ∗ · · · ∗ gM . It suffices to show that, for any
ε > 0,

lim
M→∞

∫ 1

0

|hM(x) − 1|dx < ε. (2.2.4)

Using Lebesgue’s Theorem (Theorem 2.2), choose N sufficiently large so that∫ 1

0

|h1(x) − TNh1(x)|dx <
ε

2
. (2.2.5)

While N was chosen so that (2.2.5) holds with h1, in fact this N works for all
hM (with the same ε). This follows by induction. The base case is immediate
(this is just our choice of N). Assume now that (2.2.5) holds with h1 replaced
by hM ; we must show it holds with h1 replaced by hM+1 = hM ∗ gM+1. By
Lemma 2.3 we have

TNhM+1 = TN(hM ∗ gM+1) = (TNhM) ∗ gM+1. (2.2.6)

This implies ∫ 1

0

|hM+1(x) − TNhM+1(x)|dx

=

∫ 1

0

|(hM ∗ gM+1)(x) − (TNhM) ∗ gM+1(x)|dx

=

∫ 1

0

∣∣∣∣∫ 1

0

(hM (y)− TNhM (y)) · gM+1(x − y)

∣∣∣∣dydx

≤
∫ 1

0

∫ 1

0

|hM (y)− TNhM (y)| · gM+1(x − y)dxdy

=

∫ 1

0

|hM(y) − TNhM(y)|dy · 1 <
ε

2
; (2.2.7)

the interchange of integration above is justified by the absolute value being in-
tegrable in the product measure, and the x-integral is 1 as gM+1 is a probability
density.

To show hM converges to the uniform distribution in L1([0, 1]), we must

show limM→∞
∫ 1

0
|hM(x)−1|dx = 0. Let N and ε be as above. By the triangle

inequality we have∫ 1

0

|hM(x) − 1|dx ≤
∫ 1

0

|hM(x) − TNhM (x)|dx +

∫ 1

0

|TNhM (x) − 1|dx.

(2.2.8)
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From our choices of N and ε,
∫ 1

0
|hM (x) − TNhM (x)|dx < ε/2; thus we need

only show
∫ 1

0
|TNhM (x) − 1|dx < ε/2 to complete the proof. As ĥM (0) = 1,

∫ 1

0

|TNhM(x) − 1|dx =

∫ 1

0

∣∣∣∣∣∣∣
N∑

n=−N
n�=0

(
1 − |n|

N

)
ĥM (n)e2πinx

∣∣∣∣∣∣∣ dx

≤
N∑

n=−N
n�=0

(
1 − |n|

N

)
|ĥM(n)|. (2.2.9)

However, ĥM(n) = ĝ1(n) · · · ĝM (n), and by assumption tends to zero as M →
∞ (as each ĝm(n) is at most 1 in absolute value, for each n the absolute value
of the product is non-increasing in M). For fixed N and ε, we may choose M

sufficiently large so that |ĥM(n)| < ε/4N whenever n �= 0 and |n| ≤ N . Thus∫ 1

0

|TNhM (x) − 1|dx < 2N · ε

4N
=

ε

2
, (2.2.10)

which implies ∫ 1

0

|hM (x) − 1|dx < ε (2.2.11)

for M sufficiently large. As ε is arbitrary, this completes the proof of the
sufficiency; we now prove this condition is necessary.

Assume for some n0 �= 0 that limM→∞ |ĥM(n0)| �= 0 (where as always hM =
g1∗· · · gM ). As the gm are probability densities, |ĝm(n)| ≤ 1; thus the sequence

{|ĥM(n)|}∞M=1 is non-increasing for each n, and hence by assumption converges
to some number cn ∈ (0, 1].

Let EM(x) = hM(x) − 1; note ÊM(n) = ĥM (n) for n �= 0. To show hM does
not converge to the uniform distribution on [0, 1], it suffices to show that EM

does not converge almost everywhere to the zero function on [0, 1]. Let n0 be
as above. We have∣∣∣ĥM (n0)

∣∣∣ =
∣∣∣ÊM(n0)

∣∣∣ =

∣∣∣∣∫ 1

0

EM (x)e2πin0xdx

∣∣∣∣ ≥ cn0 > 0. (2.2.12)

Therefore at least one of the following integrals is at least cn0/2:∫
x∈[0,1]

Re(EM (x))≥0

Re (EM (x)) dx,

∫
x∈[0,1]

Re(EM (x))≤0

Re (−EM(x)) dx∫
x∈[0,1]

Im(EM (x))≥0

Im (EM (x)) dx,

∫
x∈[0,1]

Im(EM (x))≤0

Im (−EM(x)) dx,(2.2.13)

and hM cannot converge to the zero function in L1([0, 1]); further, we obtain
an estimate on the L1-distance between the uniform distribution and hM .
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Figure 1. Distribution of digits (base 10) of 1000 products
X1 · · ·X1000, where g10,m = φ11m.

The behavior is non-Benford if the conditions of Theorem 1.2 are violated.
It is enough to show that we can find a sequence of densities gB,m such that

limM→∞
∏M

m=1 ĝB,m(1) �= 0. We are reduced to searching for an infinite product
that is non-zero; we also need each term to be at most 1, as the Fourier
coefficients of a probability density are dominated by 1. A standard example
is

∏
m cm, where cm = m2+2m

(m+1)2
; the limit of this product is 1/2. Thus as long

as ĝB,m(1) ≥ m2+2m
(m+1)2

, the conclusion of Theorem 1.2 will not hold for the

products of the associated random variables; analogous reasoning yields a sum
of independent random variables modulo 1 which does not converge to the
uniform distribution.

Example 2.4 (Non-Benford Behavior of Products). Consider

φm =

{
m if |x − 1

8
| ≤ 1

2m

0 otherwise;
(2.2.14)

φm is non-negative and integrates to 1. As m → ∞ we have |φ̂m(1)| → 1 be-

cause the density becomes concentrated at 1/8 (direct calculation gives φ̂m(1) =
e2πi/8 + O(m−2)). Let X1, . . . , XM be independent random variables where the
associated densities gB,m of logB M(|Xm|) are φ11m. The behavior is non-
Benford (see Figure 1). Note, however, that if each Xm had the common dis-
tribution φi for any fixed i, then in the limit the product will satisfy Benford’s
law.

Remark 2.5. Generalizations of Theorem 1.1 hold for more general sums of
random variables. Instead of Y1 + · · · + YM we may study η1Y1 + · · · + ηMYM ,
where each ηm is a random variable taking values in {−1, 1}; the proof follows
from the observation that if Ym has density gm(y) then −Ym has density gm(1−
y).

3. Analysis of Sums of Discrete Random Variables

Many results from Fourier analysis do not apply if the random variables are
discrete; Lebesgue’s Theorem cannot be correct for a point mass as the density
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is concentrated on a set of measure zero. Let δα(x) be a unit point mass5 at

α. Its Fourier coefficients are δ̂α(n) = e−2πinα, and simple algebra shows that
its Fejér series is

FNδα(x) =
e−2πi(N−1)(x−α)(e2πiN(x−α) − 1)2

(e2πi(x−α) − 1)2 N
. (3.3.1)

For x �= α, limN→∞ FNδα(x) = δα(x) = 0; moreover, for x near α we have
|FNδα(x)| ∼ N . Instead of convergence in L1([0, 1]) we have weak convergence:
for any Schwartz function φ,

lim
N→∞

∫ 1

0

FNδα(x)φ(x)dx =

∫ 1

0

δα(x)φ(x)dx = φ(α). (3.3.2)

Sketch of the proof of Theorem 1.3. We argue as in Theorem 1.1. Note Lemma
2.3 holds if f and g are sums of point masses. Instead of using Lebesgue’s
Theorem, we use weak convergence: given an ε > 0 and a Schwartz function
φ(x), by weak convergence there is an N such that∣∣∣∣∫ 1

0

(h1(x) − TNh1(x)) φ(x)dx

∣∣∣∣ <
ε

2
. (3.3.3)

This is the generalization of (2.2.5). Further, we may assume (3.3.3) holds
with φ(x) replaced with φαk,m

(x) = φ(x + αk,m) for any αk,m ∈ A. This is
only true because A is finite; while N = N(φ) depends on φ, as there are only
finitely many test functions φαk,m

we may take N = max N(φαk,m
). A similar

analysis as before shows (3.3.3) also holds with h1 replaced by hM . The key
step in the induction is∫ 1

0

(hM(y) − TNhM (y)) gM+1(x − y)φ(x)dxdy

=

∫ 1

0

(hM (y)− TNhM (y))

rM+1∑
k=1

wk,M+1φ(y + αk,M+1)dy

=

rM+1∑
k=1

wk,M+1

∫ 1

0

(hM(y) − TNhM(y))φαk,M+1
(y)dy, (3.3.4)

which, as the wk,M+1 sum to 1, is less than ε/2 in absolute value. Arguing as
in Theorem 1.1 completes the proof.

Appendix A. Comparison with Alternate Techniques

We discuss an alternate proof of Theorem 1.2, applying the standard Central
Limit Theorem to the sum logB |X1| + · · · + logB |XM | and noting that as the
variance of a Gaussian increases to infinity, the Gaussian becomes uniformly
distributed modulo 1. A significant drawback of a proof by the Central Limit

5Thus δα(x) is a Dirac delta functional; if φ(x) is a Schwartz function then
∫ 1

0
δα(x)φ(x)dx

is defined to be φ(α).
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Theorem is the requirement (at a minimum) that the variance of each logB |Xm|
be finite. This is a very weak condition, and in fact many random variables
X with infinite variance (such as Pareto or modified Cauchy distributions) do
have logB |X| having finite variance; however, there are distributions where
logB |X| has infinite variance.

To a density f on [0,∞) we associate the density of the mantissa, fB. Ex-
plicitly, the probability that X has first digit (base B) in [1, s) is just∫ s

1

fB(t)dt =
∞∑

m=−∞

∫
1·Bm≤x≤s·Bm

f(x)dx. (A.A.1)

Let X be the random variable with density

fα(x) =

{
α/(x logα+1 x)−1 if x ≥ e

0 otherwise.
(A.A.2)

This is a probability distribution for α > 0, and is a modification of a Pareto
distribution; see [Mi] for some applications and properties of this distribution.
We study the distribution of the digits base e; analogous results hold for other
bases. The density of Y = log X is g(y) = αy−(α+1) for y ≥ 1 and 0 otherwise.
For α ∈ (0, 2] the random variable Y has infinite variance, and thus we cannot
prove the Benford behavior of products through the Central Limit Theorem;
however, we can show the random variable X does satisfy the conditions of
Theorem 1.2.

Let Fe,α be the cumulative distribution function of the digits (base e) asso-
ciated to the density fα of (A.A.2), and let fe,α be the corresponding density
of Fe,α. We assume α > 1 below to ensure convergence. By (A.A.1) we have

Fe,α(s) =

∫ s

1

fe,α(t)dt =
∞∑

m=0

∫
1·em≤x≤s·em

fα(x)dx, (A.A.3)

with s ∈ [1, e). A simple integration gives

Fe,α(s) = −
∞∑

m=0

1

logα(s · em)
+

∞∑
m=0

1

mα
; (A.A.4)

note the second sum converges if α > 1. The derivative of the first infinite
sum in the expansion of Fe,α(s) is the sum of the derivatives of the individual
summands, which follows from the rapid decay of the summands (see, for
example, Corollary 7.3 of [La]). Differentiating the cumulative distribution
function Fe,α gives the density

fe,α(s) = α
∞∑

m=0

1

s logα+1(s · em)
, s ∈ [1, e). (A.A.5)

As α > 1, for m �= 0 the mth summand is bounded by m−(α+1). Thus the series
for fe,α(s) converges and is uniformly bounded for all s. A simple analysis
shows that the conditions of Theorem 1.2 are satisfied for α ∈ (1, 2].
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The reason the Central Limit Theorem fails for densities such as that in
(A.A.2) is that it tries to provide too much information. The Central Limit
Theorem tries to give us the limiting distribution of logB |X1 · · ·XM | = logB |X1|+
· · · + logB |XM |; however, as we are only interested in the distribution of the
digits of X1 · · ·XM , this is more information than we need.
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