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ON ROOTS OF RANDOM POLYNOMIALS

ILDAR IBRAGIMOV AND OFER ZEITOUNI

Abstract. We study the distribution of the complex roots of random poly-
nomials of degree n with i.i.d. coefficients. Using techniques related to Rice’s
treatment of the real roots question, we derive, under appropriate moment
and regularity conditions, an exact formula for the average density of this dis-
tribution, which yields appropriate limit average densities. Further, using a
different technique, we prove limit distribution results for coefficients in the
domain of attraction of the stable law.

1. Introduction

Let {aj}∞j=0 denote a sequence of i.i.d. random variables. Let Pn(z) =
∑n

j=0 ajz
j

denote the random polynomial of order n defined by the sequence {aj}. After initial
attempts, by Littlewood and Offord [16], to evaluate the order of the mean number
of real roots, Kac [13] has computed, in the case that the {aj} are standard normal,
the distribution of the real zeros of Pn(z). His results were extended in various
directions, most notably to the non-Gaussian case, by Erdös and Offord, Stevens,
Logan and Shepp, and Ibragimov and Maslova (see [3],[18] for a bibliography).
See also [6] for an integral geometric derivation of Kac’s formula and an updated
account of this question.

Our interest in this paper is to explore the analogue question for the distribution
of the roots in the complex plane. To state our results, we need to introduce a bit
of notation. Let Ω denote a Borel measurable subset of IR2. Let Nn(Ω) denote
the number of complex roots of Pn(z) in Ω. We let νn(r) = Nn({z : |z| < r})
and ν̄n(r) = Nn({z : |z| > r}). When referring to the average distribution of the
complex zeros, we will mean the evaluation of E(νn(r)). Note that since the law
of νn(r) is identical to the law of ν̄n(1/r), it follows that E(νn(r)) = E(ν̄n(1/r)).
The computation of the average distribution of zeros was originally studied by
Hammersley [10], who derived an exact (albeit complicated) formula for it in the
Gaussian case. An early theorem of Sparo and Sur, which refines earlier results by
Polya (cf. [3, page 174]), implies that not only does νn(r)/n→n→∞ 0 in probability
for any r < 1 but also, letting Nn(α, β) = Nn({z : α ≤ argz < β}) denote the
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number of roots of Pn(z) in a sector 0 ≤ α ≤ θ ≤ β < 2π, one has under mild
conditions that Nn(α, β)/n →n→∞ (α − β)/2π in probability. For an earlier, and
probably first, version of the angular distribution result, see [8], and for a refinement
of this result, see [2].

In a recent paper, Shepp and Vanderbei ([18]) derive, in the case of normal
{aj}, an exact expression for the average distribution of the roots as well as limit
results as n→∞. In particular, they give precise estimates of the way in which, as
n → ∞, about n− 2 logn/π of the zeros concentrate on the unit circle, uniformly
in the angle, whereas 2 logn/π real roots concentrate at ±1.

The technique of proof used by Shepp and Vanderbei is based on an argument
principle to compute the average distribution of the zeros, using the Gaussian law of
{aj} in order to reduce the question to the evaluation of a function of 4 (correlated)
Gaussian random variables. This technique does not seem amenable to handling
distributions other than the normal one.

We extend the results of Shepp and Vanderbei in two different directions. Using
an approach based on Jensen’s formula, we present in Theorem 1 limit average
distribution results for arbitrary i.i.d. coefficients in the domain of attraction of
the stable law. These may be thought as global limit theorems. Using an argument
closer in spirit to the point of view adopted by Rice [17] in his attempts to handle
the real case, we derive in Theorem 2 a local limit theorem for the density of zeros
for i.i.d. coefficients which possess finite absolute seventh moment and a bounded
density. This approach yields as a by-product a simple derivation of the main result
of [18].

Our main result concerning the average distribution of zeros is the following:

Theorem 1. Let {aj}∞j=1 be i.i.d. random variables whose common distribution G
belongs to the domain of attraction of an α–stable law. Then, for any 0 ≤ s <∞,

lim
n→∞E

(
νn(exp(−s/n))

n

)
=

1− e−αs(1 + αs)

αs(1 − e−αs)
4
= F (αs) .(1)

The following is immediate from our previous discussion:

Corollary 1. Under the assumptions of Theorem 1, for 0 ≤ s <∞,

lim
n→∞E

(
ν̄n(exp(s/n))

n

)
= F (αs) .(2)

In particular,

lim
n→∞E

(
νn(exp(s/n))− νn(exp(−s/n))

n

)
= 1− 2F (αs) =

1 + e−αs

1− e−αs
− 2

αs
.

(3)

We recall (cf. [11] for the results quoted here) that the distribution G on the
real line belongs to the domain of attraction of a stable law with exponent α if, for
suitable An, Bn,

lim
n→∞P (B−1

n

n∑
j=1

aj −An < x) = F(x) ,(4)

where F possesses the characteristic function

f(t) = exp{−c|t|α(1 +K(α, β, t))} ,
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with K(α, β, t) = iβsignt tan(πα/2) if α 6= 1 and K(1, β, t) = 2iβsignt(log |t|)/2π.
This happens iff the characteristic function of G, denoted g(t), satisfies in a neigh-
borhood of the origin the relationship

g(t) = exp{iγt− c|t|α(1 +K(α, β, t))h(t)} ,
where h(t) is slowly varying in the sense of Karamata. Further, the normalizing
factors B−1

n may be defined as the roots of the equation B−α
n h(B−1

n ) = n−1. In
particular, Bn = n1/αh(n) for some slowly varying h(t).

The proof of Theorem 1, based on Jensen’s formula, is given in Section 3.
We next describe a local limit result concerning the average density of zeros.

Since the asymptotic distribution of real roots is well understood, we will concen-
trate here on the zeros in the complex plane. Thus, let Ω be a measurable subset
of IR2 which does not intersect the real line. We will compute explicitly a function
hn(r, θ) such that

E(νn(Ω)) =

∫
Ω

hn(r, θ)drdθ .

Here and throughout, z will stand for complex variables whereas r, θ stand for their
polar representation, with z = reiθ .

An explicit computation of hn(r, θ) is possible in the case of normal coefficients
(see (15) below). Our main interest, however, is the proof of

Theorem 2. Assume {aj} possess a bounded density and absolute moments of
seventh order. Then, for r = 1− x/n, x fixed, and θ ∈ (0, π) fixed, one has

lim
n→∞n−2hn(r, θ) =

(∫ x
0
e−2ydy

) (∫ x
0
y2e−2ydy

)− (∫ x
0
ye−2ydy

)2
πx2

(∫ x
0
e−2ydy

)2
=

1−
(

x
sinh(x)

)2

4πx2
,

and the convergence is uniform in compact subsets of [0,∞)× (0, π).

Note that Theorem 2 is consistent with the predictions of Theorem 1.

Remark. The i.i.d. assumption as well as the precise assumptions on the coefficients
{aj} can be relaxed. In particular, a proof is possible (esssentially using the same
Edgeworth expansion, at the cost of messier computations) for variables possessing
finite fifth absolute moments, and the same proof works also for non-zero mean
random variables. However, the computation of limiting average densities of zeros
for stable random variables {aj} or for general random variables in the domain of
attraction of the stable or Gaussian laws seems more delicate, and the technique
we use does not seem appropriate.

Due to its relative simplicity, we first present, in Section 2, the proof of Theorem
2, together with the precise computation of the Gaussian case. Sections 3 and 4
are devoted to the proof of Theorem 1.

2. Density results

To explain our approach to the density question, let z = reiθ , and let

X1 ≡ Xn
1 (r, θ) =

n∑
j=0

ajr
j cos(jθ) , X2 ≡ Xn

2 (r, θ) =

n∑
j=0

ajr
j sin(jθ)(5)
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denote the real and imaginary parts of Pn(z). Let J denote the Jacobian of the
(random) transformation (r, θ) → (X1, X2), and let pr,θ denote the density (at
(0, 0)) of the random vector X = (Xn

1 (r, θ), Xn
2 (r, θ)). Then (see Adler [1, p. 97])

the average density of the complex roots satisfies, everywhere but on the real axis,
the formula

hn(r, θ) = E(|det J | |Xn
1 = Xn

2 = 0)pr,θ .

By a straightforward computation, one checks that

det J =
n∑

j,k=0

jkakajr
j+k−1 cos((j − k)θ)

=
1

r


 n∑

j=0

jajr
j cos(jθ)

2

+

 n∑
j=0

jajr
j sin(jθ)

2
 ≥ 0 .

(6)

Thus, the evaluation of hn reduces to the computation of the expectation of a
quadratic form of i.i.d. random variables, conditioned on two linear combinations
thereof. That is,

hn(r, θ) = E(

n∑
j,k=0

jkakajr
j+k−1 cos((j − k)θ) |Xn

1 = Xn
2 = 0)pr,θ .(7)

We remark that while our interest is primarily in the complex roots, and we
will make assumptions that will imply that θ 6= 0 in (7), one could also handle
the real roots by a similar study. The approach of Rice, alluded to in the abstract,
consists of looking at the (one dimensional) map r→ X1 with θ = 0, and computing
its derivative. Since the results of that analysis are well documented, we do not
consider it here.

While (7) is valid in great generality, its evaluation is not always easy. The
computation in (7) is greatly simplified in the Gaussian case, which is presented in
Section 2.2 below, recovering the results of [18].

2.1. Proof of Theorem 2. Let {aj} be a sequence of i.i.d. random variables
which are normalized so that E(aj) = 0 and Ea2

j = 1. Let π > θ0 > 0 and x0 > 0
be given (fixed throughout the derivation). If 1 ≥ r = 1 − x

n ≥ 1 − x0/n and
θ0 ≤ θ ≤ π− θ0, we write that (r, θ) ∈ B0. Of course, B0 depends on x0 and θ0, but
we will not spell out this dependence in our notations. Note that since complex
roots come in pairs and since the distribution of the zeros is invariant under the
transformation r → r−1 (because the {aj} are i.i.d.), it is enough to study this
distribution for (r, θ) ∈ [0, 1]× (0, π).

By (7), one needs to compute the expectation

E(ajak|Xn
1 (r, θ) = Xn

2 (r, θ) = 0) .

Note that, for j 6= k,

Xn
1 (r, θ) = ajr

j cos(jθ) + akr
k cos(kθ) +Xj,k

1 (r, θ),

Xn
2 (r, θ) = ajr

j sin(jθ) + akr
k sin(kθ) +Xj,k

2 (r, θ) .
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Here, Xj,k
1 ≡ Xj,k

1 (r, θ) and Xj,k
2 ≡ Xj,k

2 (r, θ) are independent of (aj , ak). Let

X1,n := n−1/2Xj,k
1 , X2,n := n−1/2Xj,k

2 . One has

Bn = cov(X1,n, X2,n) =

 1
n

∑
` 6=j,k r

2` cos2(`θ) 1
2n

∑
` 6=j,k r

2` sin(2`θ)

1
2n

∑
` 6=j,k r

2` sin(2`θ) 1
n

∑
` 6=j,k r

2` sin2(`θ)


:=

( 1
2n

∑
` 6=j,k r

2` 0

0 1
2n

∑
` 6=j,k r

2`

)
+ V j,k

n .

With z = reiθ, we have

|V j,k
n (`,m)| ≤ 2

n
+

1

n
|

n∑
j=0

z2j|, `,m = 1, 2.(8)

Hence, for any θ0 > 0 and x0 > 0, supn,(r,θ)∈B0
nVn <∞. Also, for x0 ≥ x ≥ 0, for

n large enough one has

1− e−x

5x
≤
∑

` 6=j,k r
2`

2n
≤ 1

2
.

Hence, for such n, Bn is non-degenerate. Let

γ = lim
n→∞

1

n

n∑
j=0

r2j , Q(α, β) =
α2 + β2

γ
.

Let pX1,n,X2,n
(α, β) denote the density of the random variablesX1,n, X2,n at (α, β).

It follows after some algebra from standard local limit theorems using Edgeworth
expansions (see, e.g., [4, Corollary 19.4], with s = 5, and note that the conditions
needed to apply the result are satisfied in our case) that, for (r, θ) ∈ B0,

sup
α,β

|pX1,n,X2,n
(α, β)− e−Q(α,β)

πγ
− P1,n(α, β)e−Q(α,β)

√
nπγ

− P2,n(α, β)e−Q(α,β)

nπγ
|

= O(n−3/2) ,

where the bound in the right hand side is independent of j, k, and P1,n, P2,n are
polynomials of order less than 4, 6, respectively (see [4, Lemma 7.1]), with coeffi-
cients independent of j, k and of order O(1).

Observe that, with j 6= k,

pr,θE(ajak|Xn
1 = Xn

2 = 0) = E
(
ajakpXn

1 ,X
n
2
((0, 0)|aj , ak)

)
=

1

n
E

(
ajakpX1,n,X2,n

(−αjk,−βjk)
)
,

(9)

where

αjk = (ajr
j cos(jθ) + akr

k cos(kθ))/
√
n , βjk = (ajr

j sin(jθ) + akr
k sin(kθ))/

√
n .

For j 6= k,

Q(αjk, βjk) =
a2
jr

2j + a2
kr

2k + 2ajakr
j+k cos((j − k)θ)

γn
.
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Hence, for j 6= k,

E(ajake
−Q(αjk,βjk)) = E(ajak(e

−Q(αjk ,βjk) − 1))

= E(ajak(e
−Q(αjk ,βjk) − 1)1{a2

j+a
2
k>n})

− 1

γn
E(1{a2

j+a
2
k≤n}ajak(a

2
jr

2j + a2
kr

2k + 2ajakr
j+k cos((j − k)θ))

+O(n−2)

= − 2

γn
rj+k cos((j − k)θ) +O(n−2) ,

where the O(n−2) term is uniform in B0. Similarly, since for any finite p, q with
p, q ≤ 7, and j 6= k, E(|aj |p|ak|qe−Q(αjk,βjk)) = O(1), one concludes that uniformly
in B0,

E

(
ajakP1,n(−αjk,−βjk)e−Q(αjk ,βjk)

√
nπγ

)
= O(n−3/2) ,

and

E

(
ajakP2,n(−αjk,−βjk)e−Q(αjk,βjk)

nπγ

)
= O(n−2) .

Thus,

|pr,θE(ajak|Xn
1 = Xn

2 = 0)− E(ajake
−Q(αjk ,βjk))

nπγ
| = O(n−5/2) ,(10)

where the right hand side is uniform in (r, θ) ∈ B0 and in j, k. Note however that,
again uniformly in B0,

∑n
j,k=0 jkr

j+k| cos((j − k)θ)| = O(n4), and hence the error

term in (10) contributes to hn(r, θ), O(n3/2) at most. Thus, with the O(·) terms
again uniform in B0,

pr,θ

n∑
j,k=0,j 6=k

jkrj+k cos((j − k)θ)E(ajak|Xn
1 = Xn

2 = 0)

= − 2

πγ2n2

n∑
j,k=0

jkr2(j+k) cos2((j − k)θ)

+O(
1

n3

n∑
j,k=0

jkr2(j+k)| cos((j − k)θ)|) +O(n3/2)

= − 2

πγ2n2

n∑
j,k=0

jkr2(j+k) cos2((j − k)θ) +O(n3/2)

= − 1

πγ2n2

n∑
j,k=0

jkr2(j+k) +O(n3/2) ,

(11)

where the last equality follows from the same estimate as (8).
Similarly, for j = k, since

|Ea2
j(e

−a2
jr

2j/n − 1)| ≤ c

n
,(12)

one concludes that

pr,θ

n∑
j=0

j2r2jE(a2
j |Xn

1 = Xn
2 = 0) =

∑n
j=0 j

2(1− x
n )2j

πγn
+O(n3/2) .(13)
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Combining (7) and (9)–(13), we conclude that

hn(r, θ) =

∑n
j=0 j

2(1− x
n )2j

πγn
−
(∑n

j=0 j(1− x
n )2j

)2

πγ2n2
+O(n3/2) .

But,

γ = lim
n→∞

1

n

n∑
j=0

(1 − x

n
)2j =

1

x

∫ x

0

e−2ydy =
1− e−2x

2x
,

whereas

lim
n→∞n−3

n∑
j=0

j2(1− x

n
)2j =

∫ x
0
y2e−2ydy

x3
=

1− e−2x − 2(x2e−2x + xe−2x)

4x3
,

and

lim
n→∞n−4

 n∑
j=0

j(1− x

n
)2j

2 (∫ x
0 ye

−2ydy
)2

x4
=

(1 − e−2x − 2xe−2x)2

16x4
.

The statement of the theorem follows.

2.2. The Gaussian case. Let the sequence {aj} consist of i.i.d. standard normal
random variables. We suppress in this subsection the superscript n from Xn

i . Con-
ditioned on X1 = X2 = 0, the joint law of the sequence {aj}nj=0 is again Gaussian,
of zero mean, and of covariance

Rc = I − E(aXT )(E(XXT ))−1E(XaT ) .

Here, a = (a0, . . . , an) and vT denotes the transpose of a vector or matrix v. Let
∆ = det(EXXT ) = E(X2

1 )E(X2
2 )− (E(X1X2))

2, and let

B =

[
b11 b12
b12 b22

]
= (E(XXT ))−1 .

Note that

E((aXT )B)j = rj [b11 cos(jθ) + b12 sin(jθ), b12 cos(jθ) + b22 sin(jθ)] ,

and hence, after some algebra,

(
E(aXT )(E(XXT ))−1E(XaT )

)
jk

= rj+k
(
b11 + b22

2
cos((j − k)θ) +

b11 − b22
2

cos((j + k)θ) + b12 sin((j + k)θ)

)
.

(14)

Note that

∆(b11 + b22) = E(X2
1 ) + E(X2

2 ) =

n∑
j=0

r2j =

n∑
j=0

|z|2j ,

∆(b11 − b22) = E(X2
2 )− E(X2

1 ) = −
n∑

j=0

r2j cos(2jθ) = −Re

n∑
j=0

z2j,

2∆b12 =

n∑
j=0

r2j sin(2jθ) = Im

n∑
j=0

z2j ,
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and thus, using the fact that pr,θ = pGr,θ = (2π
√

∆)−1 in the Gaussian case, (7)

transforms to (with G in hGn standing for “Gaussian”),

hGn (r, θ)drdθ =
rdrdθ

(∑
j j

2r2j
)

2π∆1/2r2

−
rdrdθ

(∑n
j,k=0 jkr

2(j+k) cos2((j − k)θ)
)(∑n

j=0 |z|2j
)

4π∆3/2r2

+ rdrdθ

 n∑
j,k=0

jkr2(j+k) cos((j − k)θ)

×
cos((j + k)θ)Re (

n∑
j=0

z2j)− sin((j + k)θ)Im (
n∑

j=0

z2j)

(4π∆3/2r2
)−1

.

Going back to Cartesian coordinates, and letting hGn (z)dσ(z) = hGn (r, θ)drdθ, with
σ(·) denoting the Lebesgue measure on the complex plane, some simple algebra
now leads to

hGn (z) =

∑n
j=0 j

2|z|2j
2π∆1/2|z|2

+
(
∑n

j=0 j|z|2j)
(
(
∑n

j=0 jz
2j)(
∑n

j=0 z
2j) + (

∑n
j=0 j(z

∗)2j)(
∑n

j=0(z
∗)2j)

)
8π∆3/2|z|2

− (
∑n

j=0 |z|2j)(
∑n

j=0 j|z|2j)2
8π∆3/2|z|2 − (

∑n
j=0 |z|2j)|

∑n
j=0 jz

2j|2
8π∆3/2|z|2 ,

(15)

where

∆ =
n∑

j,k=0

r2(j+k) [cos2 jθ sin2(kθ)− cos(jθ) cos(kθ) sin(jθ) sin(kθ)]

=

n∑
j,k=0

|z|2(j+k) sin2((k − j)θ)

2

=
(
∑n

j=0 |z|2j)2
4

− |∑n
j=0 z

2j |2
4

.

(16)

These expressions are easily seen to coincide with those given in [18], which form
the basis for the asymptotic analysis there. In particular, we recall that it was
shown in [18] that

lim
n→∞hGn (z) =

√
(1− |z|2)−2 − |1− z2|−2

π(1 − |z|2) .

3. Proof of Theorem 1

By Jensen’s formula (see [15, p. 14]), for any r > 0,∫ r

0

νn(u)

u
du =

1

2π

∫ 2π

0

log |Pn(reiθ)|dθ − log |Pn(0)| .
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Let r = exp(−s/n). Making the change of variables u = exp(−v/n), one gets∫ ∞

s

νn(e−v/n)

n
dv =

1

2π

∫ 2π

0

log |Pn(r(s)eiθ)|dθ − log |Pn(0)| .

Hence, since νn(r) is invariant under multiplication of all coefficients by 1/Bn, one
gets, for any s0 ≥ 0,∫ s

s0

νn(e−v/n)

n
dv =

1

2π

∫ 2π

0

log |B−1
n Pn(r(s)eiθ)|dθ

− 1

2π

∫ 2π

0

log |B−1
n Pn(r(s0)e

iθ)|dθ .

The main technical step required for the proof of the theorem is the following
lemma:

Lemma 1. There exists a constant R, independent of s, such that

lim
n→∞

1

2π

∫ 2π

0

E log |B−1
n Pn(r(s)eiθ)|dθ = h(s) ,

where h(s) = 1
α log

(
1−e−αs

s

)
+R.

Equipped with Lemma 1, let us complete the proof of Theorem 1. Let

fn(v) = E

(
νn(e−v/n)

n

)
.

Note that fn(·) is a bounded monotone function. Thus, by Helly’s theorem, one
may find a subsequence nj such that fnj (·) converges pointwise to a limit f(·).
Lemma 1 then implies that

∫ s
s0
f(v)dv = h(s) − h(s0), and hence the convergence

along subsequences may be replaced by a full convergence. But then

lim
n→∞E

(
νn(e−v/n)

n

)
= f(v) = h′(v) .

This yields Theorem 1.

Proof of Lemma 1. Let Xn
1 , X

n
2 be as in (5), with r = r(s) = exp(−s/n), and recall

that

|Pn(reiθ)|2 = (Xn
1 )2 + (Xn

2 )2 .

(We will suppress the dependence of Xn
i on r, θ in our notation.) The crucial

observation needed for the proof of Lemma 1 is contained in

Lemma 2. For almost all θ ∈ [0, 2π], the distribution of the R2 vector Xn(θ, s) =
B−1
n (Xn

1 , X
n
2 ) converges as n→∞ to the distribution with the characteristic func-

tion

gα(t1, t2) = exp
(
−cα|t21 + t22|α/2(1 − e−αs)/(αs)

)
,(17)

with

cα =
4Γ(α)

α2α[Γ(α/2)]2
.
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Proof of Lemma 2. Assume first that {aj} possess an α-stable law, with character-
istic function

g(t) = exp (iγt− |t|α(1 +K(α, β, t))) ,

and normalizing constant Bn = n1/α (see (4) for the definitions). We assume
for simplicity α 6= 1 and γ = 0, the general case being similar. Let gnα(t1, t2)
denote the characteristic function of Xn. Then, making the change of coordinate
(t1, t2) → (ρ, ψ), one gets

gnα(ρ, ψ) = exp

−ρα
n

n∑
j=0

|rj cos(jφ+ ψ)|α(1 + iβ sign(cos(jφ + ψ)))

 .

Since for almost all θ, the empirical distribution of the sequence xj = jθ/2π con-
verges weakly to the uniform distribution (due to ergodicity, see [5, p. 294]), one
gets that

1

n

n∑
j=1

| cos(jφ+ ψ)|α(1 + iβ sign cos(jφ+ ψ))

→n→∞
1

2π

∫ 2π

0

| cosx|α(1 + iβ sign cosx)dx

=
1

2π

∫ 2π

0

| cosx|αdx .

Hence, by Abel summation,

lim
n→∞

1

n

n∑
j=0

|rj cos(jφ+ ψ)|α (1 + iβ sign(cos(jφ+ ψ)))

= lim
n→∞

1

n

n∑
j=0

j(rαj − rα(j+1))

(
1

j

j∑
k=0

| cos(kφ+ ψ)|α (1 + iβ sign(cos(kφ+ ψ)))

)

+ lim
n→∞

1

n

n∑
j=1

| cos(jφ+ ψ)|α (1 + iβ sign(cos(jφ+ ψ))) e−αs

=
1

2π

∫ 2π

0

| cosx|αdx
(

1− e−αs

αs

)
.

It follows that

lim
n→∞ gn(ρ, ψ) = exp

(
−ραcα

(
1− e−αs

αs

))
.

This completes the proof in the α-stable case.
Assume next that the sequence {aj} is in the domain of attraction of an α-stable

law, with normalizing constant Bn and characteristic function g(t). Recall that (see
[11, Chapter 2.6]), a distribution G on the real line with characteristic function g(t)
belongs to the domain of attraction of the stable law in (4) if and only if

g(t) = exp(iγt− |t|α(1 +K(α, β, t))h(t)).(18)

The proof now proceeds exactly as before, with the normalizing constantsBn chosen
as described after (4).
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Equipped with Lemma 2, we may return to the proof of Lemma 1. Recall that

lim
n→∞

1

2π

∫ 2π

0

E log |B−1
n Pn(r(s)eiθ)|dθ

= lim
n→∞

1

2π

∫ 2π

0

E log(B−1
n

√
(Xn

1 )2 + (Xn
2 )2) .

(19)

Suppose that one could now interchange the limit and expectation operation. De-
note by pα(x1, x2) the density of the law associated with the characteristic function
gα(t1, t2) (such a density exists since gα ∈ L1(IR

2)). An explicit computation reveals
that ∫ ∞

−∞

∫ ∞

−∞
log
√
x2

1 + x2
2pα(x1, x2)dx1dx2 = h(s) .

Thus, all that remains is to prove the uniform integrability of the integrand in the
left hand side of (19). That is, we need to prove that, uniformly in n,

lim
N→∞

1

2π

∫ 2π

0

E log(B−1
n

√
(Xn

1 )2 + (Xn
2 )2)1{| log(B−1

n

√
(Xn

1 )2+(Xn
2 )2)|>N}dθ = 0 .

(20)

It is straightforward to check (using [11, Theorem 2.6.4]) that for any λ < α,

sup
n
E(|B−1

n Xn
i |λ) <∞ .

Thus, the upper tail in (20) poses no problem, and the proof of Lemma 1 is reduced
to the proof of

Lemma 3. Uniformly in n,

lim
N→∞

1

2π

∫ 2π

0

E log(B−1
n

√
(Xn

1 )2 + (Xn
2 )2)1

log(B−1
n

√
(Xn

1 )2+(Xn
2 )2)<−Ndθ = 0 .

(21)

Since it is not particularly illuminating, we provide the proof of Lemma 3 in
Section 4.

4. Proof of Lemma 3

We recall that the concentration function of a distribution A on the real line
with characteristic function a(t) is defined as

Q(τ) = sup
x
A{[x, x+ τ ]} .

Then (cf. [9, p. 292]) Q(τ) ≤ Cτ
∫ τ−1

−τ−1 |a(t)|dt, with C independent of the distri-
bution A. In this section, C denotes a constant whose value may change from line
to line but is independent of n,N . We use Q to denote the concentration function
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of the distribution of B−1
n Xn

1 . Then,

1

2π

∫ 2π

0

P (|Xn
1 | < e−k)dθ ≤ 1

2π

∫ 2π

0

Q(e−k+1)dθ

≤ Ce−k+1

2π

∫ 2π

0

dθ

∫ e1−k

−e1−k

n∏
j=0

|g
(
trj cos(jθ)

Bn

)
|dθ

≤ Ce−k+1

2π

∫ 2π

0

dθ

∫ e1−k

−e1−k
exp

−1

2

n∑
j=0

(
1−

∣∣∣∣g( trj cos(jθ)

Bn

)∣∣∣∣2
) .

(22)

Note that for sufficiently small |t| one has that |g(t)|2 = exp(−2|t|αh(t)), with h(·)
slowly varying. Hence, for k such that e−k > cB−1

n , we have that

1

2π

∫ 2π

0

P (|Xn
1 | < e−k)dθ

≤ Ce1−k

2π

∫ 2π

0

dθ

∫ e1−k

−e1−k
exp(−|t|αB−α

n

n∑
j=1

| cos(jθ)|αrjαh(trj cos(jθ)/Bn))dt

≤ Ce−k ,

(23)

where we have used the fact that h(B−1
n )/Bα

n < C/n.
We show below that there exist positive constants `, q, C such that

1

2π

∫ 2π

0

Q(τ)dθ ≤ C(n−3 + n`τq) .(24)

Note that (24) is trivial when the random variables {ai} possess a bounded density.
Assuming (24), we conclude the proof of Lemma 3. Note that

1

2π

∫ 2π

0

E log(B−1
n

√
(Xn

1 )2 + (Xn
2 )2)1{| log(B−1

n

√
(Xn

1 )2+(Xn
2 )2)|>N}dθ

≤
[n1/8]∑

k=logN

1

2π

∫ 2π

0

E log(B−1
n |Xn

1 |)1{−k+1≤log(B−1
n |Xn

1 |)<−k}dθ

+
1

2π

∫ 2π

0

E log(B−1
n |Xn

1 |)1{log(B−1
n |Xn

1 |)<−n1/8}dθ .

Using (23), we find that

[n1/8]∑
k=logN

1

2π

∫ 2π

0

E log(B−1
n |Xn

1 |)1{−k+1≤log(B−1
n |Xn

1 |)<−k}dθ

≤ C(n−1/4 +

∞∑
k=N

ke−k) ,

(25)

whereas, using (24) and the bound

E

∫ 2π

0

log2 |Pn(reiθ)|dθ ≤ (Cn)2 ,
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which is due to the integrability of the function log2 x at zero and the assumption
P (aj = 0) = 0, we obtain

1

2π

∫ 2π

0

E log(B−1
n

√
(Xn

1 )2 + (Xn
2 )2)1

log(B−1
n

√
(Xn

1 )2+(Xn
2 )2)<−n1/8dθ

≤ 1

2π

∫ 2π

0

E1/2| log2 |Pn(reiθ)| |Prob1/2(|B−1
n Pn(reiθ)| < e−n

1/8

)dθ

≤ Cn

(
1

2π

∫ 2π

0

Q(e−n
1/8

)dθ

)1/2

≤ C(1/
√
n+ n(`+1)/2e−qn

1/8/2).

(26)

Thus, Lemma 3 follows from (23), (25) and (26) once we prove (24).

To this end, denote by G̃ the distribution with characteristic function |g(t)|2.
Then, from (22), for some constants a, b,

1

2π

∫ 2π

0

Q(τ)dθ

≤ Cτ

2π

∫ 2π

0

∫ 1/τ

−1/τ

exp(−1

2

∫ ∞

−∞

n∑
j=1

(1 − cos

(
txrj cos(jθ)

Bn

)
)G̃(dx))dt

≤ Cτ

2π

∫ 2π

0

∫ 1/τ

−1/τ

exp(−C
∫ ∞

−∞

n∑
j=1

(1− cos

(
txrj cos(jθ)

Bn

)
)G(dx))dt ,

where G is some distribution concentrated on [−b,−a] ∪ [a, b] and C = C(a, b).
Using Jensen’s inequality, we obtain

1

2π

∫ 2π

0

Q(τ)dθ

≤ sup
a≤|x|≤b

CBnτ

2π
e−cn

∫ 1/τBn

−1/τBn

dt

∫ 2π

0

exp

c n∑
j=1

cos(txrj cos(jθ))

 dθ .

(27)

Let

Γ1(x, n) = {θ ∈ [0, 2π] :

n∑
j=1

cos(txrj cos(jθ)) ≤ n/2} ,

and Γ2(x, n) = [0, 2π] \ Γ1(x, n). Since the integral over Γ1 in (27) yields a bound
much better than that in (24), our main task is now to estimate the Lebesgue
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measure of Γ2 = Γ2(x, n). Note that∫ 2π

0

|
k∑

j=1

cos(txrj cos(jθ))|6dθ = O(n3)

+
∑

s6=j1 6=j2 6=j3

∫ 2π

0

cos3(txrs cos(sθ)) cos(txrj1 cos(j1θ))

× cos(txrj2 cos(j2θ)) cos(txrj3 cos(j3θ))dθ

+ . . .

+
∑

j1 6=j2 6=···6=j6

∫ 2π

0

cos(txrj1 cos(j1θ))

× cos(txrj2 cos(j2θ)) · · · cos(txrj6 cos(j6θ))dθ

≤ C(n3 + n`+6/tq) ,

for some `, q positive. Hence,∫ 2π

0

1{|∑k
j=1 cos(txrj cos(jθ))|>n/2}dθ

≤ 26

n6

∫ 2π

0

|
k∑

j=1

cos(txrj cos(jθ))|6dθ ≤ C(n−3 + n`t−q) .

Substituting in (27), we find that

1

2π

∫ 2π

0

Q(τ)dθ ≤ C(e−cn/2 + n−3 + n`τq) ,

which is more than enough to imply (24).
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