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HIV/AIDS epidemic

AIDS was first reported on June 5, 1981 by the CDC.

Highest prevalence is in sub-Saharan Africa (5%).

Caribbean region has second highest prevalence.

As of 2010, 60 mil HIV infected, 30 mil AIDS deaths.

In 2011, there were 34 mil people living with HIV.

Newly infected: 3.2 mil in 2001, 2.5 mil in 2011.

AIDS deaths: Peak of 2.3 mil in 2005, 1.7 mil in 2011.
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What is AIDS?

An HIV-infected individual has AIDS if

He/She has fewer than 200 T-lymphocytes per microliter OR
One or more of 26 various diseases including

Kaposi’s sarcoma, lymphoma, candidias, etc.

Symptoms: fever, weight loss, night sweats, diarrhea.
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Progression to AIDS
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HIV/AIDS in Cuba

1st HIV+ in late 1985; 1st AIDS death in 1986.

HIV prevalence is 0.2%.

99% of transmissions are through sexual relations.

77-80% of HIV infected are men.

Average of 1.6 mil tests performed each year.

Antiretroviral therapy (ARV) coverage is 100%.

In 1983 Cuba initiated program to control HIV/AIDS.
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National AIDS Commission

1 Design a national HIV prevention program

2 Develop efforts for prevention of vertical transmission

3 Undertake epidemiological surveillance and control

4 Spearhead scientific research and development

5 Establish a national sanatorium network

“Health is a human right.”
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HIV/AIDS data for Cuba

Year HIV cases AIDS cases Death due to AIDS
1986 99 5 2
1987 75 11 4
1988 93 14 6
1989 121 13 5
1990 140 28 23
1991 183 37 17
1992 175 71 32
1993 102 82 59
1994 122 102 62
1995 124 116 80
1996 234 99 92
1997 363 129 99
1998 362 150 98
1999 493 176 122
2000 545 251 142
2001 642 392 117
2002 644 407 90
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Compartments

1 S(t): the susceptible population

2 X (t): undiagnosed HIV infected people

3 Y (t): diagnosed HIV infected people

4 Z (t): people diagnosed with AIDS

Earlier mathematical models:

de Arazoza and Lounes (2002)

Rapatski et al. (2006)
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Parameters and model

1 λ: recruitment rate of the susceptible class.

2 α: transmission rate of HIV+ by sexual transmission with X .

3 β̂: rate at which HIV-infected class develop AIDS.

4 k : rate at which X class are diagnosed through contact tracing.

5 k̂ : rate at which X are diagnosed through random testing.

6 µ: mortality rate of the adult class.

7 µ̂: mortality rate of the population with AIDS.

Model equations:
Ṡ = λ− αX S − µS
Ẋ = αX S − kXY − (µ+ β̂ + k̂)X

Ẏ = k X Y + k̂ X − (µ+ β̂)Y

Ż = β̂ (X + Y )− µ̂Z
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Basic reproduction number R0

Basic reproduction number R0 is the number of secondary infections
caused by an infectious individual that enters a fully susceptible
population. R0 is determined by computing the spectral radius of the
matrix formed by the product of the next generation matrix, F , and the
inverse of the transition matrix, V , given by

F =

 αλµ 0 0

k̂ 0 0

β̂ β̂ 0

 , V =

 (µ+ β̂ + k̂) 0 0

0 (µ+ β̂) 0
0 0 µ̂

 .

A routine computation yields

R0 =
λα

µ(µ+ β̂ + k̂)
.

Tony Mastroberardino (Penn State Erie) Mathematical modeling of the HIV/AIDS epidemic in Cuba11/09/2013 10 / 1



Disease-free equilibrium

The model has a disease-free equilibrium (DFE), E0 = (λµ , 0, 0, 0).

Proposition

1 E0 is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

2 E0 is global asymptotically stable if R0 ≤ 1.

Proof.

J(E0) =


−µ −αλ/µ 0 0

0 αλ/µ− (µ+ k̂ + β̂) 0 0

0 k̂ −µ− β̂ 0

0 β̂ β̂ −µ̂


Eigenvalues are h1 = −µ, h2 = −µ̂, h3 = −(µ+ β2), and
h4 = αλ/µ− (µ+ k̂ + β1) = (R0 − 1)(µ+ k̂ + β1).
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Endemic equilibrium

The model has endemic equilibrium E = (S∗,X ∗,Y ∗,Z ∗) where

X ∗ =
(µ+ β̂)Y ∗

k̂ + kY ∗
, S∗ =

λ

αX ∗ + µ
, Z ∗ =

(X ∗ + Y ∗)β̂

µ̂
,

Y ∗ is the positive root of

aY 2 + bY + c = 0, (0.1)

and

a = k(µk + α(µ+ β̂)) > 0

b = α(µ+ β̂)(µ+ β̂ + k̂) + kµk̂ +
λαk

R0
− λαk

c = k̂(µ(µ+ β̂ + k̂)− λα) = k̂µ(µ+ β̂ + k̂)(1− R0).
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Endemic equilibrium, cont’d

Theorem

The system can have at most one positive equilibrium. More precisely,

1 If R0 > 1, there exists a unique positive stable equilibrium
E = (S∗,X ∗,Y ∗,Z ∗).

2 If R0 < 1, there is no positive equilibrium.

Proposition

1 E is locally asymptotically stable if R0 > 1.

2 E is global asymptotically stable if R0 > 1.
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Data fitting

λ α µ k β k̂ µ̂
Val. 105 1.55× 10−7 0.02 0.3850 0.14 9× 10−5 3/4

Rapatski NA 9.327× 10−8 0.0053 0.3850 0.14 3.26× 10−5 3/4

Table: Estimated parameter values.

with initial conditions

S(0) = 5, 000, 000, X (0) = 100, Y (0) = 94, Z (0) = 3.
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Plots
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Figure: Plots of Y (t) and Z (t) for R0 = 1.45 (left) and for R0 = 1.45, 0.73
(right).
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Optimal control


Ṡ = λ− α (1− u1(t))X S − µ S
Ẋ = α (1− u1(t))X S − u2(t)kXY − u3(t)k̂ X − (µ+ β̂)X

Ẏ = u2(t)k X Y + u3(t)k̂ X − (µ+ β̂)Y

Ż = β̂ (X + Y )− µ̂Z

where 0 ≤ ui (t) ≤ Ui , i = 1, 2, 3.

1 u1(t): educational programs, condom use

2 u2(t): contact tracing

3 u3(t): random testing

Objective functional

J(u1, u2, u3) =

∫ T

0
BX (t) + a1u

2
1(t) + a2u

2
2(t) + a3u

2
3(t) dt
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Optimal control

Goal: Find optimal controls (u∗1 , u
∗
2 , u

∗
3) such that

J(u∗1 , u
∗
2 , u

∗
3) = min {J(u1, u2, u3)|(u1, u2, u3) ∈ Γ}

where

Γ = {(u1, u2, u3)|ui (t) is Lebesgue measurable on [0,T ], 0 ≤ ui (t) ≤ Ui} .

Existence is guaranteed since

1 Integrand of objective functional is convex on closed, convex control
set Γ.

2 Model is linear in the control variables.

3 Model is bounded by a linear system in the state variables.
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Optimality system

State system
Ṡ = λ− α (1− u1(t))X S − µ S

Ẋ = α (1− u1(t))X S − u2(t)kXY − u3(t)k̂ X − (µ+ β̂)X

Ẏ = u2(t)k X Y + u3(t)k̂ X − (µ+ β̂)Y

Ż = β̂ (X + Y )− µ̂Z

Adjoint system
λ̇1 = λ1[α (1− u1(t))X − µ]− λ2α (1− u1(t))X

λ̇2 = −B + λ1α (1− u1(t))S − λ2[α (1− u1(t))S − u2(t)kY

− u3(t)k̂ − (µ+ β)]− λ3[u2(t)kY + u3(t)k̂]− λ4β

λ̇3 = λ2u2(t)kX − λ3[u2(t)kX − (µ+ β)]− λ4β

λ̇4 = λ4µ̂

subject to λ1(T ) = λ2(T ) = λ3(T ) = λ4(T ) = 0.

Characterization of control

u∗1 = max

{
0,min

(
1,

1

2a1
[(λ2 − λ1)αXS)]

)}
u∗2 = max

{
0,min

(
1,

1

2a2
[(λ2 − λ3)kXY )]

)}
u∗3 = max

{
0,min

(
1,

1

2a3

[
(λ2 − λ3)k̂X )

])}
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Questions??
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