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Classical control : A system’s trajectory is made to follow a
reference trajectory in phase space.

Hence, the control must be larger than the perturbation to bring
back the trajectory to the prescribed one.

Partial control : Try to confine the system within a bounded
region of non-zero measure in the phase space.

Applicable to systems where the control is weaker than the noise
So trajectories cannot be controlled and made asymptotic to a

reference trajectory.
But we can partially control the system and force the trajectory to stay

within a bounded region called Q .



Our Setup

There is a compact region nQ   .

A map : nf Q  , usually chaotic.

A sequence of perturbations n
n  ,| |n  for some bound

0  .

A sequence of controls n
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Our Setup

There is a compact region nQ   .

A map : nf Q  , usually chaotic.

A sequence of perturbations n
n  ,| |n  for some bound

0  .

A sequence of controls n
nu  ,| |nu u for some bound 0u  .

Control less than perturbation : u 



Two 1D maps

1.3 0.7
( )  if

3.01 3 0.7
x x

f x
x x




 
( ) 4 (1 )f x x x 



Two 1D maps (toy economic models)
x is a measure of economic activity
How can crashes in the economy be avoided ?
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Safe Sets
Definition : A safe set S is a subset of Q such that :
for nx S  , n

n  such that| |n  , n
nu  such that

| |nu u and 1 ( )n n n nx f x u Q     .

The safe set (marked in yellow for
a rotated horseshoe map on the unit
square

In other words, the safe set is
that portion of the domain Q
from which it is always possible
to return to itself after an
addition of perturbation to an
iteration.
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Existence of safe sets

We are looking for a safe set in the region nQ   for a map : nf Q  ,
for control bound u and perturbation bound  .

Theorem : A set S Q is a safe set if it satisfies
( )f S S u    . [Sabuco, Zambrano, Sanjuan, Yorke, 2012]

S u : is the set of all points in n within distance u from S .

S u   : is the set of all points in the interior of S u at distance 
from its boundary.



Some examples of safe sets

0.04,  0.05u   0.08,  0.09u   0.009,  0.01u  
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Change of the safe set withu

 Bifurcation type I : a
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 Bifurcation type II : a
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A continuity theorem

Theorem : Let f be a piecewise expanding,
piecewise 1C map. Then a bifurcation of the
safe set ,uS S  occurs at some value of ( , )u 
iff either of these conditions hold :

(i) One of the components of ,uS  is a point.
(ii) The gap between two adjacent
components of ,uS  equals 2u.
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Quadratic map
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A continuity theorem

Theorem : Let f be a 0C , piecewise 1C , piecewise strictly
monotonic map. Then a bifurcation of the safe set ,uS  occurs at
some value of ( , )u  iff either of these conditions hold :

(i) One of the components of ,uS  is a point.

(ii) The gap between two adjacent components of ,uS  equals 2u .

(iii) The function f  has a neutrally stable periodic point on
,( )uS  , where  is the map on ,( )uS  shifting a left edge of a

component of ,( )uf S  by u  and a right edge by u  .

(iv) A local maxima/minima of f lies on ,( ( )) ( ( ))uf S f Q 
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