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Systems of two Difference Equations

• Consider a recursive planar system

{

xn+1 = f(n, xn, yn)
yn+1 = g(n, xn, yn)

n = 0, 1, 2, . . . (1)

where f, g : N×D → S are given functions, N is the set of non-negative
integers, S a nonempty set and D ⊂ S × S.

• An initial point (x0, y0) ∈ D generates a (forward) orbit or solution
{(xn, yn)} of (1) in the state-space S × S through the iteration of the
function (n, xn, yn) → (f(n, xn, yn), g(n, xn, yn)) : N × D → S × S for
as long as the points (xn, yn) remain in D.

• If (1) is autonomous, i.e., the functions f, g do not depend on the
index n then (xn, yn) = F n(x0, y0) for every n where F n denotes the
composition of the map F (u, v) = (f(u, v), g(u, v)) of S × S with itself
n times.



Second-Order Difference Equations

• A second-order, scalar difference equation in S is defined as

sn+2 = φ(n, sn, sn+1), n = 0, 1, 2, . . . (2)

where φ : N × D′ → S is a given function and D′ ⊂ S × S. A pair of
initial values s0, s1 ∈ S generates a (forward) solution {sn} of (2) in S
if (s0, s1) ∈ D′.

• As in the case of systems, if φ(n, u, v) = φ(u, v) is independent of n
then (2) is autonomous.



Unfolding Second-order Equations

• A second-order equation may be “unfolded” to a system in a standard
way; e.g.,

{

sn+1 = tn
tn+1 = φ(n, sn, tn)

(3)

• In the system (3) the temporal delay in the second-order equation is
converted to an additional variable in the state space. All solutions of
the second-order equation are reproduced from the solutions of (3) in
the form (sn, sn+1) = (sn, tn) so in this sense, higher order equations
may be considered to be special types of systems.



Semi-inversion

Definition 1 Let S, T be nonempty sets and consider a function f : T×D →
S where D ⊂ S × S. Then f is semi-invertible if there are sets M ⊂ D,
M ′ ⊂ S × S and a function h : T ×M ′ → S such that

w = f(t, u, v) ⇒ v = h(t, u, w) for all t ∈ T, (u, v) ∈M and (u, w) ∈M ′.
(4)

The function h may be called a semi-inversion of f. If f is independent of t
then t is dropped from the above notation.

Semi-inversion refers more accurately to the solvability of the equation
w − f(t, u, v) = 0 for v. This recalls the implicit function theorem a general
version of which that is based on the contraction principle holds in Banach
spaces.



Separability

Definition 2 Let (G, ∗) be a nontrivial group, T a nonempty set and let
f : T ×G×G→ G. If there are functions f1, f2 : T ×G→ G such that

f(t, u, v) = f1(t, u) ∗ f2(t, v)

for all u, v ∈ G and every t ∈ T then we say that f is separable on G and
write f = f1 ∗ f2 for short.

Every affine function f(n, u, v) = anu+ bnv + cn with an, bn, cn in a ring
R with identity is separable on the additive group (R,+) for all n ≥ 1 with
T = N and say, f1(n, v) = anu+ cn and f2(n, v) = bnv.



Separability and Semi-inversion

Proposition 3 Let (G, ∗) be a nontrivial group and f = f1 ∗f2 be separable.
If f2(t, ·) is a bijection for each t then f is semi-invertible on G× G with a
semi-inversion uniquely defined by h(t, u, w) = f−1

2
(t, [f1(t, u)]

−1 ∗ w).

• Consider f(n, u, v) = anu + bnv + cn. If bn is a unit in R for all n
then f2(n, v) = bnv is a bijection and f is semi-invertible on R with
h(n, u, w) = b−1

n
(w − anu− cn).

• If an and bn are not units for infinitely many n then f is separable but
not semi-invertible for either u or v.

• f(u, v) = a + uv is not separable on a field F if a 6= 0 but it is semi-
invertible with h(u, w) = u−1(w − a) where u 6= 0.



Reduction to A Scalar Equation

Suppose that {(xn, yn)} is a solution of the original system and assume
that one of the component functions, say, f is semi-invertible. Then there is
a function h such that

xn+1 = f(n, xn, yn) ⇒ yn = h(n, xn, xn+1) (5)

Therefore,

xn+2 = f(n+1, xn+1, yn+1) = f(n+1, xn+1, g(n, xn, yn)) = f(n+1, xn+1, g(n, xn, h(n, xn, xn+1)))

For each n ≥ 0, define the function

φ(n, u, w) = f(n + 1, w, g(n, u, h(n, u, w)))

If {sn} is the solution of sn+2 = φ(n, sn, sn+1) with initial values s0 = x0 and
s1 = x1 = f(0, x0, y0) then

s2 = f(1, s1, g(0, s0, h(0, s0, s1))) = f(1, x1, g(0, x0, h(0, x0, x1))) = f(1, x1, g(0, x0, y0)) = x2

By induction, sn = xn and by (5) h(n, sn, sn+1) = h(n, xn, xn+1) = yn. It
follows that

(xn, yn) = (sn, h(n, sn, sn+1))

i.e., the solution {(xn, yn)} of the original system can be obtained from a
solution {sn} of the second order equation.



Folding

Definition 4 The equations

sn+2 = φ(n, sn, sn+1), s0 = x0, s1 = f(0, x0, y0)

xn = sn yn = h(n, sn, sn+1)

constitute a folding of the system (1).

Note that the equation for yn is passive in the sense that it simply eval-
uates a given function and no dynamics or iterations are involved.



Semi-separable Systems

If one of the component functions in the system is separable then we call
the system semi-separable.

Corollary 5 Let (G, ∗) be a nontrivial group and f = f1 ∗f2 be separable on
G×G. If f2(n, ·) is a bijection for every n then every solution {(xn, yn)} of
(1) in G is derived from a solution {sn} of

sn+2 = f1(n+ 1, sn+1, g(n, sn, f
−1

2 (n, [f1(n, sn)]
−1 ∗ sn+1)) (6)

that yields the x-component xn with the initial values s0 = x0, s1 = f1(0, x0)∗
f2(0, y0). Further, the solution {sn} of (6) yields the y-component

yn = f−1

2 (n, [f1(n, sn)]
−1 ∗ sn+1). (7)



A Semi-separable System

The autonomous system

{

xn+1 = xnyn

yn+1 = (a + bxn)/yn

is semi-separable on the group G of nonzero real numbers. The above Corol-
lary yields the folding

sn+2 = sn+1

a + bsn

(1/sn)sn+1

= sn(a+ bsn)

xn = sn yn = sn+1/sn

Note that the even and odd terms s2k and s2k−1 of each solution of
the second-order equation above satisfy a conjugate of the logistic equation
rn+1 = crn(1 − rn) if a, b 6= 0.



Semilinear Systems

The next result is a special case of preceding Corollary.

Corollary 6 Let an, bn, cn be sequences in a ring R with identity and let
g : N × R × R→ R. If bn is a unit for all n then the semilinear system

{

xn+1 = anxn + bnyn + cn
yn+1 = g(n, xn, yn)

(8)

folds into the second-order difference equation

sn+2 = φ(n, sn, sn+1), where: s0 = x0, s1 = a0x0 + b0y0 + c0, (9)

φ(n, u, w) = cn+1 + an+1w + bn+1g(n, u, b
−1

n
(w − anu− cn))

For each solution {sn} of (9) the y-components of orbits of (8) are given by
the passive equation

yn = b−1

n
(sn+1 − ansn − cn).



A Semilinear System

Let ψ : R → R be an arbitrary function and consider the semilinear
system

{

xn+1 = (−1)nxn + yn

yn+1 = ψ(xn) + (−1)nyn

on a ring R with identity. This system folds via the above Corollary as
follows

sn+2 = ψ(sn) − sn, s0 = x0, s1 = x0 + y0

xn = sn yn = sn+1 − (−1)nsn.

Note that the second-order equation above is autonomous.


