Coin Flips, Fibonacci Numbers and Gaps!

Steven Miller and Philip Tosteson

Joint with: Amanda Bower, Rachel Insoft, and Shiyu Li

AMS Baltimore

Flipping a Coin

Suppose you have flipped a fair coin *n* times, and recorded your answer:

e.g. HTTTHHHHTHTHTHHTTHTTHHT

- If you pick string of heads at random, how long will it be on average?
- What do you expect the longest run of heads to be?

With added conditions?

Coin flips are analogous to a random string of 0's and 1's. A run of heads is like a run of zeros or a *gap between ones*.

HTTTHHHHTH = 0111000010

With added conditions?

Coin flips are analogous to a random string of 0's and 1's. A run of heads is like a run of zeros or a *gap between ones*.

$$HTTTHHHHTH = 0111000010$$

 Now take all binary strings of length n of 0's and 1, with the restriction: no two 1's are adjacent.

e.g. 1000101

With added conditions?

Coin flips are analogous to a random string of 0's and 1's. A run of heads is like a run of zeros or a *gap between ones*.

$$HTTTHHHHTH = 0111000010$$

- Now take all binary strings of length n of 0's and 1, with the restriction: no two 1's are adjacent.
 - e.g. 1000101
- Fix one random string. How long will a random run of zeroes from that string be?
- For a random string, what do you expect the longest run of 0's to be?

Base 2

There is a bijection between numbers in the interval $[2^{n+1}, 2^{n+2})$ and binary strings of length n:

- Take the binary representation of x,
 e.g write 13 as 1101.
- Remove the first digit (always a 1), so 13 → 101.

For Fibonacci Numbers

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5,...$

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Every number has a "base Fibonacci" decomposition:

Example:

$$2014 = 1597 + 377 + 34 + 5 + 1 = F_{16} + F_{13} + F_8 + F_4 + F_1$$
.

We write 2014 as 1001000010001001. Notice, no two ones are adjacent

For more general sequences

This works for arbitrary linearly recursive sequences with arbitrary nonnegative coefficients.

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L$$

with $H_1 = 1$, coefficients $c_i \ge 0$

Theorem (General Zeckendorf Theorem)

For every recurrence sequence H_n there is a notion of a legal decomposition string (of integers). There is a bijection between numbers $x \in [H_n, H_{n+1})$, and legal string of length n.

Legality reduces to non-adjacency in the case of Fibonacci numbers.

g

Connection to Difference Equations

The **probability questions** from before are **actually** questions about **Zeckendorf Decompositions!**

- Statistics about coin flips correspond to statistics about binary decompositions
- Random binary strings of nonadjacent ones go with Fibonacci numbers
- These probabilistic systems are governed by difference equation!

Results on Zeckendorf Decompositions

Lekkerkerker's Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1})$ tends to $\frac{n}{\varphi^2+1} \approx .276n$, where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden mean.

Central Limit Type Theorem [KKMW]

As $n \to \infty$, the distribution of the number of summands in the Zeckendorf decomposition for integers in $[H_n, H_{n+1})$ is Gaussian (normal), with mean and variance computable constants in the coefficients H_i .

Gaps Between Summands

For
$$H_{i_1} + H_{i_2} + \cdots + H_{i_n}$$
, the gaps are the differences:
 $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$.

Gaps Between Summands

For
$$H_{i_1} + H_{i_2} + \cdots + H_{i_n}$$
, the gaps are the differences:

$$i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1.$$

Example: For $H_1 + H_8 + H_{18}$, the gaps are 7 and 10.

Question 1: Gaps in the Bulk/Individual Gap Measures

Definition

Let $P_n(k)$ be the probability that a gap for a decomposition in $[H_n, H_{n+1})$ is of length k.

Big Question: What is $P(k) = \lim_{n \to \infty} P_n(k)$?

Definition

For $m \in (H_n + 1, H_n]$ with k(m) gaps, the individual gap measure associated to m is

$$\nu_{m,n}(x) := \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta(x - (r_j - r_{j-1}))$$

More precisely: what is the behavior of the collection of $\nu_{m;n}$ as $n \to \infty$?

Question 2: Longest gap

Definition

For $x \in [H_n, H_{n+1})$ the *longest gap* or L(x) is the max of all the gap lengths of x.

Example: For $x = H_1 + H_6 + H_{18} + H_{22}$, the longest gap is L(x) = 12.

Question 2: Longest gap

Definition

For $x \in [H_n, H_{n+1})$ the *longest gap* or L(x) is the max of all the gap lengths of x.

Example: For $x = H_1 + H_6 + H_{18} + H_{22}$, the longest gap is L(x) = 12.

Question: How does the distribution $\mathbb{P}(L(x) = k)$ for $x \in [H_n, H_{n+1})$ behave as $n \to \infty$?

For $H_n = 2^n$, this corresponds to the distribution of the **longest** run of heads.

Previous results

Theorem (Base B Gap Distribution (SMALL 2011))

For base B decompositions, $P(0) = \frac{(B-1)(B-2)}{B^2}$, and for $k \ge 1$, $P(k) = c_B B^{-k}$, with $c_B = \frac{(B-1)(3B-2)}{B^2}$.

Theorem (Zeckendorf Gap Distribution (SMALL 2011))

For Zeckendorf decompositions, $P(k) = \frac{1}{\phi^k}$ for $k \ge 2$, with $\phi = \frac{1+\sqrt{5}}{2}$ the golden mean.

Theorem (Zeckendorf Gap Distribution)

Gap measures $\nu_{m;n}$ converge almost surely to average gap measure where $P(k) = 1/\phi^k$ for $k \ge 2$.

New Results

Theorem

Let $H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n+1-L}$ be a positive linear recurrence of length L where $c_i \ge 1$ for all $1 \le i \le L$. Then P(j) =

$$\begin{cases} 1 - (\frac{a_1}{C_{Lek}})(\lambda_1^{-n+2} - \lambda_1^{-n+1} + 2\lambda_1^{-1} + a_1^{-1} - 3) & : j = 0 \\ \lambda_1^{-1}(\frac{1}{C_{Lek}})(\lambda_1(1 - 2a_1) + a_1) & : j = 1 \\ (\lambda_1 - 1)^2(\frac{a_1}{C_{Lek}})\lambda_1^{-j} & : j \ge 2 \end{cases}$$

Theorem (Individual Gap Measure Distribution)

The individual gap measures $\nu_{m;n}$ converge almost surely to average gap measure.

Proof of Fibonacci Result

Lekkerkerker $\Rightarrow \text{ total number of gaps} \sim F_{n-1} \frac{n}{\phi^2+1}.$

Proof of Fibonacci Result

Lekkerkerker \Rightarrow total number of gaps $\sim F_{n-1} \frac{n}{\phi^2+1}$.

Let $X_{i,j} = \#\{m \in [F_n, F_{n+1}): \text{ decomposition of } m \text{ includes } F_i, F_j, \text{ but not } F_q \text{ for } i < q < j\}.$

Proof of Fibonacci Result

Lekkerkerker \Rightarrow total number of gaps $\sim F_{n-1} \frac{n}{\phi^2+1}$.

Let $X_{i,j} = \#\{m \in [F_n, F_{n+1}): \text{ decomposition of } m \text{ includes } F_i, F_j, \text{ but not } F_q \text{ for } i < q < j\}.$

$$P(k) = \lim_{n \to \infty} \frac{\sum_{i=1}^{n-k} X_{i,i+k}}{F_{n-1} \frac{n}{\phi^2 + 1}}.$$

Calculating $X_{i,i+k}$

How many decompositions contain a gap from F_i to F_{i+k} ?

Calculating $X_{i,i+k}$

How many decompositions contain a gap from F_i to F_{i+k} ?

$$1 \le i \le n - k - 2$$
:

Calculating $X_{i,j+k}$

How many decompositions contain a gap from F_i to F_{i+k} ?

$$1 \le i \le n - k - 2$$
:

For the indices less than i: F_{i-1} choices. Why? Have F_i , don't have F_{i-1} . Follows by Zeckendorf: like the interval $[F_i, F_{i+1})$ as have F_i , number elements is $F_{i+1} - F_i = F_{i-1}$.

Calculating $X_{i,i+k}$

How many decompositions contain a gap from F_i to F_{i+k} ?

$$1 \le i \le n - k - 2$$
:

For the indices less than i: F_{i-1} choices. Why? Have F_i , don't have F_{i-1} . Follows by Zeckendorf: like the interval $[F_i, F_{i+1})$ as have F_i , number elements is $F_{i+1} - F_i = F_{i-1}$.

For the indices greater than i + k: $F_{n-k-i-2}$ choices. Why? Have F_n , don't have F_{i+k+1} . Like Zeckendorf with potential summands F_{i+k+2}, \ldots, F_n . Shifting, like summands $F_1, \ldots, F_{n-k-i-1}$, giving $F_{n-k-i-2}$.

Calculating $X_{i,j+k}$

How many decompositions contain a gap from F_i to F_{i+k} ?

$$1 \le i \le n - k - 2$$
:

For the indices less than i: F_{i-1} choices. Why? Have F_i , don't have F_{i-1} . Follows by Zeckendorf: like the interval $[F_i, F_{i+1})$ as have F_i , number elements is $F_{i+1} - F_i = F_{i-1}$.

For the indices greater than i + k: $F_{n-k-i-2}$ choices. Why? Have F_n , don't have F_{i+k+1} . Like Zeckendorf with potential summands F_{i+k+2}, \ldots, F_n . Shifting, like summands $F_1, \ldots, F_{n-k-i-1}$, giving $F_{n-k-i-2}$.

So total choices number of choices is $F_{n-k-2-i}F_{i-1}$.

Determining P(k)

$$\sum_{i=1}^{n-k} X_{i,i+k} = F_{n-k-1} + \sum_{i=1}^{n-k-2} F_{i-1} F_{n-k-i-2}$$

- $\sum_{i=0}^{n-k-3} F_i F_{n-k-i-3}$ is the x^{n-k-3} coefficient of $(g(x))^2$, where g(x) is the generating function of the Fibonaccis.
- Alternatively, use Binet's formula and get sums of geometric series.

Determining P(k)

$$\sum_{i=1}^{n-k} X_{i,i+k} = F_{n-k-1} + \sum_{i=1}^{n-k-2} F_{i-1} F_{n-k-i-2}$$

- $\sum_{i=0}^{n-k-3} F_i F_{n-k-i-3}$ is the x^{n-k-3} coefficient of $(g(x))^2$, where g(x) is the generating function of the Fibonaccis.
- Alternatively, use Binet's formula and get sums of geometric series.

 $P(k) = C/\phi^k$ for some constant C, so $P(k) = 1/\phi^k$.

Proof sketch of almost sure convergence

•
$$m = \sum_{j=1}^{k(m)} F_{i_j},$$

 $\nu_{m;n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta(x - (i_j - i_{j-1})).$

- $\bullet \ \mu_{m,n}(t) = \int x^t d\nu_{m,n}(x).$
- Show $\mathbb{E}_m[\mu_{m:n}(t)]$ equals average gap moments, $\mu(t)$.
- Show $\mathbb{E}_m[(\mu_{m;n}(t) \mu(t))^2]$ and $\mathbb{E}_m[(\mu_{m;n}(t) \mu(t))^4]$ tend to zero.

Key ideas: (1) Replace k(m) with average (Gaussianity); (2) use $X_{i,i+g_1,j,j+g_2}$.

Longest Gap

Longest Gap

For most recurrences, our central result is

Theorem (Mean and Variance of Longest Gap)

Let λ_1 be the largest eigenvalue of the recurrence, γ be Euler's constant, and K a constant that is a polynomial in λ_1 . Then the mean and variance of the longeset gap are:

$$\mu_n = \frac{\log(nK)}{\log \lambda_1} + \frac{\gamma}{\log \lambda_1} - \frac{1}{2} + o(1)$$

$$\sigma_n^2 = \frac{\pi^2}{6(\log \lambda_1)^2} + o(1).$$

Strategy

Our argument follows three main steps:

- Find a rational generating function $S_f(x)$ for the number of $m \in (H_n, H_{n+1}]$ with longest gap less than f.
- Obtain an approximate formula for the CDF of the longest gap.
- Estimate the mean and variance using Partial Summation and the Euler Maclaurin Formula.

Fibonacci case

For the fibonacci numbers, our generating function is

$$S_f(x) = \frac{x}{1 - x - x^2 + x^f}.$$

From this we obtain

Theorem (Longest Gap Asymptotic CDF)

As $n \to \infty$, the probability that $m \in [F_n, F_{n+1})$ has longest gap less than or equal to f(n) converges to

$$\operatorname{Prob}\left(L_n(m) \leq f(n)\right) \; \approx \; e^{-e^{\log n - f(n)/\log \phi}}$$

Generating Function 1

For k fixed the number of $m \in [F_n, F_{n+1})$ with k summands and longest gap less than f equals the coefficient of

 x^n for in the expression

$$\frac{1}{1-x}\left[\sum_{j=2}^{f(n)-2}x^j\right]^{k-1}.$$

Generating Function 2

Why the n^{th} coefficient of $\frac{1}{1-x} \left(\sum_{j=2}^{f(n)-1} x^j \right)^{k-1}$?

Why the n^{th} coefficient of $\frac{1}{1-x} \left(\sum_{j=2}^{f(n)-1} x^j \right)^{k-1}$?

Let $m = F_n + F_{n-g_1} + F_{n-g_1-g_2} + \cdots + F_{n-g_1-\dots-g_{n-1}}$. The gaps uniquely identify m because of Zeckendorf's Theorem! And we have the following:

Why the n^{th} coefficient of $\frac{1}{1-x} \left(\sum_{j=2}^{f(n)-1} x^j \right)^{k-1}$?

Let $m = F_n + F_{n-g_1} + F_{n-g_1-g_2} + \cdots + F_{n-g_1-\cdots-g_{n-1}}$. The gaps uniquely identify m because of Zeckendorf's Theorem! And we have the following:

• The sum of the gaps of x is $\leq n$.

Why the n^{th} coefficient of $\frac{1}{1-x} \left(\sum_{j=2}^{f(n)-1} x^j \right)^{k-1}$?

Let $m = F_n + F_{n-g_1} + F_{n-g_1-g_2} + \cdots + F_{n-g_1-\cdots-g_{n-1}}$. The gaps uniquely identify m because of Zeckendorf's Theorem! And we have the following:

- The sum of the gaps of x is $\leq n$.
- Each gap is ≥ 2 .

Why the n^{th} coefficient of $\frac{1}{1-x} \left(\sum_{j=2}^{f(n)-1} x^j \right)^{k-1}$?

Let $m = F_n + F_{n-g_1} + F_{n-g_1-g_2} + \cdots + F_{n-g_1-\cdots-g_{n-1}}$. The gaps uniquely identify m because of Zeckendorf's Theorem! And we have the following:

- The sum of the gaps of x is $\leq n$.
- Each gap is ≥ 2 .
- Each gap is < f.

If we **sum** over k we get the **total number** of $m \in [F_n, F_{n+1})$ with longest gap < f. It's the nth coefficient of

$$F(x) = \frac{1}{1-x} \sum_{k=1}^{\infty} \left(\frac{x^2 - x^{f-2}}{1-x} \right)^{k-1} = \frac{x}{1-x-x^2+x^f}.$$

Obtaining the CDF

We analyze asymptotic behavior of the coefficients of

$$S_f(x) = \frac{x}{1 - x - x^2 + x^f}$$

as n, f vary.

- Use a partial fraction decomposition.
- Problem: What happens to the roots of $1 x x^2 + x^f$ as f varies?
- Solution: $1 x x^2 + x^f$ has a unique smallest root α_f which converges to $1/\phi$ for large f.
- The contribution of α_f dominates, allowing us to obtain an approximate *CDF*.

Numerical Results

Convergence to mean is at best approximately $n^{-\delta}$ for some small $\delta > 0$. Computing numerics is difficult:

 $F_{n+1} = F_n + F_{n-1}$: Sampling 100 numbers from $[F_n, F_{n+1}]$ with n = 1,000,000.

- Mean predicted : 28.73 vs. observed: 28.51
- Variance predicted : 2.67 vs. observed: 2.44

 $a_{n+1} = 2a_n + 4a_{n-1}$: Sampling 100 numbers from $[a_n, a_{n+1}]$ with n = 51, 200.

- Mean predicted: 9.95 vs. observed: 9.91
- Variance predicted: 1.09 vs. observed: 1.22

Numerical Results pt 2

$$F_{n+1} = F_n + F_{n-1}$$
: Sampling 20 numbers from $[F_n, F_{n+1}]$ with $n = 10,000,000$.

- Mean predicted: 33.52 vs. observed: 33.60
- Variance predicted : 2.67 vs. observed: 2.33

$$a_{n+1} = 2a_n + 4a_{n-1}$$
: Sampling 100 numbers from $[a_n, a_{n+1}]$ with $n = 102, 400$.

- Mean predicted: 10.54 vs. observed: 10.45
- Variance predicted: 1.09 vs. observed: 1.10

Future Research

Future Research

- Generalizing results to all PLRS and signed decompositions.
- Other systems such as f-Decompositions of Demontigny, Do, Miller and Varma.

Acknowledgements

Thanks to...

- NSF Grant DMS0850577
- NSF Grant DMS0970067
- AMS
- Our peers at Williams SMALL REU Summers 2010, 2011, 2012, and 2013

References

References

 Beckwith, Bower, Gaudet, Insoft, Li, Miller and Tosteson: The Average Gap Distribution for Generalized Zeckendorf Decompositions.

```
http://arxiv.org/abs/1208.5820
```

- Bower, Insoft, Li, Miller and Tosteson: The Distribution of Gaps between Summands in Generalized Zeckendorf Decompositions http://arxiv.org/abs/1402.3912
- Kologlu, Kopp, Miller and Wang: Gaussianity for Fibonacci case.

```
http://arxiv.org/pdf/1008.3204
```

Miller - Wang: Gaussianity in general.

```
http://arxiv.org/pdf/1008.3202
```

• Miller - Wang: Survey paper.

```
http://arxiv.org/pdf/1107.2718
```