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Introduction
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Flipping a Coin

Suppose you have flipped a fair coin n times, and recorded your
answer:

e.g. HTTTHHHHTHTHHHTTHTTTHHT

If you pick string of heads at random, how long will it be on
average?

What do you expect the longest run of heads to be?
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With added conditions?

Coin flips are analogous to a random string of 0’s and 1’s. A run
of heads is like a run of zeros or a gap between ones.

HTTTHHHHTH = 0111000010

Now take all binary strings of length n of 0’s and 1, with the
restriction: no two 1’s are adjacent.

e.g. 1000101
Fix one random string. How long will a random run of
zeroes from that string be?
For a random string, what do you expect the longest run of
0’s to be?

4



With added conditions?

Coin flips are analogous to a random string of 0’s and 1’s. A run
of heads is like a run of zeros or a gap between ones.

HTTTHHHHTH = 0111000010

Now take all binary strings of length n of 0’s and 1, with the
restriction: no two 1’s are adjacent.

e.g. 1000101

Fix one random string. How long will a random run of
zeroes from that string be?
For a random string, what do you expect the longest run of
0’s to be?

5



With added conditions?

Coin flips are analogous to a random string of 0’s and 1’s. A run
of heads is like a run of zeros or a gap between ones.

HTTTHHHHTH = 0111000010

Now take all binary strings of length n of 0’s and 1, with the
restriction: no two 1’s are adjacent.

e.g. 1000101
Fix one random string. How long will a random run of
zeroes from that string be?
For a random string, what do you expect the longest run of
0’s to be?

6



Base 2

There is a bijection between numbers in the interval
[2n+1,2n+2) and binary strings of length n:

Take the binary representation of x ,

e.g write 13 as 1101.

Remove the first digit (always a 1), so 13 7→ 101.
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For Fibonacci Numbers

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Every number has a "base Fibonacci" decomposition:
Example:
2014 = 1597 + 377 + 34 + 5 + 1 = F16 + F13 + F8 + F4 + F1.

We write 2014 as 1001000010001001. Notice, no two ones are
adjacent
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For more general sequences

This works for arbitrary linearly recursive sequences with
arbitrary nonnegative coefficients.

Hn+1 = c1Hn + c2Hn−1 + · · ·+ cLHn−L+1, n ≥ L

with H1 = 1, coefficients ci ≥ 0

Theorem (General Zeckendorf Theorem)
For every recurrence sequence Hn there is a notion of a legal
decomposition string (of integers). There is a bijection between
numbers x ∈ [Hn,Hn+1), and legal string of length n.

Legality reduces to non-adjacency in the case of Fibonacci
numbers.
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Connection to Difference Equations

The probability questions from before are actually questions
about Zeckendorf Decompositions!

Statistics about coin flips correspond to statistics about
binary decompositions

Random binary strings of nonadjacent ones go with
Fibonacci numbers

These probabilistic systems are governed by difference
equation!
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Results on Zeckendorf Decompositions

Lekkerkerker’s Theorem (1952)
The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to n

ϕ2+1 ≈ .276n,

where ϕ = 1+
√

5
2 is the golden mean.

Central Limit Type Theorem [KKMW]
As n→∞, the distribution of the number of summands in the
Zeckendorf decomposition for integers in [Hn,Hn+1) is
Gaussian (normal), with mean and variance computable
constants in the coefficients Hi .
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Gaps Between Summands

For Hi1 + Hi2 + · · ·+ Hin , the gaps are the differences:

in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For H1 + H8 + H18, the gaps are 7 and 10.
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Question 1: Gaps in the Bulk/Individual Gap Measures

Definition
Let Pn(k) be the probability that a gap for a decomposition in
[Hn,Hn+1) is of length k .

Big Question: What is P(k) = limn→∞ Pn(k)?

Definition
For m ∈ (Hn + 1,Hn] with k(m) gaps, the individual gap
measure associated to m is
νm;n(x) := 1

k(m)−1
∑k(m)

j=2 δ(x − (rj − rj−1))

More precisely: what is the behavior of the collection of νm;n as
n→∞?
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Question 2: Longest gap

Definition
For x ∈ [Hn,Hn+1) the longest gap or L(x) is the max of all the
gap lengths of x .

Example: For x = H1 + H6 + H18 + H22, the longest gap is
L(x) = 12.

Question: How does the distribution P(L(x) = k) for
x ∈ [Hn,Hn+1)) behave as n→∞?

For Hn = 2n, this corresponds to the distribution of the longest
run of heads.
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Results
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Previous results

Theorem (Base B Gap Distribution (SMALL 2011))

For base B decompositions, P(0) = (B−1)(B−2)
B2 , and for k ≥ 1,

P(k) = cBB−k , with cB = (B−1)(3B−2)
B2 .

Theorem (Zeckendorf Gap Distribution (SMALL 2011))

For Zeckendorf decompositions, P(k) = 1
φk for k ≥ 2, with

φ = 1+
√

5
2 the golden mean.

Theorem (Zeckendorf Gap Distribution)
Gap measures νm;n converge almost surely to average gap
measure where P(k) = 1/φk for k ≥ 2.
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New Results

Theorem
Let Hn+1 = c1Hn + c2Hn−1 + · · ·+ cLHn+1−L be a positive linear
recurrence of length L where ci ≥ 1 for all 1 ≤ i ≤ L. Then
P(j) =

1− ( a1
CLek

)(λ−n+2
1 − λ−n+1

1 + 2λ−1
1 + a−1

1 − 3) : j = 0
λ−1

1 ( 1
CLek

)(λ1(1− 2a1) + a1) : j = 1

(λ1 − 1)2
(

a1
CLek

)
λ−j

1 : j ≥ 2

Theorem (Individual Gap Measure Distribution)
The individual gap measures νm;n converge almost surely to
average gap measure.
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Proof of Fibonacci Result

Lekkerkerker⇒ total number of gaps ∼ Fn−1
n

φ2+1 .

Let Xi,j = #{m ∈ [Fn,Fn+1): decomposition of m includes Fi ,
Fj , but not Fq for i < q < j}.

P(k) = lim
n→∞

∑n−k
i=1 Xi,i+k

Fn−1
n

φ2+1
.
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Calculating Xi,i+k

How many decompositions contain a gap from Fi to Fi+k?

1 ≤ i ≤ n − k − 2:

For the indices less than i : Fi−1 choices. Why? Have Fi , don’t
have Fi−1. Follows by Zeckendorf: like the interval [Fi ,Fi+1) as
have Fi , number elements is Fi+1 − Fi = Fi−1.

For the indices greater than i + k : Fn−k−i−2 choices. Why?
Have Fn, don’t have Fi+k+1. Like Zeckendorf with potential
summands Fi+k+2, . . . ,Fn. Shifting, like summands
F1, . . . ,Fn−k−i−1, giving Fn−k−i−2.

So total choices number of choices is Fn−k−2−iFi−1.
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Determining P(k)

n−k∑
i=1

Xi,i+k = Fn−k−1 +
n−k−2∑

i=1

Fi−1Fn−k−i−2

∑n−k−3
i=0 FiFn−k−i−3 is the xn−k−3 coefficient of (g(x))2,

where g(x) is the generating function of the Fibonaccis.

Alternatively, use Binet’s formula and get sums of
geometric series.

P(k) = C/φk for some constant C, so P(k) = 1/φk .
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Proof sketch of almost sure convergence

m =
∑k(m)

j=1 Fij ,

νm;n(x) = 1
k(m)−1

∑k(m)
j=2 δ

(
x − (ij − ij−1)

)
.

µm,n(t) =
∫

x tdνm;n(x).

Show Em[µm;n(t)] equals average gap moments, µ(t).

Show Em[(µm;n(t)− µ(t))2] and Em[(µm;n(t)− µ(t))4] tend
to zero.

Key ideas: (1) Replace k(m) with average (Gaussianity); (2)
use Xi,i+g1,j,j+g2 .
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Longest Gap
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Longest Gap

For most recurrences, our central result is

Theorem (Mean and Variance of Longest Gap)
Let λ1 be the largest eigenvalue of the recurrence, γ be Euler’s
constant, and K a constant that is a polynomial in λ1. Then the
mean and variance of the longeset gap are:

µn =
log (nK )

logλ1
+

γ

logλ1
− 1

2
+ o(1)

σ2
n =

π2

6(logλ1)2 + o(1).
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Strategy

Our argument follows three main steps:

Find a rational generating function Sf (x) for the number of
m ∈ (Hn,Hn+1] with longest gap less than f .

Obtain an approximate formula for the CDF of the longest
gap.

Estimate the mean and variance using Partial Summation
and the Euler Maclaurin Formula.
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Fibonacci case

For the fibonacci numbers, our generating function is

Sf (x) =
x

1− x − x2 + x f .

From this we obtain

Theorem (Longest Gap Asymptotic CDF)
As n→∞, the probability that m ∈ [Fn,Fn+1) has longest gap
less than or equal to f (n) converges to

Prob (Ln(m) ≤ f (n)) ≈ e−elog n−f (n)/ logφ
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Generating Function 1

For k fixed the number of m ∈ [Fn,Fn+1) with k summands and
longest gap less than f equals the coefficient of

xn for in the expression

1
1− x

f (n)−2∑
j=2

x j

k−1

.
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Generating Function 2

Why the nth coefficient of 1
1−x

(∑f (n)−1
j=2 x j

)k−1
?

Let m = Fn + Fn−g1 + Fn−g1−g2 + · · ·+ Fn−g1−···−gn−1 . The gaps
uniquely identify m because of Zeckendorf’s Theorem! And we
have the following:

The sum of the gaps of x is ≤ n.
Each gap is ≥ 2.
Each gap is < f .
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Generating Function

If we sum over k we get the total number of m ∈ [Fn,Fn+1)
with longest gap < f . It’s the nth coefficient of

F (x) =
1

1− x

∞∑
k=1

(
x2 − x f−2

1− x

)k−1

=
x

1− x − x2 + x f .
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Obtaining the CDF

We analyze asymptotic behavior of the coefficients of

Sf (x) =
x

1− x − x2 + x f

as n, f vary.

Use a partial fraction decomposition.
Problem: What happens to the roots of 1− x − x2 + x f as f
varies?
Solution: 1− x − x2 + x f has a unique smallest root αf
which converges to 1/φ for large f .
The contribution of αf dominates, allowing us to obtain an
approximate CDF .
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Numerical Results

Convergence to mean is at best approximately n−δ for some
small δ > 0. Computing numerics is difficult:

Fn+1 = Fn + Fn−1: Sampling 100 numbers from [Fn,Fn+1) with
n = 1,000,000.

Mean predicted : 28.73 vs. observed: 28.51
Variance predicted : 2.67 vs. observed: 2.44

an+1 = 2an + 4an−1: Sampling 100 numbers from [an,an+1)
with n = 51,200.

Mean predicted : 9.95 vs. observed: 9.91
Variance predicted : 1.09 vs. observed: 1.22
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Numerical Results pt 2

Fn+1 = Fn + Fn−1: Sampling 20 numbers from [Fn,Fn+1) with
n = 10,000,000.

Mean predicted : 33.52 vs. observed: 33.60
Variance predicted : 2.67 vs. observed: 2.33

an+1 = 2an + 4an−1: Sampling 100 numbers from [an,an+1)
with n = 102,400.

Mean predicted : 10.54 vs. observed: 10.45
Variance predicted : 1.09 vs. observed: 1.10
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Future Research

Future Research

Generalizing results to all PLRS and signed
decompositions.

Other systems such as f-Decompositions of Demontigny,
Do, Miller and Varma.
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