Periodic windows within windows within windows

Madhura Joglekar

Applied Mathematics & Statistics, and Scientific Computation University of Maryland College Park

March 29, 2014

References

- C. Grebogi, S. McDonald, E. Ott and J. A. Yorke, Phys. Let. A 110, (1985), 1-4
- B. R. Hunt and E. Ott, J. Phys. A 30 (1997), 7067-7076
- J. D. Farmer, Phys. Rev. Lett. 55, (1985), 351–354

Basins of attraction of the Forced Damped Pendulum

Equation: $X'' + 0.2X' + \sin X = \rho \cos T$

 $\rho = 2.45$ gives a chaotic attractor

 $\rho = 2.55$ gives periodic attractors.

What is an ϵ -uncertain point?

- ϵ -uncertainty: A point (x, C) lying in the basin of a periodic attractor is ϵ -uncertain if there is a point within ϵ -distance that can result in chaos
- Can be defined in state space as well as in parameter space

$$\begin{array}{c|c}
\hline
(x, C) \\
\text{Periodic}
\end{array}$$

$$\begin{array}{c|c}
 & \|(x', C') - (x, C)\| < \epsilon \\
\hline
(x', C') \\
\text{Chaotic}
\end{array}$$

Questions

- What fraction of the space consists of ϵ -uncertain points?
- Where are ϵ -uncertain points most likely to lie?

- In higher dimensional systems, difficult to predict asymptotic behavior given initial state
- Study the 1-dim quad map $x_{n+1} = C x_n^2$ (start from x = 0)

Questions

- What fraction of the space consists of ϵ -uncertain points?
- Where are ϵ -uncertain points most likely to lie?

- In higher dimensional systems, difficult to predict asymptotic behavior given initial state
- Study the 1-dim quad map $x_{n+1} = C x_n^2$ (start from x = 0)

Periodic Windows in the 1 Dim Quadratic Map

$$X_{n+1} = C - X_n^2$$
 where $C \in [-0.25, 2]$

- Infinitely many windows
- Dense in parameter space, fractal structure

ϵ -uncertain C values in $x_{n+1} = C - x_n^2$

- Given C results in a **periodic attractor**
- C is within ϵ of chaos

ϵ -uncertain C values in $x_{n+1} = C - x_n^2$

• The fraction of ϵ -uncertain C values in a window depends on its width

Randomly choosing an ϵ -uncertain value of C

C. Grebogi, S. W. McDonald, E. Ott and J. A. Yorke, "Exterior dimension of fat fractals" *Phys. Let. A* 110, 1-4, 1985

• fraction of ϵ -uncertain C values $\approx \epsilon^{0.41}$

Study distribution of primary-window widths

- Using kneading theory, determine sequence of all windows
- Compute $C_{width} = C_{crisis} C_{saddlenode}$

$N(\epsilon)$: No. of primary windows with C-width $> \epsilon$

- Cluster computation in quadruple precision
- Computed 1402957 windows of periods \leq 25

: (No. of windows with C-width $\geq \epsilon$) vs ϵ

$N(\epsilon)$: No. of primary windows with C-width $> \epsilon$

- Cluster computation in quadruple precision
- Computed 1402957 windows of periods ≤ 25

: (No. of windows with C-width $\geq \epsilon$) vs ϵ

$$N(\epsilon) = 0.133\epsilon^{-.51}$$

Scaling exponent $\alpha \approx 0.51$

: (No. of windows with C-width $\geq \epsilon$) vs ϵ

How does this relate to the fraction of ϵ -uncertain C values?

$$N(\epsilon) = 0.133\epsilon^{-.51}$$

Scaling exponent $\alpha \approx 0.51$

: (No. of windows with C-width $\geq \epsilon$) vs ϵ

How does this relate to the fraction of ϵ -uncertain C values?

Relation between $N(\epsilon)$ and $f_P(\epsilon)$

 $f_P(\epsilon)$: fraction of ϵ -uncertain C values in primary windows

•
$$\lim_{\epsilon \to 0} \frac{\log f_P(\epsilon)}{\log \epsilon} \sim 1 - \alpha \sim 1 - .51 \sim 0.49$$

Relation between $N(\epsilon)$ and $f_P(\epsilon)$

 $f_P(\epsilon)$: fraction of ϵ -uncertain C values in primary windows

•
$$\lim_{\epsilon \to 0} \frac{\log f_P(\epsilon)}{\log \epsilon} \sim 1 - \alpha \sim 1 - .51 \sim 0.49$$

• As $\epsilon \to 0$, most of the ϵ -uncertain C values lie in higher order windows!

Relation between $N(\epsilon)$ and $f_P(\epsilon)$

 $f_P(\epsilon)$: fraction of ϵ -uncertain C values in primary windows

- $\lim_{\epsilon \to 0} \frac{\log f_P(\epsilon)}{\log \epsilon} \sim 1 \alpha \sim 1 .51 \sim 0.49$
- As $\epsilon \to 0$, most of the ϵ -uncertain C values lie in higher order windows!

• Primary window width scaling $N_1(\epsilon) = 0.133\epsilon^{-.51}$

: (No. of windows with C-width $\geq \epsilon$) vs ϵ

- Primary window width scaling $N_1(\epsilon) = 0.133\epsilon^{-.51}$
- Assume exact self-similarity of periodic windows
- $N_k(\epsilon)$: No. of k^{th} order windows with width $> \epsilon$
- Derive a generalized formula for scaling of higher order windows, i.e.,

Madhura Joglekar

- Primary window width scaling $N_1(\epsilon) = 0.133\epsilon^{-.51}$
- Assume exact self-similarity of periodic windows
- $N_k(\epsilon)$: No. of k^{th} order windows with width $> \epsilon$
- Derive a generalized formula for scaling of higher order windows, i.e., $N_k(\epsilon)$ for all positive integers k

<u>Theorem</u>: Choose an ϵ -uncertain point randomly. Say this point lies in a window of order r.

As per the theorem, for all positive integers n,

$$\lim_{\epsilon \to 0} \mathbf{Probability}(r > n) = 1$$

As ϵ takes small values, Most ϵ -uncertain points lie in a window within a window within a window \ldots Nth order window for large N.

Theorem: Choose an ϵ -uncertain point randomly. Say this point lies in a window of order r.

As per the theorem, for all positive integers n,

$$\lim_{\epsilon \to 0} \mathbf{Probability}(r > n) = 1$$

As ϵ takes small values,

Most ϵ -uncertain points lie in a window within a window within a window \dots Nth order window for large N.

Theorem: Choose an ϵ -uncertain point randomly. Say this point lies in a window of order r.

As per the theorem, for all positive integers n,

$$\lim_{\epsilon \to 0} \mathbf{Probability}(r > n) = 1$$

As ϵ takes small values,

Most ϵ -uncertain points lie in a window within a window within a window $\dots N^{th}$ order window for large N.

And thus,

As ϵ takes small values,

Most ϵ -uncertain points lie in a window within a window within a window ... N^{th} order window for large N.

Acknowledgements: I would like to thank my advisor Jim Yorke, and Ed Ott for their suggestions.