
ar
X

iv
:0

80
8.

13
85

v1
  [

qu
an

t-
ph

] 
 1

0 
A

ug
 2

00
8

Quantum cryptography: from
theory to practice

by

Xiongfeng Ma

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy Thesis

Graduate Department of Department of Physics

University of Toronto

Copyright c© 2008 by Xiongfeng Ma

http://arXiv.org/abs/0808.1385v1


Abstract

Quantum cryptography: from theory to practice

Xiongfeng Ma

Doctor of Philosophy Thesis

Graduate Department of Department of Physics

University of Toronto

2008

Quantum cryptography or quantum key distribution (QKD) applies fundamental laws of

quantum physics to guarantee secure communication. The security of quantum cryptog-

raphy was proven in the last decade. Many security analyses are based on the assumption

that QKD system components are idealized. In practice, inevitable device imperfections

may compromise security unless these imperfections are well investigated.

A highly attenuated laser pulse which gives a weak coherent state is widely used in

QKD experiments. A weak coherent state has multi-photon components, which opens

up a security loophole to the sophisticated eavesdropper. With a small adjustment of

the hardware, we will prove that the decoy state method can close this loophole and

substantially improve the QKD performance. We also propose a few practical decoy

state protocols, study statistical fluctuations and perform experimental demonstrations.

Moreover, we will apply the methods from entanglement distillation protocols based on

two-way classical communication to improve the decoy state QKD performance. Fur-

thermore, we study the decoy state methods for other single photon sources, such as

triggering parametric down-conversion (PDC) source. Note that our work, decoy state

protocol, has attracted a lot of scientific and media interest. The decoy state QKD

becomes a standard technique for prepare-and-measure QKD schemes.

Aside from single-photon-based QKD schemes, there is another type of scheme based

on entangled photon sources. A PDC source is commonly used as an entangled photon

source. We propose a model and post-processing scheme for the entanglement-based

QKD with a PDC source. Although the model is proposed to study the entanglement-

based QKD, we emphasize that our generic model may also be useful for other non-QKD

experiments involving a PDC source. By simulating a real PDC experiment, we show

that the entanglement-based QKD can achieve longer maximal secure distance than the

single-photon-based QKD schemes.

ii



We propose a time-shift attack that exploits the efficiency mismatch of two single

photon detectors in a QKD system. This eavesdropping strategy can be realized by

current technology. We will also discuss counter measures against the attack and study

the security of a QKD system with efficiency mismatch detectors.
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Chapter 1

Introduction

Study the past, if you would divine the future. — Confucius

1.1 Background

In this section, we will give a brief overview of quantum information processing and then

discuss one of its subfields that this thesis will focus on which is quantum cryptography1

1.1.1 Quantum information processing

Quantum information processing or quantum information science is an amalgamation of

quantum physics and information science. It concerns information science that depends

on quantum effects in physics. It includes theoretical issues in communication and com-

putational models as well as experimental topics in quantum physics, including what can

and cannot be done with quantum information. It is an interdisciplinary field, combin-

ing ideas in physics, information theory, engineering, computer science, mathematics and

chemistry.

A bit; a binary digit, is the base of classical information theory. Regardless of its

physical representation, it is always read as either a 0 or 1. For instance, a 1 (true value)

is represented by a high voltage, while a 0 (false value) is represented by a low voltage.

A quantum bit, or qubit (sometimes qbit) is a unit of quantum information. That

information is described by a state vector in a two-level quantum mechanical system

which is formally equivalent to a two-dimensional Hilbert space. A qubit has some

1I acknowledge that Subsections 1.1.1 and 1.1.2 heavily rely on the Internet to gather information,
especially wikipedia.org and quantiki.org.

1
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similarities to a classical bit, but is fundamentally very different. Like a bit, a qubit can

have two possible values, normally a 0 or a 1. The difference is that whereas a bit must

be either 0 or 1, a qubit can be 0, 1, or a superposition of both.

Subfields of quantum information processing include:

• Quantum computing, which deals on the one hand, with the question how and

whether one can build a quantum computer and on the other hand, searching

algorithms that harness its power;

• Quantum computation, which investigates computational complexity of various

quantum algorithms;

• Quantum error correction, which is used in quantum computing to protect quantum

information from errors due to decoherence and other quantum noise;

• Quantum entanglement, which studies entanglement as seen from an information-

theoretic point of view;

• Quantum cryptography and its generalization, quantum communication, which is

the art of transferring a quantum state from one location to another. Note that this

is the first quantum information application to reach the level of mature technology

and fit for commercialization. This thesis focuses on quantum cryptography.

1.1.2 Cryptography

Nowadays, distant communications play a crucial role in our daily lives. Secure commu-

nications become more and more important in many areas, e.g., online purchases, emails

and video chats.

Cryptography is the practice and study of encoding and decoding secret messages to

ensure secure communications. There are two main branches of cryptography: secret-

(symmetric-) key cryptography and public- (asymmetric) key cryptography.

A key is a piece of information (a parameter) that controls the operation of a crypto-

graphic algorithm. In encryption, a key specifies the particular transformation of plain-

text into ciphertext, or vice versa during decryption. Keys are also used in other crypto-

graphic algorithms, such as digital signature schemes and message authentication codes.

In practice, due to significant difficulties of distributing keys in secret key cryptogra-

phy, public-key cryptographic algorithms are widely used in conventional cryptosystems.
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These encryption schemes can only be proven secure based on the presumed difficulty

of a mathematical problem, such as factoring the product of two large primes. We em-

phasize that no public-key encryption scheme can be secure against eavesdroppers with

unlimited computational power.

One of the most famous quantum computing algorithms is Shor’s algorithm [105],

which can factor a number N in O((logN)3) time and O(logN) space. The algorithm is

significant because it implies that public key cryptography might be easily broken, given a

sufficiently large quantum computer. RSA [98], for example, uses a public key N which is

the product of two large prime numbers. One way to crack RSA encryption is by factoring

N , but with classical algorithms, factoring becomes increasingly time consuming as N

grows large; more specifically, no classical algorithm is known that can factor in time

O((logN)k) for any k. By contrast, Shor’s algorithm can crack RSA in polynomial time.

It has also been extended to attack many other public-key cryptosystems.

In cryptography, the one-time pad is an encryption algorithm where the plaintext is

combined with a random key or “pad” that is as long as the plaintext and used only once.

A modular addition is used to combine the plaintext with the pad2. In 1917, Vernam

proposed one-time pad encryption scheme [116]. In 1949, Shannon proved that the one-

time pad is information-theoretically secure, no matter how much computing power is

available to the eavesdropper [104]. That is, if the key is truly random, never reused and

kept secret, the one-time pad provides perfect secrecy. Note that the one-time pad is the

only cryptosystem with perfect secrecy.

Despite Shannon’s proof of its security, the one-time pad has serious drawbacks in

practice:

1. it requires a perfectly random key;

2. secure generation and exchange of the key must be at least as long as the message.

These implementation difficulties have led to one-time pad systems being unpractical

and are so serious that they have prevented the one-time pad from being adopted as a

widespread tool in information security.

Quantum physics offers a solution to the aforementioned two difficulties for the one-

time pad. First, the superposition (uncertainty) nature of quantum mechanics can gen-

erate true randomness. Secondly, quantum cryptography allows two distant parties to

generate secure keys.

2For binary data, the operation XOR amounts to the same thing.
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1.1.3 Quantum cryptography

Quantum cryptography or quantum key distribution (QKD) applies fundamental laws

of quantum physics to guarantee secure communication. It enables two legitimate users,

commonly named Alice and Bob, to produce a shared secret random bit string, which can

be used as a key in cryptographic applications, such as message encryption (for instance,

the one-time pad) and authentication. Unlike conventional cryptography, whose secu-

rity often relies on unproven computational assumptions, QKD promises unconditional

security based on the fundamental laws of quantum mechanics.

There are mainly two types of QKD schemes. One is the prepare-and-measure scheme,

such as BB84 [11], in which Alice sends each qubit in one of four states of two comple-

mentary bases; B92 [9] in which Alice sends each qubit in one of two non-orthogonal

states; six-state [17] in which Alice sends each qubit in one of six states of three comple-

mentary bases. The other is the entanglement based QKD, such as Ekert91 [24] in which

entangled pairs of qubits are distributed to Alice and Bob, who then extract key bits by

measuring their qubits; BBM92 [12] where each party measures half of the EPR pair in

one of two complementary bases. Note that in Ekert91, Alice and Bob estimate the Eve’s

information based on the Bell’s inequality test3; whereas in BBM92, similar to BB84,

Alice and Bob make use of the privacy amplification to eliminate Eve’s information about

the final key [62].

QKD needs a quantum channel and a classical channel. The quantum channel can

be insecure whereas the classical channel is assumed to be authenticated. Fortunately,

in classical cryptography, unconditionally secure authentication schemes such as the

Wegman-Carter authentication scheme [125, 126] exist. Moreover, those uncondition-

ally secure authentication schemes are efficient: to authenticate an N -bit message, only

an order logN bits of the shared key are needed. Since a small amount of pre-shared

secure bits is needed between Alice and Bob, the goal of QKD is key growing, rather

than key distribution. Notice that in the conventional information theory, key growing

is an impossible task. Therefore, QKD provides a fundamental solution to a classically

impossible problem.

The procedure of the best-known QKD protocol, BB84, is as follows. We assume that

Alice uses polarization encoding.

1. Alice randomly chooses one of the four states (vertical, horizontal, 45-degree and

3In the original proposal [24], the author claimed that the final key is secure when the Bell’s inequality
is maximally violated. There are many follow-up works, such as [1].
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135-degree polarizations). Denote the rectangular basis as Z basis and the diagonal

basis as X basis. She sends the qubit to Bob through an insecure quantum channel.

2. Bob randomly chooses Z or X basis to measure the received states. He keeps his

measurement result secretly.

3. Through a public classical channel, Alice and Bob compare the basis and only keep

the measurement results that they use the same basis. This step is commonly called

basis reconciliation. If both of them randomly choose bases, they will discard half

of the detection results.

4. Alice and Bob implement error correction and privacy amplification to extract the

final secure key. Later, we will show how to realize this step, which is normally the

main focus of a security proof.

Eve may tamper the quantum channel and change/measure the states sent by Alice.

The last two steps together is called post-processing. It normally requires an authen-

ticated classical channel. That is, Eve can obtain all information about the classical

communication during the post-processing but not modify them.

Proving the security of QKD is a difficult problem in theory. Fortunately, this prob-

lem was solved in the last decade, see for example, [84, 62, 106, 52]. Many security

proofs are based on the assumption of idealized QKD system components, such as a

perfect single photon source and well-characterized detectors. In practice, inevitable

device imperfections may compromise security unless these imperfections are well inves-

tigated. Meanwhile, the security of QKD with realistic devices has been studied, see

[85, 70, 15, 25, 41, 54, 35] for examples. For more information about security proofs of

QKD, one can refer to Chapter 2. For a review of quantum cryptography, one may refer

to [31].

Experimental QKD has been successfully demonstrated over 100 km of transmission

distance through both commercial telecom fibers and free space [10, 113, 97, 14, 32, 102].

Commercial QKD systems are already on the market4. The main problem in the field is

the security and performance of a realistic QKD system.

4Note that there are three companies, id Quantique, MagiQ and Smartquantum, that have commercial
QKD products. However, the security has not been fully addressed yet.
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1.1.4 Cryptanalysis and Quantum Cryptanalysis

Cryptanalysis is the study of methods for obtaining the meaning of encrypted infor-

mation, without access to the secret information which is normally required to do so.

Typically, this involves finding the secret key. In non-technical language, this is the prac-

tice of code-breaking or cracking the code, although these phrases also have a specialized

technical meaning5.

In the quantum analogue, we need to consider loopholes that exist in QKD systems

and various attack strategies. The study of attacks has a two-fold meaning. First, it

investigates the security in a practical sense. Secondly, it is fundamentally interesting in

quantum mechanics. For example, a general physical problem in a practical QKD system

with two detectors is the detection efficiency loophole [80, 26]. This loophole underlies

not only applied technology, such as QKD, but also fundamental physics, such as Bell’s

inequality testing. Moreover, in practice, it is difficult to build two detectors that have

exactly the same characteristics. Our work of time-shift attack (see Section 9.2) is an

illustration of how one can proceed to handle this general problem in the security of

QKD.

1.2 Preliminary

In this section, we will provide a general picture of QKD and some terminologies used in

the thesis.

1.2.1 A QKD scenario

Let us introduce a few generic figures in QKD that we have already used in Section 1.1.3.

Alice, the sender, is the one who starts a key transmission. Bob, the receiver, is the

one who receives the quantum states and extracts the key sent by Alice. This is just a

convention used in the field, but not a strict definition. In some protocols, such as an

entanglement based QKD that will be discussed in Chapter 8, the roles of Alice and Bob

are interchangeable.

The third important character is the eavesdropper, Eve, who play a dark side here.

Eve is trying to intrude into the QKD and gain information about the key established

between Alice and Bob. One conservative assumption in the QKD is that Eve has full

5Definition from wikipedia.org.
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control of both the quantum and classical channels, knows the characteristics of the QKD

components very well6 and has a great computational power. For example, Eve may own

a quantum computer. Eve’s attack is only limited by quantum mechanics and other

physics laws.

Unconditional security is the Holy Grail of QKD, which means the security is proven

without any restrictions of Eve’s computational ability. As mentioned above, in an uncon-

ditional security proof, normally, Eve is assumed to own a powerful quantum computer

and have full control of the channels. On the other hand, in most of widely used con-

ventional classical cryptography protocols, security is proven by assuming that Eve has

a finite computational power. See for example, RSA [98]. Thus, with the development of

technology and algorithm, the assumption that is made today about computational power

does not guarantee security for tomorrow. For instance, Eve may store the encrypted

message and decrypt it in the future with better computational power or algorithm. From

this point of view, unconditional security is appealed to many real life applications.

1.2.2 QKD performance

To compare different QKD protocols or setups, one needs to characterize the performance

of QKD. There are two important aspects of QKD performance: key rate and maximal

secure distance.

We assume that Alice encodes the quantum information into faint laser pulses. If not

(e.g., Alice uses a photon source pumped by a continuous wave laser), then Alice and

Bob can manually partition the time domain into pulses. The key rate is defined to be

the average number of final secure key bits from one pulse. By multiplying the pulse

repetition rate (frequency), the key rate gives the speed of key generation.

Due to the loss and noise, all practical QKD systems have a limit of secure distance.

That is, beyond a certain distance, a QKD setup with a certain post-processing procedure

cannot achieve a positive secure key. The maximal secure distance is defined for a certain

QKD setup and the post-processing scheme as the maximal QKD transmission distance

that can yield a positive key rate.

We emphasize that the mentioned key rate and maximal secure distance here is always

based on a guaranteed (proven) security. In many cases, we regard this is the lower

bound in the sense that this performance as the least that one can achieve. Considering

6Eve might be the producer of QKD systems.
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a performance upper bound7 of QKD setups and protocols is also an interesting topic.

For example, one can refer to Refs. [27, 20].

For a real life application, certain performance is required. For instance, the state

of the art digital speech coding [94] typically needs a bit rate around 4-10 kbits/sec. A

typical city wide area network must cover an area with a radius of 5-25 km. Later, in the

conclusion of Chapter 5, we will see that the QKD performance with current technology

can achieve these requirements.

1.3 Motivation

The main objective of this thesis is to bring QKD to real-life applications. To do that,

we investigate the security issues of practical QKD systems and propose new techniques

to improve QKD performance.

1.3.1 QKD security

As discussed in Section 1.1.3, we need to take into account device imperfections to achieve

QKD security. For example, an imperfect single photon source may open up loopholes

for sophisticated attacks, such as photon number splitting attacks [39, 15, 71].

On the detection side, Eve may launch attacks on the imperfections of detections.

For instance, Eve may take advantage of the timing information of signal pulses. We will

present a feasible attack with current technology, a time-shift attack, in Section 9.2.

Thus, in order to guarantee the security of a practical system, QKD components are

closely investigated and a realistic model is established. Then, we link our model to the

existing security proofs. From there, we can learn about the assumptions that are made

to prove security and the requirements for QKD experiments.

1.3.2 A gap between theory and experiment

As mentioned in Section 1.2.2, in real-life applications, high QKD performance is required.

Naturally, there are two important aspects of QKD performance: key generation speed

(in bits/second) and transmission distance. Correspondingly, we will consider the two

7Beyond a upper bound, one surely cannot obtain a secure key.
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criteria, key rate8 and maximal secure distance, as discussed in Section 1.2.2.

On the theory side, much effort has been spent on the security proof of QKD with

imperfect devices [85, 70, 41, 54, 35]. By directly applying these security analyses, the

QKD performance is very limited. One can refer to the simulation part in Chapter 4.

On the other hand, the transmission distance of QKD experiment has been extended

from a few meters in the first QKD experiment to currently more than 150 km. If we

apply a standard security analysis, for instance, GLLP, the existing experiment setups

can only tolerate a very limited transmission distance (as the simulation results show in

Section 4.1.4). The key issue here is the security of the experiment. Thus, there is a big

gap between the theory and practice of QKD.

This thesis aims to bridge this gap between theory and practice by guaranteeing the

security and improving the performance of practical QKD.

Note that in some cases, security is sacrificed to achieve a better QKD performance.

In this thesis, we always guarantee the security first and then enhance the performance.

1.4 Highlight and Outline

During my Ph.D. program, I have completed the following projects by collaborating with

my colleagues.

• In Chapter 2, there will be reviews of various QKD security proofs and compar-

ison of two standard security proofs of QKD with realistic devices. This work is

published in Ref. [73].

• In Chapter 3, there will be a discussion on a widely used experiment setup and its

model. This work is published in Ref. [77]. Here I acknowledge that I benefited

very much from discussions about experiment setups with Bing Qi.

• In Chapter 4, the decoy state idea and its security proof will be discussed. This

work is published in Ref. [65]. In this work, I applied GLLP security analysis to a

decoy state QKD and simulated a QKD experiment [32] to show the improvement

given by using decoy states.

• In Chapter 5, practical decoy state protocols will be discussed. This work is pub-

lished in Ref. [77]. In this work, I applied the idea of the Vaccum+Weak decoy

8Note that developing a QKD system with a high repetition rate is an interesting topic in the field,
for example, see Ref. [108]. In this thesis, we will always focus on the key rate unless otherwise stated.
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state protocol, which was first proposed by Lo [60] and considered statistical fluc-

tuations. Furthermore, I designed the experimental parameters and analyzed data

in the decoy state QKD experiment demonstration [131, 132]. Hence, it can be

concluded that the decoy state idea is highly practical in real life applications.

• In Chapter 6, two post-processing schemes are studied based on two-way classical

communication for the decoy state method. This work is published in Ref. [74]. In

this work, I applied the Gottesman-Lo’s 2-LOCC9 entanglement distillation pro-

tocol (EDP) and recurrence scheme to a decoy state QKD and simulated a QKD

experiment to show the improvement by using two-way classical communication in

a decoy state QKD.

• In Chapter 7, various decoy state protocols are investigated for triggering paramet-

ric down-conversion sources. This work is presented in Ref. [76]. In this work, I

modeled the QKD setup with a triggered PDC source following Lütkenhaus’ work

[70] and compared various decoy state proposals of triggering PDC QKD.

• In Chapter 8, QKD with an entangled photon source will be discussed. This work is

published in Ref. [75]. In this work, I built an entangled PDC source model, applied

Koashi-Preskill’s security analysis and simulated a PDC experiment to show the

performance of the entanglement-based QKD in comparison with a triggered single

photon source and coherent state QKD.

• In Chapter 9, quantum attacks and security against these such attacks will be

investigated. These works are published in Refs. [90] and [29]. Aside from the decoy

state method, we also studied other methods for improving the QKD performance,

such as the dual detector scheme [93, 92]. I am not the main contributor of these

works. I joined in discussions and helped work out the details.

• In Chapter 10, a summary of my Ph.D. study is presented and some interesting

topics for future research are stated.

• In Appendix A, the common abbreviations used in the thesis is listed and some

detailed mathematical derivations are shown.

• In Appendix B, the optimization of the source intensity µ is discussed.

9See Appendix A.1 for the definition of LOCC.
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1.5 Future outlook

An interesting topic is the natural extension of the current work: further enhancement

of the performance of practical QKD systems. Continuous variable QKD is proposed to

achieve a higher key rate in short and medium transmission distance. An open question is

the security of continuous variable QKD. This is an appealing topic in the field. Modeling

and simulations for continuous variable QKD are also interesting.

Another crucial point is that in real life, one needs to consider some extra disturbances

(e.g., quantum signals may share the channel with regular classical signals). The final

goal is to achieve a customer friendly QKD system that can be easily integrated with the

Internet, for instance.

Statistical fluctuations need to be considered in QKD with a finite key length. There

is some work on this topic recently, e.g., [96]. An interesting topic is applying Koashi’s

complementary idea [53] to a finite key QKD and compare it with prior results.

An interesting topic outside quantum cryptography is whether the techniques devel-

oped in QKD can be useful in quantum computation. For example, do such models and

post-processing schemes also help quantum computation by linear optics realizations?

Finally, quantum information processing is related to the foundation of quantum

mechanics. As we know, quantum information (e.g., von Neumann entropy) can help

us in understanding quantum entanglement. What about other principles in quantum

mechanics?



Chapter 2

Security analysis

In this chapter, we will review various security proofs. We start with the objective of

security proofs and the underlying assumptions in current security proofs. We compare

two standard security proofs of the QKD with realistic devices. This work is published

in Ref. [73].

2.1 What are security proofs?

To serve as a secure key in cryptographic uses, there are two criteria:

(a) Alice and Bob share the same key; that is, an identical key.

(b) Eve has no information about the key; that is, a secure key.

With regards to a careful analysis and the formulation of security, see [96]. For necessary

and sufficient conditions for security, see [38].

The first criterion can be satisfied by performing a classical error correction, for

example, by using the Cascade code [16]. After that, Alice and Bob will share an identical

key. Next, Alice and Bob will perform privacy amplification, for instance, by random

hashing, to eliminate Eve’s information about the key.

The goal of current security analyses is to show how much privacy amplification needs

to be performed after a certain error correction procedure.

The main task for a security analysis is to figure what the length of the final secure

key is and perform hashing to obtain the final key.

12
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2.2 Squash model

In this section, we will formalize the widely used squash model in security proofs.

Note that the squash model is used in the security proof proposed by Gottesman, Lo,

Lütkenhaus, and Preskill (GLLP) [35], see also [51, 114, 7].

2.2.1 A calibration problem

In all the existing QKD security proofs, certain characteristics of sources and detectors are

assumed to be known or measurable. However, in reality, such a calibration procedure

is a very difficult task. For example, on Alice’s side, a good single photon source is

not available with current technology although much effort has been made in this field

[46, 68, 57, 43, 23, 127]. On Bob’s side, most of security proofs rely on the assumption

that Bob measures two conjugate bases (for instance, X and Z) of a qubit. In real QKD

experiments, threshold detectors1 are widely used. In summary, devices calibration form

a gap between the theory and practice of QKD.

In the experiment, to test (calibrate) a source, we need a good (well-characterized)

detection system. On the other hand, to characterize a detector, we need a well-tested

source. In QKD, we may even want to test these devices in real-time, which makes the

task even more difficult.

In most QKD proposals2, one needs to make sure that Bob’s (and sometimes also

Alice’s) measurement is performed in a two-dimensional Hilbert space. This assumption

is another way to state the squash model. We can see that this squash model assumption

is not easy to avoid. Note that even throwing away the squash model, one needs to have

certain assumptions about the side information. Later in Chapter 9, we will see that

some side information (e.g., timing) may cause fatal security issues in QKD.

2.2.2 Squash model

In theory, the squash model is proposed to avoid the aforementioned calibration problem.

As shown in Figure 2.1, the scenario that we are talking about here is as follows: Alice

prepares her own system ρ0
AB. In a prepare-and-measure scheme (e.g., BB84), ρA =

1A threshold detector can only tell whether the input signal is vacuum or non-vacuum. For a strict
mathematical definition, one can refer to Section 7.3.2.

2One exception approach is the so-called device-independent QKD protocol [1] based on Bell’s in-
equality [8]. However, no strict security analysis has been yet provided for this type of QKD protocols.
For recent developments of realistic threshold detector models, one can refer to Ref. [51].
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TrB(ρ0
AB) determines the basis and key bit value that she will pick up. She then sends

the system ρB0 = TrA(ρ0
AB) to Bob, which is intercepted by Eve. Eve performs some

operations and/or measurements on the system and resends a system ρB1 to Bob. After

passing through a filter, the state received by Bob is ρB. That is, Eve prepares a system

ρB for Bob, generally depending on the system sent by Alice. Finally, Alice and Bob

will extract a key from measurements on ρA and ρB. Alice and Bob’s detection system

follows the squash model.

Squash model: The detection system first performs a filter, projecting the incoming

state ρ (with an arbitrary dimension of Hilbert space) into a two-dimensional Hilbert

space state ρ2 or output a “failure” signal. If the projection succeeds, a projection

measurement will be performed in a basis3 in a two-dimensional Hilbert space.

Channel 

Bob Alice 

�
A 

Eve 

�
B �

B0 

Filter 

�
B1 

Figure 2.1: A schematic diagram for the squash model. The filter is the key component

of the squash model.

The schematic diagram of the squash model is shown in Figure 2.1. As we can see

that in the squash model, Bob always receives a qubit or vacuum. In other words, in the

squash model, Eve always sends a qubit or vacuum to Bob.

2.2.3 Remarks

1. The squash model is reasonable (but not necessarily correct) for threshold detector

cases. After treating the double click as a random click event, a threshold detector’s

response can always be described by a qubit or vacuum measurement outcome.

2. Even with only one photon, the squash model is still required in the existing security

proofs. This is because there are lots of degrees of freedom of a photon, for instance,

timing, polarization, phase [66] and space [91]. Thus, by using a perfect photon

number resolving detector, one cannot avoid the squash model.

3This basis can be randomly chosen from a conjugated bases set.



Chapter 2. Security analysis 15

3. The filter acts as a key component of the squash model. One can model the channel

losses and detector efficiency into the failure probability of the filter.

4. In the squash model, when double clicks4 happen, we assume that Alice and Bob

will assign a random bit when they get a double click, due to the strong pulse

attack [69].

5. In a rigorous security analysis, one needs to experimentally verify whether the

squash model gives a good description of a certain detection system. Take a widely

used threshold detector for example. One needs to open the detector, examine

the components carefully, then write down the quantum operations and compare

the operations described by the squash model. Again, we want to emphasize that

testing the model is a highly non-trivial task in the experiment.

6. Another way to avoid the device calibration problem is to propose so called device

independent QKD protocols, see for example, Ref. [1]. Up until now, a strict

security proof of these device independent QKD protocols is still missing. This is

an interesting prospective topic. Recently, security proofs of QKD with a more

realistic model, threshold detector model, are presented [51, 114, 7]. An interesting

theoretical question is whether the threshold detector model is equivalent to the

squash model.

2.3 Entanglement-based QKD

In this section, we will review the idea of the Lo-Chau type security proof [62] of QKD

based on entanglement distillation protocols (EDP) [13].

In the following discussion, we will use X and Z to represent two conjugate bases,

which are the Pauli operators:

X =

(

0 1

1 0

)

, Z =

(

1 0

0 −1

)

(2.1)

to represent two conjugate bases. The QKD scenario in Lo-Chau’s security proof can be

described as follows:

4This is when more than one detector have detection events for one key bit transmission. In general,
a double click probability is very small in comparison to dark count probability and detector efficiency.
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1. Alice prepares n EPR pairs in one of the four Bell states,

|ψ00〉 =
1√
2
(|00〉 + |11〉)

|ψ10〉 =
1√
2
(|01〉 + |10〉)

|ψ11〉 =
1√
2
(|01〉 − |10〉)

|ψ01〉 =
1√
2
(|00〉 − |11〉),

(2.2)

for instance, in |ψ00〉⊗n.

2. Alice sends half of each EPR pair to Bob and keeps the other half in her quantum

memory.

3. After he receives the half EPR pairs, Bob stores all the qubits into his quantum

memory.

4. Alice and Bob perform an EPD protocol [13] to distill m (m ≤ n) into nearly

perfect EPR pairs.

5. Alice and Bob measure the EPR pairs in the Z basis to obtain a shared secret key.

The key point of Lo-Chau’s security proof is that if in Step 4, Alice and Bob share nearly

perfect EPR pairs, the final key is secure. With a quantum computer, the amount of

EPR pairs that Alice and Bob can distill is given by:

m = n− rerr, (2.3)

where rerr is the amount of information (in bits) cost in the quantum error correction

process. Here, rerr can be regarded as the number of encrypted bits communicated

between Alice and Bob in the post-processing5.

2.4 Single-photon-based QKD

In this section, we will review Shor-Preskill’s security proof [106]. In Lo-Chau’s security,

the main drawback is that quantum computers (or at least quantum memories) are

required, which are not available with current technology. Based on Lo-Chau’s security

5In this case, we assume that Alice and Bob encrypt the communication for the error correction.
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proof, Shor and Preskill proposed a special EDP scheme, which can be reduced to a

prepare-and-measure scheme.

The EDP protocol proposed by Shor and Preskill is based on the Calderbank-Shor-

Steane (CSS) code [18, 107]. The basic idea of Shor-Preskill’s security proof is to replace

Step 4 of Lo-Chau’s security proof (see Section 2.3) by the following procedures:

(4.a) Alice and Bob pick up k testing EDP pairs randomly and both measure in Z basis

to estimate bit error rate, δb. We call the procedure that corrects this type of error,

bit error correction.

(4.b) They pick up another k testing EDP pair randomly and both measuring in X basis

to estimate the phase error rate, δp. Correspondingly, we call the procedure that

corrects this type of error, phase error correction.

(4.c) They abort the protocol if the error rates are too high. Otherwise, they apply a

quantum CSS code to correct the bit and phase errors separately. It is here that

an important property of the quantum CSS codes is applied: they can decouple

the phase correction from the bit correction [106].

(4.d) They can distill m (m ≤ n) nearly perfect EPR pairs by the quantum error correc-

tion procedure.

The key argument in Shor-Preskill’s security proof is that since the final Z measure-

ment (see Step 5 in Section 2.3) commutes with Steps 1-4, Alice and Bob can move this Z

measurement ahead of Step 1. Note that this is the reason why CSS codes are applied to

decouple bit and phase error corrections6. After this move, the bit error error correction

becomes a regular classical error correction and the phase error correction becomes a

privacy amplification. Now the modified procedure will be exactly the same as the BB84

protocol.

1. Alice prepares n qubits, each in one of the four eigenstates of X and Z. Here,

the reason for preparing X eigenstate is to make a symmetry between the bit and

phase error rates.

2. Alice sends the states to Bob.

6Note that the CSS code is a linear quantum error correction code. It uses two classical error
correction codes (e.g., C1 and C⊥2 with C2 ⊂ C1) to protect bit and phase errors separately. For a
detailed discussion of the reason why the CSS code can decouple bit and phase error corrections for
QKD, one can refer to Ref. [106].
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3. After he receives the states, Bob measures the states in X or Z bases randomly.

4. Alice and Bob perform a post-processing scheme to distill m (m ≤ n) into bits of

secure key.

(4.a) Alice and Bob pick up k measurement results to estimate the bit error rate,

δb.

(4.b) Due to the symmetry of BB84, they can estimate the phase error rate7 by

δp = δb.

(4.c) If the error rates are too high, they abort the protocol. Otherwise, they apply

a classical error correction code to correct all the bit errors.

(4.d) They apply a privacy amplification (for instance, random hashing) according

to the phase error rate, δp.

After the error correction and privacy amplification, the key rate is given by [106]:

R = qQµ [1 −H2(δb) −H2(δp)] , (2.4)

where q is the basis reconciliation factor (1/2 for the BB84 protocol due to the fact that

half of the time, Alice and Bob disagree with the bases, and if one uses the efficient BB84

protocol [63], q ≈ 1), Qµ is the filter success probability in the squash model8 and H2(x)

is the binary entropy function,

H2(x) = −x log2(x) − (1 − x) log2(1 − x). (2.5)

In summary, there are two main parts of the post-processing, error correction (for bit

error correction) and privacy amplification (for phase error correction). These two steps

can be understood as follows. First, Alice and Bob apply an error correction, after which

they share the same key strings, but Eve may still keep some information about the key.

Alice and Bob then perform a privacy amplification to expunge Eve’s information from

the key.

7Note that δp = δb is true for the case of infinite long key BB84. Later in Section 8.5.3, we will see
that this may not be true for a finite key length with statistical fluctuations. Note also that for other
protocols, such as the SARG04 protocol [101], it is no longer true that δp = δb [109, 28].

8Basically, Qµ is the probability for Bob to obtain a detection (not a vacuum) in a pulse of key
transmission. Later, in Section 3.2, one can see why we use the notation Qµ here.
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2.5 GLLP security analysis

In this section, we will review the Gottesman-Lo-Lütkenhaus-Preskill (GLLP) security

analysis idea [35]. It gives a security proof of BB84 QKD when realistic devices (such as

imperfect single photon sources) are used.

2.5.1 Tagged and untagged qubits

In the original proposal of the BB84 protocol (as well as in Shor-Preskill’s security proof),

a perfect single photon source is required. Unfortunately, single photon sources are still

not available with current technology. For the development of a single photon source, one

can refer to Refs. [46, 68, 57, 43, 23, 127]. Thus, intuitively, we can think there are two

components in an imperfect single photon source, one is good for BB84 and the other is

bad. Separating these two components is the main idea of GLLP.

There are two kind of qubits discussed in GLLP, tagged qubits and untagged qubits.

Tagged qubits are those that have their basis information revealed to Eve, i.e. tagged

qubits are not secure for QKD. On the other hand, untagged qubits are secure for QKD.

Note that the idea of the tagged state was (perhaps implicitly) introduced by Lütkenhaus

[70].

The untagged qubits basically come from the idea of a basis-independent source [54].

A basis-independent source means that, to Eve, the quantum states transmitted through

the channel are independent of the bases that Alice and Bob are choosing. Whereas

the tagged qubits come from basis-dependent sources, whose basis information may be

revealed to Eve.

Let us show a concrete example about tagged and untagged qubits. In BB84, qubits

coming from single-photon states are untagged, while those from multi-photon states are

tagged. This is because Eve, for instance, can perform photon-number splitting attacks

[39, 15, 71] to the multi-photon states. This may not true for other protocols. For

example, in SARG04 [101, 109], two-photon states can be used to extract secure keys.

2.5.2 Post-processing

The GLLP post-processing is performed as follows. First, Alice and Bob apply error

correction to all qubits, sacrificing a fraction H2(Eµ) of the raw key, which is represented

in the first term of Eq. (2.6) below. Secondly, in principle, Alice and Bob can distinguish

the tagged and untagged qubits (for instance, by measuring the photon numbers on
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Alice’s side), so they can apply the privacy amplification on the tagged state and untagged

state separately. One can imagine executing privacy amplification on two different strings,

the qubits stagged and suntagged arising from the tagged qubits and the untagged qubits

respectively. Since the privacy amplification is linear (for instance, by linear hashing),

the key obtained is the bitwise XOR

suntagged ⊕ stagged

of keys that could be obtained from the tagged and untagged qubits separately. If suntagged

is private and random, then it does not matter if Eve knows anything about stagged, the

sum will be still private and random. Thus, one only needs to apply privacy amplification

to the untagged bits.

We define the key generation rate as the ratio of the final key length to the total

number of pulses sent by Alice. Applying the GLLP idea to our model, Q1 is the amount

of untagged qubits. Thus, the key generation rate is given by [65]:

R ≥ q{−f(Eµ)QµH2(Eµ) +Q1[1 −H2(e1)]}, (2.6)

where q is the basis reconciliation factor as discussed in Eq. (2.4), Qµ and Eµ are the

overall gain (or filter success probability) and QBER, Q1 and e1 are the gain and error

rate of untagged qubits, and f(x) is the error correction inefficiency (see, for example,

[16]) as a function of the error rate, normally f(x) ≥ 1 with the Shannon limit f(x) = 1.

For detailed definitions of Qµ, Eµ, Q1 and e1, one can refer to Section 3.2.

Note that one can add Q0 into Eq. (2.6) by considering other security analysis [61],

see also [51].

2.5.3 An extension

The original GLLP idea only considers two types of qubits: tagged and untagged. For

BB84, it sets a phase error rate, δp = 1/2 for tagged qubits and δp = δb for the untagged

qubits. The idea of applying separate privacy amplification (GLLP) can be naturally

extended to the case of more than two classes of qubits [74], i.e. several kinds of qubits

with tag g, which generalizes the concept of tagged and untagged qubits. The procedure

of data post-processing is similar, an overall error correction step followed by privacy

amplification to each case. Therefore, the key generation rate is given by:

R ≥ q{−f(Eµ)QµH2(Eµ) +
∑

g

Qg[1 −H2(eg)]} (2.7)
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where Qg is the gain of the qubits with tag g and eg is the corresponding phase error

rate. Here, we want to emphasize that eg is not equal to the bit error rate of the qubits

with tag g in general, unless the qubits come from a basis-independent source.

This extension is useful for some post-processing schemes, e.g., SARG04 [101] and

2-LOCC post-processing schemes [74] (see Chapter 6).

The above discussion is a review of various security analysis. Next, we will compare

two standard security analysis schemes.

2.6 GLLP vs. Lütkenhaus’ security analysis

In this section, we will compare two data post-processing schemes, Lütkenhaus [70] versus

GLLP [35]. Here, we use Lütkenhaus’ security analysis, to refer to his work, see Ref. [70]9.

Note that Lütkenhaus’ security analysis proves the security against individual attacks,

while GLLP offers unconditional security. This work is published in Ref. [73].

We can rewrite the formula of the key generation rate by Lütkenhaus’ security analysis

scheme [70]

R ≥ q{−QµH2(Eµ) +Q1[1 − log2(1 + 4e1 − 4e21)]}, (2.8)

where the privacy amplification term log2(1+4e1−4e21) comes from collision probability.

Now, we can compare Eqs. (2.6) and (2.8). In both key rate formulae, the first term

in the bracket is for error correction and the second term is for privacy amplification.

The privacy amplification is only performed on the single photon part. In this manner,

Lütkenhaus [70] has already applied the idea of separate privacy amplification.

We can see that the only difference between the Lütkenhaus and GLLP results appears

in the privacy amplification part. We compare H2(e) with log2(1+4e1−4e21) in Figure 2.2.

We can see that the difference of the two functions is quite small. For this reason, in fact,

Lütkenhaus and GLLP give very similar results in the simulations of real experiments

[73].

Based on this observation, we find that there is little to gain by restricting the security

analysis to individual attacks, given that the two schemes; Lütkenhaus vs. GLLP, provide

very close performances. In other words, our view is that one is better off considering

unconditional security, rather than restricting to individual attacks.

9We acknowledge that Lütkenhaus has worked on many security analysis schemes, including ILM [41]
and GLLP [35].
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Figure 2.2: Plot of the privacy amplification parts of GLLP and Lütkenhaus. The max-

imal deviation of the two curves is 15.36% when the error rate is 3.85%.



Chapter 3

Setup and Model

In this chapter, we will discuss a widely used QKD setup and model. For now, we will

focus on the case where a weak coherent state source is used as an imperfect single photon

source by Alice. Nevertheless, many concepts from this generic model is useful for other

QKD setups. For example, in Chapter 7, we will modify this model to fit the case of the

QKD with triggered single photon sources.

This work is published in Ref. [77]. I acknowledge that I benefited very much from

discussions about experiment setups with Bing Qi.

3.1 QKD setup

As we pointed out earlier, due to the lack of a perfect single photon source for BB84,

a weak coherent state source is widely used. We call this setup a coherent state QKD

implementation. Similarly, perfect single photon detectors are commonly replaced by

threshold detectors. The setup is shown in Figure 3.1.

Channel 

Bob Alice 

Attn 

 LD 

PC 

RNG RNG 

PC 

D0 

D1 

PBS 

Figure 3.1: A schematic diagram for the coherent state QKD implementation. LD:

laser diode; Attn: optical attenuator; RNG: random number generator; PC: polarization

controller; PBS: polarization beam splitter; DB0, DB1: single photon detectors.
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As shown in Figure 3.1, the coherent state QKD implementation works as follows.

1. Alice uses a weak coherent state photon source. She attenuates the laser beam

from a laser diode (LD) with an optical attenuator (Attn). She uses a random

number generator (RNG) to generate random bits for her choice of basis and bit

values. She encodes one of four polarizations (eigenstates of X and Z bases) by a

polarization controller (PC).

2. Bob receives the quantum states from the channel. He uses a PC as a polarization

rotator for choosing his measurement basis, which is also controlled by a RNG.

Then he uses a polarization beam splitter (PBS) followed by two single photon

detectors (DA1 and DA2) to perform the measurement.

3.2 QKD model

There are three main parts for a QKD system: source, channel and detection. In this

section, we present a widely used QKD system model that follows Ref. [70]. See also

Ref. [77]. In the model, we assume that Alice sends out quantum signals in pulses. In

the case where Alice uses a continuous source, we assume that Alice and Bob manually

fit detections into pulses. This model is originally designed for the coherent state QKD,

but the channel and detection parts can also be used for other QKD implementations.

For example, in Chapter 8, we will modify the source part of this model to fit the case

of QKD with entangled photon sources.

3.2.1 Weak coherent state source

Highly attenuated lasers are often used as an imperfect single photon source in QKD. This

type of source can be well described by a weak coherent state, which is a superposition

of number states (aka Fock states) [103],

|α〉 = e−
|α|2

2

∞
∑

n=0

αn

√
n!
|n〉 (3.1)
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Assuming that the phase of the laser is randomized for each pulse, the density matrix of

the state emitted by Alice is given by:

ρA =
1

2π

2π
∫

0

dθ
∣

∣|α|eiθ
〉〈

|α|eiθ
∣

∣

=
1

2π

∞
∑

n=0

∞
∑

m=0

|α|n+m

√
n!m!

e−|α|2 |n〉〈m|
2π
∫

0

dθei(n−m)θ

=

∞
∑

n=0

µn

n!
e−µ|n〉〈n|

(3.2)

where θ is the phase of the coherent state and µ = |α|2, defined to be the intensity of the

photon source. The photon number follows a Poisson distribution:

P (n) =
µn

n!
e−µ. (3.3)

From here, we can see that there are three types of photon states:

1. vacuum state: |0〉〈0|

2. single photon state: |1〉〈1|

3. multi photon state: |n〉〈n| for n ≥ 2.

Here, we assume the squash model [35] as discussed in Section 2.2. That is, Eve receives

all the pulses sent by Alice. Eve performs some arbitrary operations and sends either a

vacuum or a qubit to Bob. Consequently, we denote the qubits coming from these three

states as vacuum, single photon and multi photon qubits.

A vacuum qubit is a qubit sent by Eve when Alice sends a vacuum state. In the case

without Eve’s presence, it is some random qubit stemmed from the dark counts of Bob’s

detector or other background contributions. Thus, it does not contribute positively to the

final secure key. Due to photon-number splitting attacks [39, 15, 71], multi photon states

are not secure for the BB84 protocol. Here is a key observation of this QKD model: the

final secure key can only be extracted from single photon qubits. Aside from BB84, this

is true for most present QKD protocols, such as the B92 [9], six-state [17] and N -state

[49] scheme. One exception is the SARG04 protocol [101], in which two-photon states

can also contribute to the secure key generation rate [109].
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3.2.2 Channel and detection

We use a beam splitter followed by a perfect single photon detector to model the channel

and detection. We define η to be the transmittance of the beam splitter. The loss is

composed by channel loss, internal loss in Bob’s detection system and detector efficiency.

We assume that the channel loss is related to the transmission distance by a loss coefficient

β measured in dB/km. The transmittance η is given by:

η = ηB10−
βl

10 . (3.4)

where ηB denotes the transmittance on Bob’s side, including the internal transmission

efficiency of optical components and detector efficiency. Here, we assume Bob uses thresh-

old detectors. That is to say, we assume that Bob’s detector can tell whether there is a

click or not, but not the actual photon number of the received signal.

In the simulation, we assume independence between the behaviors of the i photons

in i-photon states. Therefore, the transmittance of the i-photon state ηi with respect to

a threshold detector is given by:

ηi = 1 − (1 − η)i (3.5)

for i = 0, 1, 2, · · · .
Yield: Defines Yi as the yield of an i-photon state, i.e., the conditional probability

of a detection event at Bob’s side, given that Alice sends out an i-photon state. Note

that Y0 is the background rate which includes detector dark counts and other background

contributions.

The yield of the i-photon states Yi mainly comes from two parts, the background

and the true signal. Assuming that the background counts are independent of the signal

photon detection, then Yi is given by:

Yi = Y0 + ηi − Y0ηi

∼= Y0 + ηi.
(3.6)

Here, we assume Y0 (typically 10−5) and η (typically 10−3) are small.

The gain of i-photon states Qi is given by:

Qi = Yi

µi

i!
e−µ. (3.7)

The gain Qi is the probability that Alice sends out an i-photon state and Bob obtains a

detection. Then the overall gain, the probability for Bob to obtain a detection event in
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one pulse, is the sum over all Qis:

Qµ =

∞
∑

i=0

Yi

µi

i!
e−µ. (3.8)

The overall gain Qµ can also be understood as the filter success probability of the squash

model that we discussed in Section 2.2.

Quantum Bit Error Rate (QBER): The error rate of i-photon states ei is given

by

ei =
e0Y0 + edηi

Yi

(3.9)

where ed is the probability that a photon hits the erroneous detector. ed characterizes

the alignment and stability of the optical system. Experimentally, even at distances as

long as 120 km, ed is relatively independent of the distance [32]. In the following, we

assume that ed is independent of the transmission distance and the background clicks are

random. Thus, the error rate of the background is e0 = 1/2. Then the overall QBER is

given by:

Eµ =
1

Qµ

∞
∑

i=0

eiYi

µi

i!
e−µ. (3.10)

In the QKD scenario that we are considering, as discussed in Section 1.2.1, Eve can

change Yi and ei for her attacks. Without Eve, in a normal QKD, Eqs. (3.5), (3.6), (3.7)

and (3.9) are satisfied for all i = 0, 1, 2, · · · . Thus, the gain and QBER are given by:

Qµ = Y0 + 1 − e−ηµ

EµQµ = e0Y0 + ed(1 − e−ηµ).
(3.11)

Due the fact that Qµ and Eµ can be measured or tested from the experiment, we will

use Eq. (3.11) in later simulations.

3.2.3 Photon number channel model

The model described above can be understood in another equivalent model.

Photon number channel model: Alice and Bob have an infinite number of chan-

nels. For channel i, Alice sends out an i-photon state to carry the qubit information,

i = 0, 1, 2 · · · . In the aforementioned model, Alice chooses which channel to use with a

Poisson distribution, shown in Eq. (3.3), which is determined by her photon source.

Then Yi and ei can be regarded as the yield and error rate of channel i. Again, in our

QKD scenario, Eve has full control of all these channels and she can change the values

of Yi and ei.
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Note that one condition for these two models being equivalent is that Alice randomizes

the phase of each pulse. It turns out that in some situations, this phase randomization

procedure is crucial for security [66].

3.3 QKD hardware

Let us examine QKD system elements from a hardware point of view. In the model, we

can see that there are a few key components: laser source, channel link and detection

system. By having the knowledge of the characteristics of these components, we can fit

the model and perform simulations.

3.3.1 Laser source

In QKD experiments, two types of laser pulses are mostly used: telecom wavelength

(∼1550nm) and visible light (∼760nm). Note that the 1310nm light was also used for

QKD experiments. For example, see Ref. [97]. Later, we will see that the choice of the

wavelength, λ, determines the channel loss coefficient and detector efficiency.

3.3.2 Channel

There are mainly two types of QKD links: fiber and free space.

For fiber based QKD, the transmission distance is easy to vary. Thus, one can define

the channel loss coefficient, β in dB/km, which characterizes the loss dependence on

transmission distance. For example, the loss coefficient of telecom fiber is β = 0.2

dB/km. For the visible light, the fiber loss is high, β = 2.5 dB/km [113].

Since commonly used fibers are made of birefringent materials, it is difficult to main-

tain the polarization. Thus, phase encoding is widely used in fiber based QKD systems.

Note that phase encoding1 is equivalent to the polarization encoding [9].

For free space based QKD, in general, it is difficult to define β in dB/km. Instead,

the total link loss in dB is commonly used. One main source of loss for the free space

QKD implementation is the collection efficiency. Due to atmosphere scattering, the light

beam is widened on the receiver arm. For a detailed discussion on how the atmosphere

affects the light, one can refer to [86]. Note that the atmosphere is almost transparent to

1In a phase encoding scheme, Alice encodes her information into the relative phase between two
pulses [9].
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the visible light and it is a good medium for polarization maintenance. Later, we will see

that the detector efficiency for visible light is normally higher than the one for telecom

wavelength. Thus, in general, visible light is commonly chosen for free space based QKD.

3.3.3 Detection

For a detection system, four parameters are important.

• ηB: detection efficiency, including detector efficiency and the internal transmission

(coupling) efficiency of optical components inside Bob’s box. The typical detection

efficiency for a telecom wavelength2 is 1 ∼ 5%, while for a visible wavelength, it

can be as high as 20%.

• Y0: background count rate (probability), including dark counts and other back-

ground contributions. Note that if two detectors are used in a QKD system, then

Y0 should be the sum of the dark count rates of the two detectors in addition to

other background contributions.

• ed: intrinsic detector error probability, which characterizes the alignment and sta-

bility of the optical system. In our model,we assume that ed is independent of the

transmission distance.

• repetition rate: in practice, the repetition rate of detectors limits the key transmis-

sion speed. The product of key rate R and repetition rate gives the key generation

speed in bits/second. Normally, in an experiment, the laser pulses can be designed

to be fast. The repetition rate is mainly limited by the detection system, e.g., the

detector dead time and detection time-resolution.

In the model, we assume that there are two main sources of QBER, one from Y0,

which depends on channel loss3 and the other from ed, which is independent of channel

loss.

Note that there are a few developments in building single photon detectors during

recent years, such as superconducting materials based detectors [100] and up-conversion

detectors [59, 111]

2Here, we consider a widely used detection system with single photon detectors based on InGaAs/InP
avalanche photodiodes.

3This part is roughly determined by the ratio Y0/η.



Chapter 3. Setup and Model 30

Later in the simulations, we use setup parameters from the QKD experiment com-

pleted by Gobby, Yuan and Shields (GYS) [32]. The key parameters of the experiment

setup are listed in Table 3.1.

λ [nm] β [dB/km] ηB ed Y0

1550 0.21 4.5% 3.3% 1.7 × 10−6

Table 3.1: Parameters of the QKD experiment setup from GYS [32].
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Decoy state

The decoy state method was first proposed by Hwang [40] to improve the performance

of the coherent state QKD. We have proven the security of the QKD with decoy states

[60, 72, 65] and demonstrated its practical advantage. In Hwang’s original decoy state

method, she suggested the use of a strong coherent state (with ν > µ) for decoy states.

In contrast, we propose using weak coherent states. Subsequently, some practical de-

coy state protocols with only one or two decoy states are proposed [77]. We highlight

that practical decoy state protocols were also proposed by Wang [123, 124], Harrington,

Ettinger, Hughes and Nordholt [36].

The experimental demonstrations for the decoy state method have been completed

recently [131, 132, 99, 115, 88, 129, 128]. Note that aside from the decoy state method, we

also studied other methods to improve the QKD performance, such as the dual detector

scheme [93].

This work is published in Ref. [65]. By collaborating with Hoi-Kwong Lo and Kai

Chen, I apply the GLLP security analysis to a decoy state QKD. With the model de-

scribed in Section 3.2, I simulate a QKD experiment [32] to show the improvement given

by using decoy states.

4.1 Decoy state

In this section, we present the QKD with decoy states. By simulating a real experiment

setup, we compare two cases: a decoy and non-decoy state QKD.

31
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4.1.1 Motivation

As discussed in Section 2.5, in the GLLP security analysis, Alice and Bob need to deter-

mine the portion of tagged and untagged qubits to implement privacy amplification.

From Eq. (2.6), we can see that Qµ and Eµ can be measured or tested from the

experiment. Alice and Bob need to estimate Q1 and e1 to determine the amount of

privacy amplification that is needed.

On the other hand, as we presented in Section 3.2, Eve has full control of the channel.

Thus, she might block out single photon states, which is not good for her attack and make

the channel transparent to the multi photon states. Thus, one pessimistic assumption is

that all losses and errors come from a single photon state [70, 35]. That is, set Yi = 1

and ei = 0 for i ≥ 2 in Eqs. (3.8) and (3.10). Thus, the estimations of Q1 and e1 without

decoy states are:

Q1 ≥ Qµ −
∞
∑

i=2

µi

i!
e−µ

e1 ≤
EµQµ

Q1

(4.1)

Here, note that since Alice and Bob cannot distinguish vacuum (background) contribution

and single photon state contribution1, they have to consider these two states together.

For a vacuum qubit, since it is a random state, δb = δp = 1/2. Thus, for the combined

state (single photon state and vacuum state), we still have δb = δp.

Later in the simulation, we will see that the key rate and maximal secure distance

of a coherent state QKD without decoy states are quite limited. In order to lower the

amount of necessary privacy amplification, one needs to have a better estimation of Q1

and e1. From Eq. (3.7), we know that in order to estimate Q1, one needs to estimate Y1.

Therefore, the question is: how can Alice and Bob estimate Y1 and e1 accurately? This

is the motivation of the decoy state scheme.

4.1.2 Solution

From the model described in Section 3.2, there are two observations. First, Yi and ei can

be changed by Eve, so they are unknowns to Alice and Bob. Secondly, Qµ and Eµ can be

determined by Alice and Bob. Thus, Alice and Bob need to estimate Y1 and e1 by using

the knowledge of Qµ and Eµ. If Eqs. (3.8) and (3.10) are just considered, then Alice and

1Or, they cannot estimate the detection contributions from vacuum qubits, Q0.
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Bob have to assume the worst scenario: all losses and errors come from the single photon

state.

We can see that Eqs. (3.8) and (3.10) are linear equations of Yi and Yiei. In addition

to the regular signal state, if Alice sends out extra pulses with different intensities, µ,

they will obtain more than one linear equation in the form of Eqs. (3.8) and (3.10). Here

comes the key assumption of the decoy state method:

Yi(decoy) = Yi(signal)

ei(decoy) = ei(signal).
(4.2)

These extra pulses are called decoy states. In the infinite decoy case [65], Alice and Bob

perform an infinite number of decoy states, and then they can solve an infinite number

of linear equations to obtain Y1 and e1 accurately. We call this case the infinite decoy

state protocol. Here, note that with the infinite decoy state, one can strictly show [64]

that the beam-splitting channel model discussed in Section 3.2.2 is a valid assumption.

An intuition on why this can be done: from Eqs. (3.8) and (3.10), we can see that the

contribution from high order terms of Yi and ei converge to 0 exponentially2. If one only

focuses on Y1 and e1, the number of unknowns can be chopped off to a finite number. In

the next chapter, we will see that one or two decoy states are sufficient for practical use.

In the simulation, we will use Eqs. (3.6) and (3.9) for the infinite decoy state case. For

a detailed procedure of the decoy state method, one can refer to Section 5.4.2.

In the following discussion, µ always refers to the intensity (expected photon number)

of the signal state used for real key transmission. We will use ν for the expected photon

number of decoy states.

4.1.3 Discussion

In a large parameter regime when the background contribution can be negligible and the

error rate is not large, the key rate is roughly in the order of R = O(µη) from Eq. (2.6).

In Appendix B.1.1, we show that the optimal µ for the non-decoy state case is µ =

O(η). Thus, the key rate is R = O(η2). That is, the key rate is quadratically dependent

on the channel transmission. Note that in general, the channel transmission is quite

low, typically less than 1%. This is the intrinsic reason why the performance of a QKD

without decoy states is very limited.

2Actually, n! is quicker than exponential convergence.



Chapter 4. Decoy state 34

On the other hand, in Appendix B.1.1, we show that the optimal µ for the infinite

decoy state case is µ = O(1). Thus, the key rate is R = O(η). That is, the key rate

is linearly dependent on the channel transmission. Note that even with a perfect single

photon source, the highest order the key rate can reach is R = O(η). Hence, with decoy

states, one can treat a weak coherent state as a good single photon source for a QKD.

Note that this conclusion is also true for other photon sources, e.g., triggering PDC

sources [76], see discussions in Chapter 7.

4.1.4 Simulation

We simulate a recent coherent state QKD experiment [32]. This is to compare the cases

with and without decoy states. The parameters of the experiment setup are listed in

Table 3.1.

For both cases, the key rate formula is the same, see Eq. (2.6). By using the Cascade

protocol [16], the error correction efficiency is f(Eµ) = 1.22. The gain Qµ and QBER

Eµ can be measured or tested from the experiment. Therefore, for both cases, we use

the same formulae, Eqs. (3.8) and (3.10). The estimations of Q1 and e1 are different.

For the case without decoy states, we use the formulae of Eq. (4.1). For the case with

decoy states, we assume that Alice and Bob can estimate Q1 and e1 accurately. In the

simulation, we use the formulae of Eqs. (3.6) and (3.9).

As shown in Appendix B.1, we choose µ = 0.48 for the case with decoy states and

µ = η for the case without decoy states. The simulation result is shown in Figure 4.1.

From the simulation result, we can see that the decoy state method can improve the

QKD performance dramatically.

1. With decoy states, the maximal distance can reach 142 km. For comparison, we

find that with the prior art method, the maximal secure distance is only about 32

km.

2. At 0 km distance, the key rates for decoy and no decoy cases are: 2.55× 10−3 and

7.97× 10−5. As we can clearly see, the gap between two curves increases when the

distance increases.

3. By comparing the upper bound of the key rate, which is discussed in the next

section, one can see that in a large parameter regime (for instance, the distance

between 0 km and 120 km), the decoy state protocol can achieve a close performance

as the upper bound shown in Section 4.2.2.



Chapter 4. Decoy state 35

0 20 40 60 80 100 120 140 160
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Transmission distance [km]

K
ey

 g
en

er
at

io
n 

ra
te

 [p
er

 p
ul

se
]

Upper bound
Asymptotic decoy
No decoy

Figure 4.1: Plot of the key rate as a function of the transmission distance, comparing

the coherent state QKD with decoy states and without decoy states. The calculation of

the upper bound is shown in Section 4.2.2. The experiment setup parameters are listed

in Table 3.1.

4. We checked that our results are stable to small perturbations of the background

count rate Y0 and average photon number µ (both up to a 20% change).

4.2 Upper Bounds

As we mentioned in Section 1.2.2, we are interested in maximizing two quantities, key rate

and maximal secure distance. In this section, we investigate the upper bounds of these

two quantities. By comparing the upper bound performance and the decoy state QKD

performance, we want to investigate how much room is left for further improvement.

4.2.1 Distance upper bound

Due to a simple intercept-and-resend attack, an upper bound on the bit error rate of the

BB84 protocol with single photon states is 25%. The maximal secure distance then can

be bounded by the distance when the bit error rate of the single photon states e1 reaches
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25%. According to our model, Eq. (3.9):

e1 =
edη + 1

2
Y0

η + Y0

where ed is the intrinsic error rate of Bob’s detectors, η is the overall transmittance, and

Y0 is the background rate. Thus, e1 exceeds 25% when

η ≤ 0.25Y0

0.25 − ed

. (4.3)

In GYS [32]’s case, the upper bound of the secure distance is 208 km by considering the

parameters listed in Table 3.1.

4.2.2 Key rate upper bound

As for the BB84 protocol, the final secure key can only be derived from single photon

qubits. To derive the upper bound of a key generation rate, we assume that Alice and Bob

can distinguish the single photon qubits from other qubits (vacuum and multi photon

qubits). Therefore, they can perform the classical data post-processing only onto the

single photon qubits. One simple upper bound3 of key generation rate is given by the

mutual information between Alice and Bob [83]:

RU = Q1[1 −H2(e1)], (4.4)

where Q1 and e1 are the gain and error rate of single photon states, respectively. The

simulation result is shown in Figure 4.1.

Note that the above two upper bounds, Eqs. (4.3) and (4.4), rely on two assumptions.

• Alice and Bob cannot distinguish background counts and true signal counts. That

is, they cannot decouple ed from e1 in Eq. (3.9).

• A secure key can only be extracted from single photon states. This is true for BB84

and many other protocols. An exception is the SARG04 protocol [101].

Note that these two bounds are general upper bounds, regardless of the technique

used for combating the effect of imperfect devices, such as the decoy state technique.

3Note that this upper bound is true for any post-processing (based on 1-LOCC or 2-LOCC) Alice
and Bob use in BB84.
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4.3 Discussion

First, from the simulation, we can see that the decoy state technique can dramatically

improve the QKD performance. Later, we will discuss practical protocols for the decoy

state QKD and experiment demonstrations. From there, we show that the decoy state

method is highly practical.

In comparison to the key rate upper bound, in a large distance regime (for instance,

the distance between 0 km and 120 km), the decoy state protocol achieves a close perfor-

mance to the theoretical limit. Compared to the maximal secure distance upper bound,

208 km, there is a 60 km gap between the theoretical limit and decoy state protocol.

Later, by combining two-way classical communication post-processing schemes, we push

this maximal secure distance for the infinite decoy state protocol beyond 180 km. From

here, we can see that the decoy state protocol pushes the QKD performance close to the

theoretical limit.

Therefore, we expect the decoy state protocol to be a standard technique for prepare-

and-measure QKD scheme implementations.

Let us recap the key assumptions underlying the security proof for the decoy state

QKD: first, there is the squash model and secondly, there is the assumption that Eve can-

not distinguish decoy and signal states during key transmission. The second assumption

is equivalent to Eq. (4.2). Later in Section 5.4, we can see that verifying this assumption

is a nontrivial task in real experiments. On the other hand, in Chapter 7, we show that

this assumption can be loosened by using other single photon sources.
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Practical decoy state

In this chapter, we will discuss practical proposals of the decoy state QKD and experi-

mental demonstrations. Here again, we will focus on the coherent state BB84 QKD.

The work of practical decoy state proposals is published in Ref. [77]. In this work, I

apply the idea of the Vaccum+Weak decoy state protocol, which was first proposed by Lo

[60], and consider statistical fluctuations. Here, I would like to highlight the theoretical

contributions to the practical decoy state QKD from other groups [36, 123, 124].

The work for the experimental demonstration is published in Refs. [131, 132]. In this

work, I designed the experimental parameters and analyzed data in the decoy state QKD

experiment demonstration. Here, I would like to highlight the experimental demonstra-

tions completed by other groups [131, 132, 99, 115, 88, 129, 128].

Note that aside from the decoy state method, we also studied other methods to

improve the QKD performance, such as the dual detector scheme [93].

5.1 Practical proposals

The general question in a decoy state scheme with m decoy states can be described by

the following mathematical question.

Question: Given 2(m + 1) constrains in the form of Eqs. (3.8) and (3.10),

how do we obtain the lower bound of R given by Eq. (2.6)?

When m → ∞, Alice and Bob can solve Y1 and e1 accurately, in principle. This is

the infinite case described in Section 4.1.

In the following, we will present three practical decoy methods, the Vacuum+Weak

decoy state and one decoy state, and a numerical method. For a general discussion of the

38
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two decoy state methods, one can refer to Ref. [77]. Note that in Ref. [77], we proved that

the Vacuum+Weak decoy state protocol is optimal within the two decoy state methods.

5.1.1 Vacuum+Weak decoy

In this method, two decoy states are performed to bound Y1 and e1 separately. First,

Alice and Bob implement a vacuum decoy state where Alice simply shuts off her photon

source. In this case, all detections that Bob obtains are background counts

Qvacuum = Y0

Evacuum = e0 =
1

2
.

(5.1)

The background counts occur randomly, thus its error rate is e0 = 1/2. The vacuum

decoy state allows Alice and Bob to estimate the background rate Y0.

Secondly, they perform a weak decoy state where Alice uses a weaker intensity ν

(ν < µ) for the decoy state. In this case, Bob’s detections mainly come from two parts:

background and single photon contributions. This is because when the intensity is weak,

the probability of obtaining a multi photon state is small. With the estimation from the

vacuum decoy state, one can estimate Y1 and e1 from the weak decoy state.

Now, let us strictly solve the problem. The gains of the signal state and decoy state

are given by Eq. (3.8)

Qµe
µ = Y0 + µY1 +

µ2

2
Y2 +

µ3

3!
Y3 + · · ·

Qνe
ν = Y0 + νY1 +

ν2

2
Y2 +

ν3

3!
Y3 + · · ·

(5.2)

Considering µ2Qνe
ν − ν2Qµe

µ, we find that:

µ2Qνe
ν − ν2Qµe

µ = (µ2 − ν2)Y0 + µν(µ− ν)Y1 + µ2ν2 ν − µ

3!
Y3 + · · · , (5.3)

thus:

Y1 ≥ Y L
1 =

µ

µν − ν2

(

Qνe
ν −Qµe

µ ν
2

µ2
− µ2 − ν2

µ2
Y0

)

(5.4)

since ν < µ and all Yi ∈ [0, 1].

The upper bound of e1 can be simply derived by Eq. (3.10):

e1 ≤ eU
1 =

EνQνe
ν − e0Y0

Y L
1 ν

. (5.5)
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Substituting the normal case (without Eve) values, Eqs. (3.11), into these estimations,

in the limit of ν ≪ µ, we get:

Y L
1 → η + Y1

e1Y1 → e0Y0 + edη
(5.6)

which is consistent with the expected value given by Eqs. (3.6) and (3.9). Thus, asymp-

totically, the Vacuum+Weak decoy method gives a tight lower bound of the key rate. In

other words, the infinite decoy state protocol described in Section 4.1 is the asymptotic

limit of the Vacuum+Weak decoy state protocol.

Now let us examine how good these two bounds are by using the parameters listed

in Table 3.1. Here, we define the deviation of the bounds:

βY 1 ≡
Y1 − Y L

1

Y1

βe1 ≡
eU
1 − e1
e1

.

(5.7)

The simulation result is shown in Figure 5.1.

From the simulation, we can see that both deviations are relatively independent of

the channel transmission distance. The deviation of eU
1 is larger than the one of Y L

1 .

The choice of a weak decoy state ν is not very constrained since even with ν/µ ≈ 1/4,

the deviation is small. In Table 5.1, we can see that with ν/µ ≈ 1/4, the key rate from

the Vacuum+Weak decoy state protocol achieves a very close performance of the infinite

decoy state case.

Distance Y1 e1 Rinf Y L
1 eU

1 Rvw

0 km 4.50 × 10−2 3.30% 2.55 × 10−3 4.34 × 10−2 3.88% 2.19 × 10−3

70 km 1.53 × 10−3 3.35% 8.28 × 10−5 1.47 × 10−4 3.95% 6.99 × 10−5

130 km 8.55 × 10−5 4.23% 1.96 × 10−6 8.23 × 10−5 4.91% 1.24 × 10−5

Table 5.1: List of the simulation results for three distances: 0 km, 70 km and 130 km,

comparing the Vacuum+Weak protocol with the case of the infinite (asymptotic) decoy

state. For both protocols, we use µ = 0.48. For the Vacuum+Weak decoy state protocol,

we use ν = 0.13. Parameters of the QKD experiment setup are listed in Table 3.1.

Here, we compare Eqs. (3.6), (3.9), (5.4) and (5.5) by simulating the GYS experiment.

We can see that the deviation of the key rate given by the Vacuum+Weak decoy state

protocol and infinite decoy state protocol increases when the distance reaches the maximal

secure distance. Similar to the conclusion from Figure 5.1, the deviation of Y L
1 from Y1

is small throughout the whole distance regime.
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Figure 5.1: Plot of the relative deviations of Y L
1 and eU

1 from the expected values (i.e.,

the case ν → 0) as functions of ν/µ with the fiber length 40 km (solid lines) and 140 km

(dashed lines). The bounds Y L
1 and eU

1 are given by Eqs. (5.4) and (5.5), and the expected

values are given by Eqs. (3.6) and (3.9). We consider the Vacuum+Weak protocol here.

The expected photon number is µ = 0.48 from the optimization calculation of Eq. (B.4) in

Appendix B.1.2. The experiment setup parameters are from GYS [32], listed in Table 3.1.

5.1.2 One decoy

In some realistic situations, a vacuum decoy state may not be easy to perform, or the

background count rate cannot be estimated accurately due to the fact that Y0 is small

(typically 10−5). Consequently, one needs to consider a case without the vacuum decoy

state. That is, Alice and Bob only perform a weak decoy state.

We treat the one decoy state method as an imperfect case of the Vacuum+Weak

method. Assume that Alice and Bob perform the Vacuum+Weak decoy method, but

they prepare very few states as vacuum decoy states. Therefore, they cannot estimate Y0

very well. The one decoy protocol is the same as a Vacuum+Weak decoy state protocol,

except that the value of Y0 is unknown. Since Alice and Bob do not know Y0, Eve can

pick Y0 as she wishes. We argue that, on physical grounds, it is advantageous for Eve

to pick Y0 to be zero. This is because Eve may gather more information on the single-
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photon signal than the vacuum. Therefore, the bound for the case Y0 = 0 should apply

to our one decoy protocol. For this reason, Alice and Bob can derive a bound on the key

generation rate, R, by substituting Y0 = 0 in Eqs. (5.4) and (5.5).

Mathematically, one can treat Y0 as an unknown variable in Eqs. (5.4) and (5.5), and

determine the lower bound of the key generation rate, Eq. (2.6), for all possible Y0. By

taking the derivative of Eq. (2.6), one can find that

Y trial
1 =

µ

µν − ν2
(Qνe

ν −Qµe
µ ν

2

µ2
)

etrial
1 =

EνQνe
ν

Y trial
1 ν

(5.8)

gives a lower bound of the key rate.

Later, in the next subsection, we will present a numerical method to estimate the key

rate R. Now we can compare Eq. (5.8) with the numerical method by simulating the

GYS experiment. In this case, we consider three distances: 0 km, 70 km and 130 km.

Distance Y trial
1 etrial

1 Rone Y num
1 enum

1 Rnum

0 km 4.34 × 10−2 3.89% 2.19 × 10−3 4.36 × 10−2 3.84% 2.22 × 10−3

70 km 1.48 × 10−3 4.40% 6.55 × 10−5 1.48 × 10−3 3.76% 7.26 × 10−5

130 km 9.93 × 10−5 13.0% 0 8.33 × 10−5 4.34% 1.65 × 10−6

Table 5.2: List of simulation results for three distances: 0 km, 70 km and 130 km,

comparing the one decoy state protocol with the numerical optimization method shown

in the next subsection. For both protocols, we use µ = 0.48 and ν = 0.13. Parameters

of the QKD experiment setup are listed in Table 3.1.

By comparing Tables 5.1 and 5.2, we can see that the numerical method, shown

in the next subsection, can give the highest key rate of the three practical decoy state

protocols. However, note that all four methods; infinite decoy, Vacuum+Weak, one-decoy

and numerical method, achieve a close QKD performance in a large parameter regime.

Here, we have not considered the statistical fluctuations. After considering the statistical

fluctuations, the simulation result is shown in Figure 5.3.

5.1.3 Numerical method

Both the Vacuum+Weak and one decoy state protocols presented above bound Y1 and

e1 separately. With reference to the original question that we were trying to solve in
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the beginning of this section, what we really want to bound is the key rate of Eq. (2.6)

instead of Y1 and e1 separately.

One natural practical decoy state protocol will be a numerical solution to the question

stated in the beginning of this section. To do that, one need to find the lower bound R

of Eq. (2.6) given the constraints of Eqs. (3.8) and (3.10):

Qµe
µ = Y0 + µY1 +

µ2

2
Y2 +

µ3

3!
Y3 + · · ·

Qνe
ν = Y0 + νY1 +

ν2

2
Y2 +

ν3

3!
Y3 + · · ·

EµQµe
µ = Y0e0 + µY1e1 +

µ2

2
Y2e2 +

µ3

3!
Y3e3 + · · ·

EνQνe
ν = Y0e0 + νY1e1 +

ν2

2
Y2e2 +

ν3

3!
Y3e3 + · · · .

(5.9)

The difference between the Vacuum+Weak and one decoy state protocols is whether Y0

is known or not.

In order to solve this question numerically, one needs to put a cut-off of Yi and ei.

Later in the simulation, we will consider a cut-off of i = 20. That is, Yi = ei = 0 for

i >= 20. Note that for i = 20 and µ = 1, the probability is P (20) = 1.51 × 10−19

according to the Poisson distribution of the source photon number given by Eq. (3.3).

For a reasonable finite key transmission, the higher order terms can be neglected.

We present the numerical solutions in Table 5.3 by using the parameters in Table 3.1.

Distance Y1 Y2 Y3 e1 e2 R

0 km 4.36 × 10−2 1.15 × 10−1 5.86 × 10−13 3.84% 5.86 × 10−13 2.22 × 10−3

70 km 1.48 × 10−3 4.01 × 10−3 5.45 × 10−4 3.76% 4.47 × 10−3 7.26 × 10−5

130 km 8.33 × 10−6 2.15 × 10−5 5.86 × 10−13 4.34% 3.17% 1.65 × 10−6

Table 5.3: Comparison of the numerical result with the infinite decoy state (asymptotic)

case and the Vacuum+Weak protocol. For all three protocols, we use µ = 0.48. For the

two practical decoy state protocol, we use ν = 0.1. Parameters of the QKD experiment

setup from GYS [32].

Here, we have not considered the statistical fluctuations. From Table 5.3, we have

following remarks:

1. If we only consider Eq. (5.4), Eve’s optimal attack will be setting Yi = 0 for i ≥ 3.

However, if we consider the numerical decoy state method as shown in Table 5.3,
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Eve might choose Yi 6= 0 for i ≥ 31.

2. The result for the numerical decoy state method is relatively stable with a choice

of a cut-off n. If we choose n = 30 or n = 40, the result fluctuates within 3%. Note

that the numerical optimization algorithm that we used here might not be optimal.

5.2 Statistical fluctuation analysis

In this section, we will discuss the effect of finite data size on our estimation process for

Y1 and e1. We will also discuss how statistical fluctuations might affect our choice of the

weak decoy state intensity ν.

All real-life experiments are implemented within a finite period of time. Ideally, we

would like to consider a QKD experiment that can be performed within, for instance, a

few hours or so. This means that the experiment data size is finite. Shortly, we will see

that the statistical fluctuation analysis is a rather complex problem. We do not have a

full solution to the problem. Nonetheless, we will provide some rough estimation based

on the standard error analysis which suggests that the statistical fluctuation problem of

the practical decoy state methods for a QKD experiment appears to be under control, if

the experiment is run over only a few hours.

5.2.1 What parameters are fluctuating?

Recall that in Eq. (2.6), there are four key parameters: the gain Qµ and QBER Eµ of

the signal state and the gain Q1 and error rate e1 of the single photon state.

After key transmission, Bob can count the exact number of clicks and knows the total

number of pulses. Hence, the gain of signal state Qµ, the ratio of the aforementioned

two numbers, is measured directly from the experiment. Therefore, they do not need to

consider the fluctuation of Qµ.

In practice, Alice and Bob do not really need to sacrifice testing bits to estimate Eµ.

They can directly apply some classical error correction code, for instance, the Cascade [16]

code, to correct all bit errors. Then they check whether the error correction is successful

or not2. Afterwards, they can calculate (if necessary) Eµ by counting the number of

errors. Thus, there is no fluctuation for Eµ as well.

1In the numerical result, we find that Y3 is always relatively small in comparison to Y2, but the values
of Yi for i ≥ 4 are in the same order of Y2.

2This can be done efficiently by random parity check.
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Thus, there is no fluctuation in the error correction part. The difficult part of the

statistical fluctuation analysis is in the privacy amplification part. In the following dis-

cussion, we will focus on the statistical fluctuation analysis of the Vacuum+Weak decoy

state method. To show the complexity of the problem, we will now discuss the following

five sources of fluctuations.

1. In practice, the intensity of the lasers used by Alice will be fluctuating. In other

words, even the parameters µ and ν suffer from fluctuations. Without hard experi-

mental data, it is difficult to pinpoint the extent of their fluctuations. Furthermore,

the source may not even be a strict coherent state. To simplify our analysis, we

will ignore their fluctuations in this thesis.

2. Up until now, in our analysis, we have assumed that the distribution of the photon

number eigenstates (Fock states) in each type of state is fixed, see Eq. (3.3). For

instance, ifN signal states of intensity µ are emitted, we assume that exactlyNµe−µ

out of the N signal states are single photons. In real-life, the value of µe−µ is only

a probability, the actual number of single photon signals will fluctuate statistically.

This fluctuation is dictated by the law of large number. Hence, this problem should

be solvable3. For simplicity, we will neglect this source of fluctuations in this thesis.

3. The yield Yi may fluctuate in the sense that Yi for the signal state might be slightly

different from Y ′
i of the decoy state. Note that if one uses the vacuum state as

one of the decoy states, then by observing the yield of the vacuum decoy state,

conceptually, one has a very good handle on the yield of the vacuum component

of the signal state (in terms of hypergeometric functions). However, note that the

background rate is generally rather low (typically 10−5). Therefore, to obtain a

reasonable estimation on the background rate, a rather large number (for instance,

107) of the vacuum decoy states will be needed4. Note that, with the exception of

the case i = 0 (the vacuum case), neither Yi and Y ′
i are directly observable in an

experiment. In a real experiment, one can measure only some averaged properties.

For instance, the gain Qµ of the signal state, which can be experimentally mea-

3It was subsequently pointed out to us by Gottesman and Preskill that the above two sources of
fluctuations can be combined into the fluctuations in the photon number frequency distribution of the
underlying signal and decoy states. These fluctuations will generally be averaged out to zero in the limit
of a large number of signals, provided that there is no systematic error in the experimental set-up.

4As noted in Ref. [65], even a 20% fluctuation in the background will have a small effect on the QKD
performance.
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sured, has its origin as the weighted averaged yields of the various photon number

eigenstates Yis whereas the Qν for the decoy state is given by the weighted aver-

aged of Y ′
i s. Relating the observed averaged properties, e.g., Qµ, to the underlying

values of Yis is a challenge. In summary, owing to the fluctuations of Yi for i ≥ 1,

it is not clear to us how to derive a closed form solution to the problem.

4. The error rates, eis, for the signal can also be different from the error rates eis for

the decoy state, due to underlying statistical fluctuations. Actually, the fluctuation

of e1 appears to be the dominant source of errors in the estimation process. (See, for

example, Table 5.4.) This is because the parameter e1 is rather small (for instance,

a few percent) and it appears in combination with another small parameter Y1 in

Eq. (3.10) for QBER.

5. In the GLLP analysis [35] shown in Eq. (2.6), Alice and Bob need to correct phase

errors, other than bit-flip errors. From Shor-Preskill’s proof [106], we know that

the bit-flip error rate and the phase error rate are suppose to be the same only in

the asymptotic limit. Therefore, for a finite data set, one has to consider statistical

fluctuations. This problem is well studied [106]. Since the number of signal states

is generally very large, we will ignore this fluctuation from now on.

Qualitatively, the yields of the signal and decoy states tend to decrease exponentially

with distance. Therefore, statistical fluctuations tend to become more and more impor-

tant as the transmission distance of QKD increases. In general, as the distance of QKD

increases, an increasingly larger data size will be needed for the reliable estimation of Y1

and e1 (and hence R), thus requiring a longer QKD experiment.

Here, we will neglect the fluctuations due to the first two and the fifth sources listed

above. Even though we cannot find any closed form solution for the third and fourth

sources of fluctuations, it should be possible to tackle the problem by simulations. Here,

we are content with a more elementary analysis. We will simply apply a standard error

analysis to perform a rough estimation on the effects of fluctuations due to the third

and fourth sources. Note that the origin of the problem is strictly classical statistical

fluctuations. There is nothing quantum in this statistical analysis. While standard

error analysis (using essentially normal distributions) may not give a completely correct

answer, we expect that it is correct at least in the order of magnitude.

Our estimation, which will be presented below, shows that for a long-distance (> 100

km) QKD with our Vacuum+Weak decoy state protocol, the statistical fluctuations effect
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(from the third and fourth sources only) appears to be manageable. This is so, provided

that a QKD experiment is run for a reasonable period of time of only a few hours. Our

analysis supports the viewpoint that our Vacuum+Weak decoy state protocol is practical

for real-life implementations.

We remark on passing, that the actual classical memory space requirement for Alice

and Bob is rather modest (< 1GBytes) because at long distances, only a small fraction

of the signals will give rise to detection events.

We emphasize that we have not fully solved the statistical fluctuation problem for

the decoy state QKD. This problem has turned out to be quite complex. There is other

work beinig done to address the statistical fluctuation problem in the decoy state QKD

[123, 37].

5.2.2 Standard Error Analysis

In the following, we will present a general procedure for studying the statistical fluctua-

tions (due to the third and fourth sources noted in the previous subsection) by using the

standard error analysis.

Denote the number of pulses (sent by Alice) for signal as Ns, for the vacuum decoy

state as Nvac and for the weak decoy state as Nw. Then, the total number of pulses sent

by Alice is given by:

N = Ns +Nvac +Nw. (5.10)

Following that, the parameter q in Eq. (2.6) is given by:

q =
Ns

2N
. (5.11)

Here, we assume that Alice and Bob perform standard BB84, so there is a factor of 1/2.

In practice, since N is finite, the statistical fluctuations of Q1 and e1 cannot be

neglected. All these additional deviations will be related to data sizes Ns, Nvac and Nw

and in principle, can be obtained from statistic analysis. A natural question prompted

by such is as follows. Given the total data size N = const, how do we distribute it to

Ns, Nvac and Nw for maximizing the key generation rate R? This question also relates

to another one: how do we choose an optimal weak decoy ν to give a good lower bound

of R?

In principle, our optimization procedure should look like the following. First, one

needs to derive a lower bound of Q1 and an upper bound of e1 (as functions of data

size Ns, Nvac, Nw and ν), taking into account statistical fluctuations. Secondly, one
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substitutes these bounds into Eq. (2.6) to calculate the lower bound of the key generation

rate, denoted by RL. Thus, the key rate lower bound RL is a function of Ns, Nvac, Nw

and ν, and will be maximized when the optimal distribution satisfies

∂RL

∂Ns

=
∂RL

∂Nvac

=
∂RL

∂Nw

= 0, (5.12)

given that N = Ns +Nvac +Nw = const.

In this statistical fluctuation analysis, our assumptions are as follows:

1. Alice knows the exact value of the average photon pair number µ and ν, which is

a fixed number during key transmission.

2. The distribution of the photon number, Eq. (3.3), does not fluctuate.

3. Assume that the QKD transmission is part of an infinite length experiment. Hence,

Qµ (Eµ) can be regarded as a tested value of the true gain (QBER). Thus, we can

use the standard error analysis to address statistical fluctuations.

5.2.3 Choice of Ns, Nvac, Nw and ν

From the theoretical deviations of Y1 and e1, shown in Figure 5.1, reducing ν may de-

crease the theoretical deviations. On the other hand, given a fixed Nw, reducing ν will

decrease the number of detection events of the decoy states, which in turn, causes a larger

statistical fluctuation. Thus, for fixed Ns, Nvac and Nw, there exists an optimal choice

of ν which maximizes the lower bound of the key generation rate RL:

∂RL

∂ν
= 0

which can be simplified to:

∂

∂ν
{Ŷ L

1 [1 −H2(ê
U
1 )]} = 0 (5.13)

where Ŷ L
1 and êU

1 are lower bound to Y1 and upper bound to e1 when statistical fluctua-

tions are considered.

As defined in Eq. (5.11), choosing a larger Ns leads to a larger factor q in Eq. (2.6).

On the other hand, choosing large values of Nvac and Nw can help with better estimations

of Y1 and e1. Thus, there is trade-off between Ns, Nvac and Nw. In order to achieve an

optimal R, one needs to choose an appropriate set of values Ns, Nvac, Nw and ν. Given

the total data size in Eq. (5.10), in principle, one can solve Eqs. (5.12) and (5.13) to

get Ns, Nvac, Nw and ν. In the later simulation, we will numerically optimize these four

parameters.
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5.3 Simulation

In practice, solving Eq. (5.12) is a complicated problem. One problem that we have

mentioned in Section 5.2.1 is that the relations between Ns, Nvac, Nw and estimations of

Q1 and e1 are difficult to describe strictly. In the following, we will be content with a rough

estimation procedure using the standard error analysis. We will focus the Vacuum+Weak

decoy method.

One observation is that Alice and Bob should compare all their detection events of

decoy states publicly. In principle, they can also use decoy states to generate the final key.

Note that the signal state is chosen to be optimal for key rate generation. In other words,

decoy states are not as efficient as signal states to generate the final key. Therefore, it is

more efficient for Alice and Bob to use decoy states only for estimations of Y1 and e1.

Two assumptions:

1. We assume that the decoy state used in the actual experiment is conceptually only

a part of an infinite population of decoy states. There are underlying values for

Qν and Eν as defined by the population of decoy states. In each realization, the

decoy state allows us to obtain some estimates for those underlying Qν and Eν .

Alice and Bob can use the fluctuations of Qν , Eν to calculate the fluctuation of the

estimates of Y1 and e1.

2. When the number of events (e.g. the total detection event of the vacuum decoy

state) is large (for instance, > 50), we assume that the statistical characteristic of

a parameter can be described by a normal distribution.

We will use the experiment parameters in Table 3.1, and show numerical solutions of

Eqs. (5.10), (5.12) and (5.13). We pick the total data size (the number pulses sent by

Alice) to be N = 6 × 109. The GYS experiment [32] has a repetition rate of 2 MHz and

an uptime of around 50%5. Therefore, it should take only a few hours to perform our

proposed experiment. The optimal µ = 0.48 can be calculated by Eq. (B.4) and we use

f(e) = 1.22.

In a fiber length of 103.6 km (η = 3×10−4), the optimal weak decoy state intensity ν,

pulses distribution of data, and the deviations from the infinite decoy method are listed

in Table 5.4.

5Z. L. Yuan, private communication.
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l µ u N Ns Nvac Nw

103.62 km 0.479 10 6 × 109 3.98 × 109 1.76 × 109 2.52 × 108

η ν B̃[bits] βY 0 βY 1 βe1 βR

3 × 10−4 0.127 2.17 × 104 48.31% 7.09% 97.61% 74.11%

Table 5.4: List of the optimal choice of ν and pulse number distribution for the Vac-

uum+Weak decoy state protocol with statistical fluctuation analysis. The pulse number

distribution, Ns, Nvac and Nw, is calculated by Eq. (5.12). The optimal weak decoy

state intensity is calculated by Eq. (5.13). B̃ is the lower bound of the number of the

final key bits. All results are obtained by numerical programming using MatLab. The

variable βY 1 denotes the relative deviation in our estimation process of Y1 from its true

value by using the data from a finite experiment. This relative deviation originates from

finite data with statistical fluctuations. This definition contrasts with the definition of

βY 1 in Eq. (5.7) which refers to the relative difference between the values of Y1 for case

i) where ν is finite and case ii) where ν approaches zero. Similarly, other βs denote the

relative deviations in our estimates for the corresponding variables in the subscript of

β. We assume that all the statistical fluctuation belongs to the confidence interval of

u = 10 standard deviations (i.e., 1− 1.5× 10−23). The experiment parameters are listed

in Table 3.1.

For any fiber length, we can solve Eqs. (5.12) and (5.13) to get Ns, NE , Nvac, Nw and

ν. Figure 5.2 shows how the optimal ν changes with transmission distance.

We have a few remarks on Figure 5.2, optimal ν versus transmission distance.

1. The optimal ν is small (∼ 0.1 < µ) through the whole distance. In fact, it starts

at a value ν ≈ 0.04 at zero distance and increases with the transmission distance.

2. There is small flat step at distance of 82 km. This is due to the fact that the vacuum

decoy state becomes useful. From 0 km to 82 km transmission distance regime, the

optimal pulse number for the vacuum decoy state Nvac is 0. That is, in this regime,

one should use the one decoy state protocol instead of the Vacuum+Weak protocol6

protocol.

3. As the transmission distance increases, the optimal ν increases. This is reasonable

because in a longer distance, the total transmittance η is low, thus Alice and Bob

6Actually, we did this simulation first and found this strange behavior at a distance of 82 km. Then
we came up with the one decoy state protocol.
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Figure 5.2: Plot of optimal ν versus transmission distance. The solid line shows the

simulation result of the Vacuum+Weak protocol (Eqs. (5.4) and (5.5)) with statistical

fluctuations. The dashed line shows the result for the one decoy state method (Eq. (5.8)).

Here, we pick the data size (total number of pulses emitted by Alice) to be N = 6× 109.

We find the optimal νs for each fiber length by numerically solving Eqs. (5.10), (5.12)

and (5.13). The confidence interval for statistical fluctuation is 10 standard deviations

(i.e., 1 − 1.5 × 10−23). The simulation parameters are listed in Table 3.1. The expected

photon number of signal state µ = 0.48 is calculated by Eq. (B.4).

need to put more pulses for decoy states and choose a larger ν to estimate Y1 and

e1 accurately.

Now, we can put all these elements together to investigate the key generation rate R

of Eq. (2.6). Figure 5.3 shows the key rate of the two practical decoy state protocols with

statistical fluctuations in comparison to the infinite decoy state protocol (the asymptotic

case). For each distance point, we optimize ν, Ns, Nvac andNw numerically by considering

Eqs. (5.12) and (5.13).

One can see that even taking into account the statistical fluctuations, both of the

Vacuum+Weak and the one decoy state protocols can achieve close performance to the

infinite decoy state protocol. Therefore, the following is noted:
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Figure 5.3: Plot of key generation rate in terms of channel transmission distance. The

dotted line shows the key rate of the infinite decoy state method (the asymptotic case of

the Vacuum+Weak decoy state protocol). The solid and dashed lines show the key rate of

the Vacuum+Weak and one decoy state protocol with statistical fluctuations respectively.

The data size is N = 6 × 109. The simulation parameters are listed in Table 3.1. The

expected photon number of signal state µ = 0.48 is calculated by Eq. (B.4).

1. In a large regime of the distance (for instance, the distance between 0 km and 100

km), the two practical decoy state methods with statistical fluctuations achieve a

close performance of the asymptotic limit of the infinite decoy state method. This

is the case when the channel is not that lossy, the statistical fluctuations are easily

controllable. This fact highlights the feasibility of the two practical decoy state

protocols.

2. As shown in Figure 5.2, the vacuum decoy state becomes useful at 82 km.

3. The maximal secure distances of the three curves are 142 km, 125 km and 122 km.

Note that with a larger data size, for instance, N = 8.4× 1010, the maximal secure

distance of the Vacuum+Weak decoy state method can achieve 132 km.

We have also simulated other experiment setups and all the results are consistent
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with the simulation result of the GYS experiment setup shown above. For more details,

one can refer to Refs. [77, 73].

5.4 Experimental demonstrations

The experimental demonstrations for the decoy state methods were first implemented by

our group [131, 132] and followed by many other groups [99, 115, 88, 129, 128].

5.4.1 How to generate decoy states

The only difference of the decoy state QKD setup and the regular setup is that in the

decoy state method, Alice needs to prepare decoy states, which have different intensities

from the original signal states. Otherwise, the two setups are the same. The regular

setup of the QKD without decoy states is discussed in Section 3.3.

There are several ways to generate decoy states. One way to do that is by using an

attenuator to change the light intensity. There are two criteria for the attenuator.

• The attenuator can change attenuations fast enough7. Alice needs to prepare a de-

coy or signal state randomly in each pulse. Thus, the speed of changing attenuation

should not be lower than the QKD repetition rate.

• The attenuator will not introduce differences in properties for change of signal and

decoy states except for intensities. This is one precondition for the security of QKD

with decoy states, as shown in Eq. (4.2). In a real experiment, one might need to

apply some approximation. For example, an acousto-optic modulator (AOM) may

shift the frequency of light. However, if we assume that both signal and decoy states

will be shifted with the same amount of frequency, then we can still use AOM to

prepare signal and decoy states.

For more discussions of using AOM to prepare decoy states, one can refer to Ref. [131].

Another way to prepare decoy states is by using different laser sources [88]. In this

case, Alice can choose signal and decoy states by switching between different laser sources.

Similarly, we require the switch to be fast enough and laser sources having the same

properties except for intensities.

7Or it can switch on and off fast.
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5.4.2 Experimental data post-processing

The processing of the decoy state QKD is as follows.

1. Alice prepares decoy and signal states and sends them to Bob. Bob measures all

pulses in the two conjugate bases.

2. Bob announces the pulses that he obtains non-vacuum detections. Alice announces

the pulses that are used for decoy states. Then they determine all the gains of

signal and decoy states.

3. They perform basis reconciliation. Note that even these detection events that Alice

and Bob use different bases, can be used to calculate the gains of signal and decoy

states.

4. They compare all bit values decoy states to determine the QBER(s) of decoy states.

5. Alice and Bob perform error correction and error testing, after which they can

determine the QBER of signal states.

6. They estimate the necessary amount of privacy amplification. Taking the Vac-

uum+Weak decoy state protocol for example, they estimate Y1 and e1 by values of

Qµ, Eµ, Qν , Eν and Qvac. In this step, they need to consider statistical fluctuations,

for instance, by the procedures described in Section 5.2. Then they can plug all

the values in Eq. (2.6) to calculate the amount of key that is needed to sacrifice for

privacy amplification. Note that Eq. (2.6) is for the post-processing with one-way

classical communication. In the next chapter, we will show that this result can be

improved by introducing two-way classical communication.

7. They perform privacy amplification to get the final secure key.

Here, we describe the case where the QKD transmission is successful. In practice,

Alice and Bob can keep tracking whether the final key is positive or not to determine

whether they should continue the post-processing or not. For example, after step 2, they

can estimate Y1. If the lower bound Y1 is zero (or even negative), then they abort the

post-processing and start QKD again.
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5.5 Conclusion

The main conclusion of Chapters 4 and 5 is that the decoy state QKD takes a big step

toward practical quantum cryptography. Recall that the motivation of this thesis is to

encourage QKD into real-life applications.

Our result shows that we can have the best of both worlds: enjoy both unconditional

security and record-breaking experimental performance. The decoy state method can

increase key generation rate and extend the distance of QKD dramatically, all within

the framework of unconditional security. The general principle of the decoy state QKD

developed here can have widespread applications in other set-ups (e.g. open-air QKD or

QKD with other photon sources). Later, we will come back to this point.

For practical implementations, we are able to show that with only one or two decoy

states, one can achieve most of the benefits of the decoy state method. All the decoy

state QKD experiment demonstrations, including our first realization, show that the

decoy state idea is easy to implement in real system setups.

Recently, Yuan, Sharpe and Shields implemented an experimental decoy state QKD

demonstration that can achieve a 5.51 kbits/s secure key rate through a 25.3 km fiber

[129]. Let us compare this result to a couple of typical values in real-life communications.

The state of the art digital speech coding [94] typically needs a bit rate around 4-10

kbits/sec. A typical city wide area network must cover an area with a radius of 5-25 km.

As for other communications, such as video conversation, the bit rate may not be high

enough. We want to point out that the bit rate might not be an essential problem. One

can store a long secure key first and then use it for secure communications8.

Therefore, we conclude that the practical quantum cryptography is close to real-life

applications.

Note that other than the decoy state method, there are other approaches to enhance

the performance of the coherent state QKD, such as our dual detector scheme [93], QKD

with strong reference pulses [48, 110] and differential-phase-shift QKD [42].

8One needs to consider the key management issue in this case.
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Decoy state QKD with 2-LOCC

As shown in the previous two chapters, the decoy state technique is an effective method

for improving QKD performance. The data post-processing scheme of the decoy state

QKD scheme that we proposed uses one-way classical communication. In this chapter,

we develop two data post-processing schemes for the decoy state method using two-way

classical communication. Our numerical simulation results show that the first scheme is

able to extend the maximal secure distance from 142 km (by using only one-way classical

communication with decoy states) to 181 km. The second scheme is able to achieve a 10%

greater key generation rate in the whole regime of the distance. We conclude that the

decoy state QKD protocol with two-way classical post-processing is of practical interest.

Here, we only consider a case without statistical fluctuations. For a statistical fluc-

tuation analysis for the decoy state QKD with local operations and two-way classical

communication (2-LOCC), one can refer to Ref. [74].

This work is published in Ref. [74]. In this project, I applied the Gottesman-Lo’s

2-LOCC EDP and recurrence scheme to the decoy state QKD protocol and simulated a

PDC experiment to show the improvement by using two-way classical communication in

the decoy state QKD protocol.

6.1 2-LOCC EDP

First, let us review two EDPs based on 2-LOCC (Gottesman-Lo EDP and recurrence

EDP) assuming that ideal single-photon (or perfect EPR) sources are used. Later, we

will apply these two schemes to the decoy state QKD protocol.

56
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6.1.1 Gottesman-Lo EDP

Gottesman and Lo [34] introduced an EDP based on 2-LOCC for use with QKD and

showed that it can tolerate a higher bit error rate than 1-LOCC based EDPs. B and P

steps are two primitives in the Gottesman-Lo EDP, and the EDP consists of executing a

sequence of B and/or P steps, followed by a 1-LOCC EDP. The main objective for extra

B and P steps is reducing the bit and/or phase error rates of qubits so that the following

1-LOCC EDP can work to extract secure keys. This is the reason why the Gottesman-Lo

EDP is able to tolerate a higher initial bit error rate than 1-LOCC EDPs. The definitions

of B and P steps are as follows:

Definition of B step [34]: (Figure 6.1) After randomly permuting all the EPR pairs,

Alice and Bob perform a bilateral XOR (BXOR) between pairs of the shared EPR pairs

and measure the target qubits in Z basis. This effectively measures the operator Z
⊗

Z

by Alice and Bob locally, and detects the presence of a single bit flip error. If Alice and

Bob’s measurement outcomes disagree, they discard the remaining EPR pair. Otherwise,

they keep the control qubit.

Figure 6.1: Alice and Bob each choose two qubits of two corresponding EPR pairs and

input the quantum circuit as shown above. They discard both control and target qubits

if they disagree on the outcomes of measurement on the target qubits. On the other

hand, they keep the control qubits as surviving qubits if their measurement outcomes

agree.

Since the B step only involves the measurement of Z
⊗

Z, it can be used in the

prepare-and-measure protocol, BB84. Classically, the B step simply involves random

pairing of the key bits, for instance, x1, x2 on Alice’s side and y1, y2 on Bob’s side and

the computation of the parity of each pair of bits, x1 ⊕ x2 and y1 ⊕ y2. Both Alice and

Bob announce the parities. If their parities are the same, they keep x1 and y1; otherwise,

they discard x1, x2, y1 and y2. We can see that the B step is very simple to implement

in data post-processing.
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Suppose Alice and Bob input a control qubit (qC
00, q

C
10, q

C
11, q

C
01)

1 and a target qubit

(qT
00, q

T
10, q

T
11, q

T
01) with bit error rates δC

b and δC
p and phase error rates δT

b and δT
p , respec-

tively. After one B step, the survival probability pS is given by:

pS = (qC
00 + qC

01)(q
T
00 + qT

01) + (qC
10 + qC

11)(q
T
10 + qT

11)

= (1 − δC
b )(1 − δT

b ) + δC
b δ

T
b ,

(6.1)

and the density matrix (q′00, q
′
10, q

′
11, q

′
01) of output control qubit is given by:

q′00 =
qC
00q

T
00 + qC

01q
T
01

pS

q′10 =
qC
10q

T
10 + qC

11q
T
11

pS

q′11 =
qC
10q

T
11 + qC

11q
T
10

pS

q′01 =
qC
00q

T
01 + qC

01q
T
00

pS

.

(6.2)

Eqs. (6.2) can be derived from Table II of [13]. The corresponding bit error rate δb and

phase error rate δp can be obtained from Eq. (6.2) by

δ′b = q′10 + q′11 =
δC
b δ

T
b

pS

δ′p = q′11 + q′01.

(6.3)

Definition of P step [34]: (Figure 6.2) Alice and Bob randomly permute all the EPR

pairs. Afterwards, they group the EPR pairs into sets of three, and measure X1X2 and

X1X3 on each set (for both Alice and Bob). This can be done (for instance) by performing

a Hadamard transform, two bilateral XORs, measurement of the last two EPR pairs, and

a final Hadamard transform. If Alice and Bob disagree on one measurement, Bob will

conclude the phase error is probably on one of the EPR pairs which was measured, and

do nothing; if both measurements disagree for Alice and Bob, Bob assumes the phase

error is on the surviving EPR pair and corrects it by performing a Z operation.

Without a quantum computer, Alice and Bob are not able to perform P steps by

the quantum circuit shown in the left hand side of Figure 6.2. In order to implement

P steps classically, they can choose a post-processing scheme that does not rely on the

measurement result from P steps. That is, they can implement the right hand side

1The superscript C and T stand for the control and target qubits, respectively. The subscript 00, 10,
11 and 01 stand for the case with no error, with a bit error, with both a bit and a phase error, and with
a phase error, respectively.
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Figure 6.2: The two circuits are quantum mechanically equivalent. Alice and Bob each

choose three qubits of three corresponding EPR pairs and input the quantum circuit as

shown above. This figure is originally from Ref. [34].

quantum circuit of Figure 6.2 by simply omitting the measurement step. Thus, when a P

step is implemented classically in BB842, the phase errors are not detected or corrected

(i.e. the phase flip operation Z is not applied). Note that the measurement step in Figure

6.2 is not important because the phase errors do not need to be corrected in QKD [106].

The phase error correction is used in the security proof. One only needs to show that

Alice and Bob could have done the phase error correction but not really need to do it.

From this point of view, P steps are conceptually similar to the privacy amplification.

The P step then will be reduced to where Alice and Bob randomly form trios of the

remaining qubits and compute the parity of each trio, for instance, x1 ⊕ x2 ⊕ x3 by Alice

and y1 ⊕ y2 ⊕ y3 by Bob. They now regard those parities as their new bits for further

processing.

Since before P steps, Alice and Bob will perform random permutation, for simplicity,

we assume the input three qubits have the same density matrix: (q00, q10, q11, q01). After

one P step, the density matrix (q′00, q
′
10, q

′
11, q

′
01) of the output qubit is given by:

q′00 = q3
00 + 3q2

00q01 + 3q2
10(q00 + q01) + 6q00q10q11

q′10 = q3
10 + 3q2

10q11 + 3q2
00(q10 + q11) + 6q00q10q01

q′11 = q3
11 + 3q10q

2
11 + 3q2

01(q10 + q11) + 6q00q11q01

q′01 = q3
01 + 3q00q

2
01 + 3q2

11(q00 + q01) + 6q10q11q01,

(6.4)

which is given in Appendix C of [34]. Therefore, the bit error rate and phase error rate

will be given by:

δ′b = q′10 + q′11 = 3δb(1 − δb)
2 + δ3

b

δ′p = q′11 + q′01 = 3δ2
p(1 − δp) + δ3

p.
(6.5)

2Strictly speaking, this procedure is different from the original P step we described. For simplicity,
we use the same name for this simplified version of the P step.
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Here, we emphasize that the B and P steps are important elements of the Gottesman-

Lo EDP. After the B and P steps, the Gottesman-Lo EDP will be the same as the regular

1-LOCC EDP.

6.1.2 Recurrence EDP scheme

Here, we review another two-way EDP, the recurrence scheme [118]. Similar to the B step

in the Gottesman-Lo EDP, the recurrence scheme reduces the bit error rate of the EPR

pairs before passing them to the 1-LOCC based EDP for the distillation of maximally-

entangled EPR pairs. However, there are two main differences between these two EDP

schemes. The first is how the bit error syndrome of a target EPR pair in a bilateral

XOR operation is learned. In the Gottesman-Lo EDP, Alice and Bob simply measure

the target EPR pair in the Z basis and compare their results to learn about the bit

error syndrome (see Figure 6.1). In the recurrence scheme, Alice and Bob group the

bit error syndromes of all target EPR pairs together and learn about all the syndromes

using random hashing. The second difference is that the recurrence scheme requires some

extra maximally-entangled EPR pairs to begin with in order to learn about the bit error

syndromes, whereas no such extra pairs are required in the Gottesman-Lo EDP. Note

that the recurrence methods were studied in various papers, such as [22, 79, 3, 21].

The procedure of the recurrence protocol is described as follows:

1. Alice and Bob perform two BXOR operations on two noisy EPR pairs and one

perfect maximally-entangled EPR pair. Specifically, the first BXOR is performed

on one noisy EPR pair as the source and the perfect EPR pair as the target, and

the second BXOR is performed using the other noisy EPR pair as the source and

the same target.

2. They perform random hashing on the target EPR pairs to learn about the parities

of the noisy EPR pairs. Note that only a portion of the target EPR pairs have to

be measured in order to learn about all the parities. This is different from the B

step approach.

3. They perform error correction and privacy amplification separately for even-parity

and odd-parity EPR pairs.

In the prepare-and-measure scenario, the first two steps are as follows: Alice and

Bob randomly pair up the key bits, and for each pair they compute the parity. They
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each compress their own sequence of parities by using random hashing, encrypt the

resulting hash values using the one-time pad with some pre-shared secret bits, and send

the encrypted results to each other. Note that they use the same sequence of secret bits to

encrypt their own sequence of hash values. They learn about the parities of the original

noisy EPR pairs by adding the other party’s encrypted sequence to their own encrypted

sequence of hash values. Once they know the parities, they perform error correction and

privacy amplification on the even-parity and odd-parity key bits separately. Note that

the secret bits used up in the process should be returned to the secret bits pool by using

the newly generated secret bits.

The key generation rate using the recurrence EDP with a single-photon source is

given by:

R = q

[

−1

2
H2(pS) − 1

2
pSH2(

δC
b δ

T
b

pS

) +K

]

(6.6)

where q is defined similarly as in Eq.(2.4), pS is the probability of obtaining even parity

given in Eq. (A.2), and δC
b (δT

b ) is the bit error rate of the control (target) EPR pair.

Here, the first term in the bracket corresponds to the extra perfect EPR pairs borrowed,

the second term corresponds to error correction, and the third term K corresponds to

the privacy amplification given in Eq. (A.12). In Appendix A.2, we review the recurrence

EDP in detail and develop a key rate formula.

6.1.3 Bounds of error rates

Here, we will consider the bounds of error rates (bit error rate δb and phase error rate

δp), assuming a laser source that emits a basis-dependent single-photon source. The

upper bounds can be derived by considering some simple attacks (such as intercept-

resend attack) and determining the QBER caused by these attacks. The lower bounds

can be determined by the unconditional security proof assuming that Eve is performing

arbitrary attacks allowed by the law of quantum mechanics, and Alice and Bob employ

a certain post-processing scheme (such as Gottesman-Lo EDP described in Subsection

6.1.1). One lower bound, obtained by considering Gottesman-Lo EDP, is 18.9% [34]. For

BB84, an upper bound, obtained by considering an intercept-resend attack, is 25%.

Here, we consider the lower bound in a general setting where the error rates are

characterized by (δb, δp). In general, the bit error rate δb can be measured by error testing,

but the phase error rate δp cannot be directly observed from the QKD experiment. In

order to guarantee the security, Alice and Bob have to bound δp with the knowledge of
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δb. For BB84 with an ideal single-photon source, due to the symmetry between the X

and Z bases, one can show that the bit error rate and the phase error rate are the same,

i.e.

δb = δp. (6.7)

In general, for other protocols or with non-ideal sources (including coherent state sources),

the bit and phase error rates might be different. For example, even for BB84, when a

basis-dependent source is used, Eq. (6.7) may not hold. In this case, according to Eq. (9)

of [50], due to the concavity of the right hand side of the equation, it is not difficult to

show (see Appendix A.3) that δb and δp have the relation of

√
F ≤

√

(1 − δb)(1 − δp) +
√

δbδp, (6.8)

where F is the fidelity between the two states with two bases (X and Z) sent by Alice,

and it is the single parameter that characterizes the basis dependency of the source.

Thus, Alice and Bob can upper bound δp (denoted as δu
p ) with this inequality given δb.

Clearly, when δp = δb, the inequality will be always satisfied, i.e., δp = δb is a particular

solution of Eq. (6.8). Therefore, in general, we have δu
p ≥ δp. In the following, we use δp

to denote the upper bound δu
p for simplicity.

Given a QKD protocol and laser source, Alice and Bob can estimate the phase error

rate δp from the bit error rate δb in accordance to the protocol and source. We investigate

the highest error rates that a data post-processing scheme can tolerate. Figure 6.3

shows the tolerable error rates of the Gottesman-Lo EDP compared to the 1-LOCC

EDP scheme, illustrating the superior performance of the Gottesman-Lo EDP over the

1-LOCC EDP. The boundaries of the error rates are found by searching through the

regime of:

δb ≤ δp

δb + δp < 1/2
(6.9)

such that positive key rates are obtained. The reason that we are interested in the region

specified by the second inequality in Eq. (6.9) is as follows: We can assume that the

error rates δb and δp are less than 1/2, otherwise Alice and Bob can flip the qubits.

Furthermore, if δb + δp ≥ 1/2, the (worst scenario case) state shared by Alice and Bob

is a separable state [13] and the Gottesman-Lo EDP cannot distill any pure EPR pairs

[20].

The input to the Gottesman-Lo EDP is (q00, q10, q11, q01) with q00 + q10 + q11 + q01 = 1,

see Subsection 6.1.1. However, Alice and Bob only know δb = q10 + q11 and δp = q11 + q01
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from their error testing. There is one free parameter q11. In Appendix C of [34], the

authors proved that q11 = 0 is the worst case when δb = δp. Following that proof, we can

show that q11 = 0 is the worst case when the condition of Eq. (6.9) is satisfied. That is,

given (δb, δp), if we check the input (1− δb − δp, δb, 0, δp) for the Gottesman-Lo EDP and

obtain a positive key rate, then we can safely claim that the Gottesman-Lo EDP can

tolerate the error rates of (δb, δp).

To determine the tolerable bit error rate of a particular protocol, one should first

obtain the relationship between the bit error rate and phase error rate, and plot it on

Figure 6.3. The intersections between this curve and the boundary curves (the 1-LOCC

curve and Gottesman-Lo curve) indicate the tolerable QBER for the corresponding EDPs.

For example, for the BB84 protocol with a perfect single-photon source, we have δb = δp,

which is the dashed line plotted in Figure 6.3. We can immediately read off from the

figure that an initial bit error rate of 18.9% is tolerable using the Gottesman-Lo EDP

[34], while an error rate of 11.0% is tolerable using the 1-LOCC EDP. In general, the

Gottesman-Lo EDP gives rise to higher tolerable error rates than the 1-LOCC EDP.

We numerically optimize the B/P sequence up to 12 steps. The result is shown in

Figure 6.3.

For protocols having constraints on q11, such as the six-state protocol [17] and the

SARG04 protocol with a single-photon source [101, 109, 28], the tolerable QBER can go

beyond the boundary curves shown in Figure 6.3.

6.2 Decoy + GLLP + Gottesman-Lo EDP

In this section, we propose a 2-LOCC based data post-processing protocol in a form of

a sequence of B steps, followed by 1-LOCC error correction and privacy amplification.

This new scheme is a generalization of the Gottesman-Lo scheme to a case of imperfect

devices. The reasons for skipping P steps here are as follows. First, from the simulation

in Section 6.1.3, we found that P steps are not as useful as B steps. Secondly, only

considering B steps can simplify the procedure of the data post-processing scheme.

The residual ratio of a post-processing scheme, r, is defined by:

R = qQµr (6.10)

which characterizes the cost of the post-processing scheme.

The procedure of the data post-processing scheme, Decoy + GLLP + B steps, is as

follows:
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Figure 6.3: Plot of the secure regions in terms of error rates for the 1-LOCC EDP and

Gottesman-Lo EDP. The regions under the solid lines are proven to be secure due to

1-LOCC EDP, and Gottesman-Lo EDP schemes (for the region under the solid line and

dashed line), respectively. For 1-LOCC EDP, we use Eq. (2.4). For Gottesman-Lo EDP,

we use Eqs. (6.2) and (6.4). In the Gottesman-Lo EDP, we numerically optimize the B/P

sequence up to 12 steps.

1. Alice and Bob perform a sequence of B steps to the sifted key. During this proce-

dure, they will discard a large ratio of the key. The survival key bit ratio is defined

to be r̃B.

2. They calculate the variables (such as QBER, untagged qubits ratio) after the B

steps.

3. They perform an overall error correction, corresponding to the first term in

Eq. (6.11).

4. They perform privacy amplification, corresponding to the second term in Eq. (6.11).

In the following, we will discuss how the residue of this post-processing scheme is calcu-

lated.
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In the model described in Section 3.2, there are three kinds of qubits: vacuum, single

photon and multi photon qubits. We emphasize again here that the final secure key can

only be distilled from untagged qubits (single photon qubits) for the BB84 protocol.

Since either of the two inputs of a B step has three possibilities, the outcomes of

a B step then have nine possibilities. Only the case where both inputs are untagged

qubits will there be a positive contribution to the final secure key. That is, at the end of

some B steps, bit error correction and privacy amplification can be only applied to the

remaining qubits that come from the case where both inputs are untagged qubits. In

other words, an output qubit after a subsequence of B steps is “untagged” if a) it passes

all B steps and b) it is generated from a case where all initial input qubits are single

photon qubits. Therefore, the residue ratio of data post processing can be expressed,

according to Eq. (2.6), as:

r = r̃B{−f(δ̃)H2(δ̃) + Ω̃[1 −H2(δ̃
untagged
p )]} (6.11)

where δ̃ is the remaining QBER, r̃B is overall survival residue, Ω̃ is the fraction of

untagged states in the final survival states3 and δ̃untagged
p is the phase error rate of the

untagged states, after a sequence of B steps. In the following, we will show how these

variables change with the performing of B steps.

An arbitrary B step: Let us consider how the various quantities (fraction of un-

tagged states Ω, QBER of overall surviving states δ, bit error rate δuntagged and phase

error rates δp of the untagged states) are transformed under one step in a B step sequence.

Prior to a B step, the fraction of untagged states is Ω, the overall QBER is δ, the

bit error rate of the untagged states is δuntagged, and the phase error rate of the untagged

states is δp. According to Eq. (6.1), the overall survival probability pS and the survival

probability of the untagged states puntagged
S after one B step are given by:

pS = [δ2 + (1 − δ)2]

puntagged
S = [δ2

untagged + (1 − δuntagged)
2].

(6.12)

Then the residue after one B step is given by:

rB =
1

2
pS (6.13)

where the factor 1/2 stems from the the fact that Alice and Bob only keep one qubit

from a survival pair. Subsequently, after a B step, the fraction of untagged states Ω′ is

3Without B steps, Ω ≡ Q1/Qµ.
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given by:

Ω′ =
Ω2 · puntagged

S

pS

. (6.14)

Overall QBER: the change of the overall QBER δ′ is given by:

δ′ =
δ2

δ2 + (1 − δ)2
. (6.15)

Untagged states: before the first B step, the initial density matrix of the untagged

state is (1 − 2e1 + q11, e1 − q11, q11, e1 − q11), where e1 is the error rate of single photon

states. From Appendix C of [34], we know that q11 = 0 is the worst case for B steps.

Thus we can conservatively choose (1 − 2e1, e1, 0, e1) as the initial input density matrix.

If only B steps are performed, q11 = 0 will always be satisfied, according to Eq. (6.2).

Therefore, the input untagged qubits for any round of B steps has the form of

(q00, q10, q11, q01) = (1 − δuntagged − δp, δuntagged, 0, δp). (6.16)

The bit error rate of untagged state δ′untagged only depends on the input δuntagged,

δ′untagged =
δ2
untagged

δ2
untagged + (1 − δuntagged)2

. (6.17)

According to Eqs. (6.2), (6.3) and (6.16), the phase error rate of untagged states is

δ′p = q′11 + q′01

=
2q10q11 + 2q00q01

(q10 + q11)2 + (q00 + q01)2

=
2δp · (1 − δuntagged − δp)

δ2
untagged + (1 − δuntagged)2

.

(6.18)

Eqs. (6.12)-(6.18) are valid for a general B step. Alice and Bob can perform a se-

quence of B steps as described above and then perform the error correction and privacy

amplification. Once all of these quantities are obtained, the key generation rate can be

calculated from Eq. (6.11).

To illustrate the improvement made by introducing B steps, we simulate the GYS

experiment [32], whose parameters are listed in Table 3.1. Similar to the simulations in

previous chapters, we use f(e) = 1.22 for the error correction efficiency [16].

From Figure 6.4, we can see that there is a non-trivial extension of the maximal secure

distance after introducing B steps. Note that the key rate of the decoy state protocol

with 1 B step is higher than the one with 1-LOCC from a distance of around 132 km.
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The maximal secure distance using 4 B steps is 181 km, which is not far from the upper

bound of 208 km, given in Section 4.2.1. Even with only 1 B step, the maximal secure

distance can be extended from 142 km to 162 km. Thus, B steps are useful in QKD data

post-processing.
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Figure 6.4: Plot of the key rate as a function of the transmission distance with the

data post-processing scheme of GLLP+Decoy+B steps. The simulation parameters are

from the GYS experiment [32] listed in Table 3.1. The GLLP+Decoy+B steps scheme

suppresses the one with 1-LOCC at a distance of 132 km. The maximal secure distance

using 4 B steps is 181 km, which is not far from the upper bound of 208 km. Note that

B steps are useful only at rather long distances (over 132km).

6.3 Decoy + GLLP + Recurrence EDP

In this section, we will present another data post-processing scheme based on the recur-

rence scheme [118], which is reviewed in Section 6.1.2. Our scheme is a generalization of

the recurrence scheme to the case of imperfect sources.

Here, we will use the extended GLLP formula, Eq. (2.7), in Section 2.5.3. Again, we
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use the definition of the residual, Eq. (6.10):

r = −1

2
f(pS)H2(pS) − 1

2
pSf(

δ2

pS

)H2(
δ2

pS

) +
∑

i

ΩiKi, (6.19)

where pS is the even parity possibility given in Eq. (A.2) with δC
b = δT

b = δ, δ is the

overall QBER before the recurrence, f(·) is error correction efficiency, Ωi and Ki are the

probability and the residue of the qubit groups with label i after privacy amplification,

respectively.

In the post-processing, Alice and Bob first check the parity, corresponding to the

first term of Eq. (6.19). Secondly, they apply an overall error correction to the qubits

with even parity, corresponding to the second term of Eq. (6.19). Thirdly, they measure

one of the qubits in the pairs with odd parity to obtain the error syndrome of another

qubit. Afterwards, they can group the surviving qubits into several groups with labels i.

Finally, they perform privacy amplification to each group with label i, corresponding to

the last term of Eq. (6.19).

In the decoy state protocol, there are three kinds of input qubits: vacuum qubits

(V), single-photon qubits (S) and multi-photon qubits (M). The input parameters for

recurrence are listed in Table 6.1.

Qubit Fraction δb δp q11

V ΩV 1/2 1/2 qV
11

S Ω e1 e1 a

M ΩM eM 1/2 qM
11

Table 6.1: List of the parameters of three kinds of input qubits for the recurrence scheme.

Following Eqs. (3.7) and (3.8), the fractions of each group are given by ΩV = Q0/Qµ,

Ω = Q1/Qµ and ΩM = 1 − ΩV − Ω. ΩV /2 + e1Ω + eMΩM = δ is the overall QBER.

Thus, the outcome of one round of recurrence will have nine cases. Clearly, if neither

input is a single photon qubits, the outcome will have no contribution to the final key.

Alice and Bob need only apply Eq. (A.12) to calculate the residues, Ki, for the five cases:

V
⊕

S, S
⊕

V , S
⊕

S, S
⊕

M , M
⊕

S. The probabilities of occurrence, Ωi, for the five

cases are ΩV Ω, ΩΩV , Ω2, ΩΩM , ΩMΩ, respectively. Once we know Ki and Ωi, we can then

determine the overall residue, r, using Eq. (6.19) (details are shown in Appendix A.4):

r ≥−B + C − Fa (6.20)
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where

B =
1

2
f(pS)H2(pS) +

1

2
pSf(

δ2

pS

)H2(
δ2

pS

)

C =
3

4
ΩV Ω + Ω2(1 − e1 + e21) +

1

2
ΩΩM (2 − e1 − eM + 2e1eM)

D1 =
3

4
ΩV Ω +

1

2
Ω2(2 − e1) +

1

2
ΩΩM (2 − eM)

D2 =
3

4
ΩV Ω +

1

2
Ω2(1 + e1) +

1

2
ΩΩM (eM + 1)

Fa = D1(1 − e1)H2(
e1 − a

1 − e1
) +D2e1H2(

a

e1
)

(6.21)

with equality when qV
11 = 1/4 and qM

11 = eM/2. In order to get a lower bound of key

generation rate R, we maximize Fa over a by using a bisection method as discussed in

Appendix A.4.
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Figure 6.5: Plot of the key generation rate as a function of the transmission distance,

GLLP+Decoy+Recurrence vs. GLLP+Decoy+1-LOCC. Recurrence improves the QKD

performance over 1-LOCC in the whole regime of the distance. In particular, the recur-

rence method increases the key rate by more than 10% in our simulation. The maximal

secure distance for each case is 142.8 km (1-LOCC), 149.1 km (Recurrence), 163.8 km (1

B), respectively. Here, we consider the asymptotic decoy state QKD with an infinitely

long experiment. The parameters used are from the GYS experiment [32] listed in Table

3.1.
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Figure 6.5 shows the key generation rate as a function of the transmission distance

for GLLP+Decoy+1-LOCC, GLLP+Decoy+1 B step, and GLLP+Decoy+Recurrence.

Recurrence has more than a 10% improvement of the key rate over 1-LOCC in the whole

regime of the distance, and it also increases the maximal secure distance by 6 km.

6.4 Conclusion

We have developed two data post-processing schemes for the decoy state QKD using 2-

LOCC, one based on B steps and the other based on the recurrence method. As discussed

in Section 1.2.2, the maximal secure distance of QKD is crucial in practical applications,

thus our Decoy+B steps post-processing protocol, which we have shown to be able to

increase the maximal secure distance of QKD from 141 km to 182 km (using parameters

from the GYS experiment [32]), proves to be useful in real-life applications. Moreover,

our work shows that recurrence protocols are useful for increasing the key generation rate

in a practical QKD system in the whole regime of the distance.

In Ref. [74], we also show that similar conclusions hold even with statistical fluc-

tuations in the experimental variables for the Decoy+B step scheme. For the De-

coy+Recurrence scheme, although we do not have a rigorous argument, physical intuition

suggests that similar conclusions hold in the case of considering statistical fluctuations

as well. We conclude that using two-way classical communication is superior to using

one-way for our decoy state QKD schemes.

In addition, we provided a region of bit error rates and phase error rates that are

tolerable by using the Gottesman-Lo EDP scheme.
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Triggering PDC QKD

Parametric down-conversion (PDC) sources can be used for QKD. One can use a PDC

source as a triggered (heralded) single photon source. Recently, there are various practi-

cal proposals of the decoy state QKD with triggering PDC sources. In this chapter, we

generalize the passive decoy state idea, originally proposed by Mauerer and Silberhorn.

The generalized passive decoy state idea can be applied to cases where either threshold

detectors or photon number resolving detectors are used. The decoy state protocol pro-

posed by Adachi, Yamamoto, Koashi and Imoto (AYKI) can be treated as a special case

of the generalized passive decoy state method. By simulating a recent PDC experiment,

we compare various practical decoy state protocols with the infinite decoy protocol and

also compare the cases using threshold detectors and photon-number resolving detectors.

Our simulation result shows that with the AYKI protocol, one can achieve a key genera-

tion rate that is close to the theoretical limit of the infinite decoy protocol. Furthermore,

our simulation result shows that a photon-number resolving detector does not appear

to be useful for improving the QKD performance in this case. Although our analysis

is focused on the QKD with PDC sources, we emphasize that it can also be applied to

QKD setups with other triggered single photon sources.

This work is presented in Ref. [76]. In this work, I modeled the QKD setup with

triggered PDC source following the work of Lütkenhaus [70] and compare various decoy

state proposals of triggering PDC QKD.

71
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7.1 Background

The coherent state QKD suffers from photon-number splitting (PNS) attacks [39, 15, 71].

As discussed in Section 4.1, a main objective of the decoy state method is to close this

loophole of multi photon components in QKD sources. Decoy states can help better

estimate the channel properties (e.g., transmittance and error provability). To do that,

Alice uses extra states with different light intensities during key transmission. Then

Alice and Bob can consider detection statistics from signal and decoy states separately,

from which they can better estimate the channel transmittance and error probability.

The situation where Alice actively prepares decoy states is called the active decoy state

method, which is differentiated from the passive decoy state method where Alice chooses

decoy and signal states by passive measurements. A detailed discussion about the passive

decoy state can be found in Section 7.4.4. Note that in the coherent state QKD, one can

only use the active decoy state method.

Aside from a coherent state source, a PDC source can be used in a QKD experiment

as well. There are two ways to use a PDC source. The first is to use it as a triggered

(heralded) single photon source. Alice detects one of the two modes from a PDC source

as a trigger 1 and actively encodes her qubit information into another mode. We call this

implementation triggering PDC QKD. The second way is to use it as an entangled photon

source for entanglement-based QKD protocols. See Chapter 8 for more discussion. We

call this implementation entanglement PDC QKD.

The triggering PDC QKD, similar to the coherent state QKD, suffers from PNS

attacks. By applying the GLLP security proof, one can find that the optimal average

photon number µ is in the same order of the overall transmittance η. Then the key

generation rate will be in the order of η2. For a rigorous derivation, one can refer to

Appendix B.2. Thus, the performance of the triggering PDC QKD is very limited.

Since the decoy state idea can substantially enhance the performance of the coherent

state QKD, a natural question will be: “Can the decoy state idea be applied to the

triggering PDC QKD?” The answer is yes. One can apply the infinite decoy state idea

[65], as discussed in Section 4.1, to the triggering PDC QKD. Not surprisingly, with decoy

states, the key generation rate can be O(η), which is the same as the order achieved by

a single-photon source. Therefore, we expect that the decoy state QKD will become a

standard technique not only in the coherent state QKD, but also in QKD with triggering

1See Section 7.2 for the definition of a trigger.
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PDC sources. Recently, a few practical decoy proposals for triggering PDC requiring

a finite number of decoy states have been proposed [82, 2, 122, 121]. Note that an

experimental demonstration of the decoy state QKD with a triggering PDC source was

implemented recently [120].

We are interested in comparing various protocols for the triggering PDC QKD. Among

the practical decoy protocols for triggering PDC QKD, we find that the one proposed by

Adachi, Yamamoto, Koashi and Imoto (AYKI) [2] is simple to implement. The AYKI

protocol is conceptually similar to the one-decoy state scheme [77], as discussed in Section

5.1.2. In the AYKI protocol, Alice and Bob only need to consider the statistics of triggered

and non-triggered detection events 2 separately, instead of preparing new signals for the

decoy states. We emphasize that the AYKI protocol is easy to implement since there is

no need for a hardware change.

Other decoy state proposals for the triggering PDC QKD require hardware modifica-

tions. For example, the one proposed by Mauerer and Silberhorn [82] requires photon-

number resolving detectors, and the one proposed by Wang, Wang and Guo [122] requires

Alice to pump the laser source at various intensities.

The following is a generalization of the passive decoy state idea proposed by Mauerer

and Silberhorn [82]. The main idea is that Bob can group his detection events in accor-

dance to the public announcement of Alice’s detection events. For example, when Alice

uses a threshold detector, Bob can group his detection results in accordance to whether

Alice gets a detection or not. The generalized passive decoy state idea can be applied

to both cases that use threshold detectors and photon-number resolving detectors. The

AYKI protocol can be treated as a special case of the generalized passive decoy state

protocol.

By simulating a recent PDC experiment [115], we compare one case with a perfect

photon-number resolving detector and four cases with threshold detectors: no decoy,

infinite decoy, weak decoy and AYKI. Our simulation result shows that in a large regime

(for instance, the optical link loss between 0 dB and 25 dB), the performance of AYKI

protocol is close to that of the infinite decoy protocol and thus, there is not much room

left for improvement after the AYKI protocol has been implemented. Moreover, the QKD

performance of the case with the infinite decoy protocol using threshold detectors is close

to the case using a perfect photon-number resolving detector. Thus, a photon-number

resolving detector does not appear to be useful for triggering PDC QKD.

2In a non-triggered detection event, Bob gets a detection, but Alice does not get a trigger.
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We emphasize that an advantage of the passive decoy state method is that by passively

choosing decoy and signal states, the possibility that Eve can distinguish decoy and signal

states is reduced. On the other hand, in active (regular) decoy state experiments, it is

more difficult to verify the assumption that Eve cannot distinguish decoy and signal

states.

Note that the passive decoy state idea can be combined with the active decoy state

idea. In Ref. [121], the authors provide a special case where passive and active decoy

state ideas are combined. Again, we emphasize that for the coherent state QKD, one can

only use active decoy state methods.

Although our analysis is focussed on a QKD with a triggered PDC source, we em-

phasize that it can also be applied to QKD setups with other triggered single photon

sources.

In Section 7.2, we will review the experiment setup of the triggering PDC QKD. In

Section 7.3, we provide a model for the triggering PDC QKD. In Section 7.4, we will

study various post-processing schemes for the triggering PDC QKD. In Section 7.5, we

will compare various schemes of the triggering PDC QKD: non-decoy+threshold detec-

tors, infinite decoy+threshold detectors, AYKI and a case with a perfect photon-number

resolving detector, by simulating a real PDC experiment.

7.2 Experiment setup

In triggering PDC QKD, a PDC source is used as a triggered single photon source3. The

schematic diagram is shown in Figure 7.1.

As shown in Figure 7.1, a PDC source generates two modes of photons, which can be

separated by a polarization beam splitter (PBS). One mode goes to Alice’s own detector

(DA in Figure 7.1) as the triggering signal and the other mode is used as a triggered

single photon state for the QKD. When Alice’s detector (DA) clicks, we call it a trigger.

We divide the detection events on Bob’s side into two groups depending on whether Alice

gets a trigger or not: triggering detection events and non-triggering detection events.

Note that Alice can use either a threshold detector or a photon-number resolving

detector (DA in Figure 7.1). She only needs to know the number of photons in the

trigger mode. Therefore, only one detector is sufficient on Alice’s side. Due to the high

channel losses, without Eve’s interference, Bob is highly likely to receive a vacuum or

3Sometimes it is called heralded single photon source.
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Figure 7.1: A schematic diagram for the triggering PDC QKD. Alice collects photon pairs

emitted from a PDC source and uses a polarization beam splitter (PBS) to separate two

polarization modes. She detects one of the two modes with her detector (DA) as a trigger,

modulates the polarization of the other mode by a polarization controller (PC) and sends

it to Bob. On Bob’s side, he chooses his basis by a PC and performs a measurement by

his detectors (DB0 and DB1).

single photon state. Thus it is sufficient for Bob to use threshold detectors. Threshold

single photon detectors can only tell whether there is a click or not, but not the photon

numbers. Bob needs to identify polarizations of incoming photons. Here, we assume

Alice encodes qubit information in photon polarizations.

In real experiments, there are two types of PDC sources, both of which can be used

in a triggering PDC QKD setup. Here, we assume Alice uses a type-II PDC source. The

Hamiltonian of the type-II PDC process in the triggering setup shown in Figure 7.1 can

be written as [119]:

H = iχa†b† + h.c. (7.1)

where h.c. means Hermitian conjugate and χ is a coupling constant which depends on

the crystal nonlinearity and the amplitude of the pump beam. The operators a†, b† and

a, b are the creation and annihilation operators of two modes with different polarizations.

The state coming from a triggering PDC source, with a Hamiltonian of Eq. (7.1), can

be written as [119]:

|Ψ〉 = (coshχ)−1

∞
∑

n=0

(tanhχ)n|n, n〉. (7.2)

Here, we assume that the state is single-mode. The expected photon pair number is given

by µ = sinh2 χ. The probability to get an n-photon-pair is:

P (n) =
µn

(1 + µ)n+1
. (7.3)

Here, we assume that the PDC source always sends out photon pairs. That is, the photon

number of mode a and b is always the same.
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There is a nonzero probability for the PDC source to emit more than one photon pair

in a pulse. Thus, Alice may send out multi photon states after she encodes basis and key

information by her polarization controller (PC). This is the reason why the triggering

PDC QKD suffers from PNS attacks. Later in the next chapter, we will show that when

Alice uses the PDC source as an entangled photon source to implement an entanglement

based QKD, it will be immune from PNS attacks.

Let us compare triggering PDC QKD and entanglement PDC QKD implementations.

For the setup of entanglement PDC QKD, one can refer to Section 8.2. In the triggering

PDC QKD, Alice actively encodes the key information, while in the entanglement PDC

QKD, Alice measures the polarization of one mode of PDC source directly. The advantage

of the triggering PDC QKD here is that it does not rely on the polarization correlations

between two modes of the PDC source. It only requires the photon-pair generation of

the source, which means entanglement between photon pairs are not important for the

triggering PDC QKD. However, in an entanglement PDC QKD implementation, the

entanglement between two modes has to be well maintained for QKD transmission. We

notice that maintaining entanglement in real experiments is a highly non-trivial task4.

7.3 Model

Lütkenhaus studied the model of triggering PDC QKD [70] with threshold detectors.

His model is similar to the one of the coherent state QKD, except for a different photon

number distribution.

The channel model of triggering PDC QKD is exactly the same as the coherent state

QKD. Thus, one can use Eqs. (3.6) and (3.9).

7.3.1 On Alice’s side

In the triggering PDC QKD, Alice may use either a threshold detector or a photon-

number resolving detector. A N-photon-resolving detector is defined to be a detector

that can tell 0, 1, · · · , N photons of an incoming signal. For a threshold detector, we

have N = 1, which can only tell the presence of photons, but not the photon numbers.

Given an incoming i-photon state, the probability for Alice’s detector to indicate a j-

photon state is ηj|i, with
∑j=N

j=0 ηj|i = 1 for all i = 0, 1, · · · . In general, ηj|is are real

4A. M. Steinberg, private communication.
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numbers in [0,1]. We define a j-photon trigger for a case where Alice’s detector indicates

a j-photon state.

For a triggered PDC photon source, as given in Eq. (7.2), the probability for Alice’s

detector to indicate a j-photon detection is:

PAj =
∞
∑

i=0

µi

(1 + µ)i+1
ηj|i. (7.4)

With the assumption that the PDC source always emits photon pairs, the probability

(gain) for Alice getting a j-photon detection and Bob getting a detection is:

Qµ,j =
∞
∑

i=0

Qi,j

=

∞
∑

i=0

µi

(1 + µ)i+1
ηj|iYi,

(7.5)

where the yield Yi is given in Eq. (3.6). The quantum bit error rate (QBER) conditioned

on Alice’s j-photon detection, similar to Eq. (7.5), is given by:

Eµ,jQµ,j =

∞
∑

i=0

Qi,jei

=
∞
∑

i=0

µi

(1 + µ)i+1
ηj|iYiei.

(7.6)

where the error rate ei is given in Eq. (3.9).

It is observed that in the triggering PDC QKD setup, shown in Figure 7.1, the

quantities Yi and ei are independent of Alice’s measurement outcome j. This is based on

the single-mode PDC source assumption described in Eq. (7.1) in Section 7.2. Therefore,

in Section 7.4, we can apply the decoy state idea.

7.3.2 Threshold detector

Here, we will discuss a special case where Alice uses a threshold detector. That is,

η0|i = (1 − Y0A)(1 − ηA)i

≃ (1 − ηA)i

η1|i = 1 − η0|i

ηj|i = 0, ∀j ≥ 2,

(7.7)
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where Y0A and ηA are the background count rate and the detector efficiency on Alice’s

side. The approximation is due to the fact that normally, we have ηA ≫ Y0A. That is,

we neglect the background contributions on Alice’s side.

According to Eqs. (7.5) and (7.6), without Eve’s interference, the gains and QBER’s

of triggered (j = 1) and non-triggered (j = 0) detections are given by:

Qµ,0 =
1

1 + ηAµ
− 1 − Y0B

1 + (ηA + η − ηAη)µ

Qµ,1 = 1 − 1

1 + ηAµ
− 1 − Y0B

1 + ηµ
+

1 − Y0B

1 + (ηA + η − ηAη)µ

Eµ,0Qµ,0 = edQµ|0 +
(e0 − ed)Y0B

1 + ηAµ

Eµ,1Qµ,1 = edQµ|1 +
(e0 − ed)ηAµY0B

1 + ηAµ
.

(7.8)

Without Eve’s interference, the gains and error rates of the single photon state in two

detections are given by:

Q1,0 =
µ(1 − ηA)

(1 + µ)2
Y1

Q1,1 =
µηA

(1 + µ)2
Y1

e1Y1 = edY1 + (e0 − ed)Y0B

(7.9)

where Y1 and e1 are given in Eqs. (3.6) and (3.9), respectively.

7.3.3 Perfect photon-number resolving detector

Here, we will discuss the case where Alice uses a perfect photon-number resolving de-

tector, which can faithfully tell the number of photons in the incoming signal. That is,

ηj|i = δij . Thus, from Eqs. (7.5) and (7.6), the gains and QBERs are given by:

Qµ,i = Qi,i =
µi

(1 + µ)i+1
Yi

Eµ,iQµ,i = eiQi,i =
µi

(1 + µ)i+1
eiYi,

(7.10)

from where one can directly infer the gains and error rates of the i-photon state, Qi,j =

Qi,iδi,j.
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7.4 Post-processing

Here, we will apply the standard GLLP analysis, as shown in Eq. (2.6). All the classical

data measured can be grouped according to Alice’s detection events, j = 0, 1, · · · , N .

Subsequently, we can apply the GLLP idea [35, 74] to each group. The final key genera-

tion rate will be given by summing over contributions from all groups:

R =

N
∑

j=0

Rj . (7.11)

In each case j, one can apply Eq.(7.19):

Rj ≥ q{−f(Eµ,j)Qµ,jH2(Eµ,j) +Q1,j [1 −H2(e1)]}, (7.12)

where Q0,j and Q1,j are the first and second terms on the right hand side of Eq. (7.5).

Here, the error rate of the single photon state e1 is independent of j, see the observation

in the end of Section 7.3.1. Note that the key generation rate from all j-photon trigger

detections should be non-negative. If any of them contributes a negative key generation

rate, we should assign 0 to it. In this case, Alice and Bob can just discard that type

of detection. Based on this observation, we can further simplify Eq. (7.11). Given that

Alice detects more than one photon, the probability of emitting a single photon state

in Bob’s arm is small5. As we mentioned in the beginning of this section, only a single

photon state can contribute positively to the final key rate. Thus we can focus on the

case j = 0, 1.

R = R0 +R1, (7.13)

where R0 and R1 are given in Eq. (7.12). Again, both R0 and R1 should be non-negative,

otherwise they should be assigned 0.

In Eq. (7.12), the gain Qµ,j and the QBER Eµ,j, given in Eqs. (7.5) and (7.6), can

be measured or tested from QKD experiments directly. In this section, we will discuss

various ways to estimate Q0,j , Q1,j, and e1. We assume that the PDC photon source and

detector characteristics are fixed and known to Alice. That is, µ, the photon number

distribution in Eq. (7.3) and ηA are fixed and known.

5In Section 7.2, we assume that Alice’s PDC source always sends out photon pairs. Given that Alice
detects more than one photon on the triggering arm, a single photon state is present on the other arm
only when there is a dark count in Alice’s detector. Normally, we can assume that the detector efficiency
is much higher than the dark count probability on Alice’s side. Thus, we neglect the probability of a
single photon state with a multi photon trigger.
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7.4.1 Non-decoy states with threshold detectors

Here, we assume that Alice uses a threshold detector. Thus, Alice only has two mea-

surement outcomes, j = 0, 1. A simple way to estimate Q0,j , Q1,j , and e1 is by assuming

that all losses and errors come from the single photon states. This is because Eve can in

principle, perform PNS attacks on the multi-photon states. The gain and error rate of

the single photon states in triggered (j = 1) and non-triggered (j = 0) detections can be

bounded by:

Q1,0 ≥ Qµ,0 −
∞
∑

i=2

µi

(1 + µ)i+1
η0|i

= Qµ,0 −
(1 − ηA)2µ2

(1 + ηAµ)(1 + µ)2

Q1,1 ≥ Qµ,1 −
ηA(2 − ηA + µ)µ2

(1 + ηAµ)(1 + µ)2

e1,0 ≥
Eµ,0Qµ,0

Q1,0

e1,1 ≥
Eµ,1Qµ,1

Q1,1

(7.14)

where ηA is the efficiency of Alice’s detector. The gain Qµ and the QBER Eµ, given

in Eqs. (7.5) and (7.6), can be measured or tested from QKD experiments directly. In

the following simulations, we will use Eq. (7.8). Since we assume all errors come from

single photon states, one should take the lower bound of the vacuum contribution to be

Q0,j = 0.

7.4.2 Infinite active decoy state with threshold detectors

To perform a privacy amplification process, Alice and Bob need to bound Q0,j , Q1,j , and

e1 for Eq. (7.12). From Eq. (7.5), we know that to bound Q0,j and Q1,j , Alice and Bob

need to estimate Y1.

The decoy state method provides a good way to estimate Y1 and e1 [40, 65]. The

essential idea is that instead of considering each linear equation of Y1 and e1 in the

form of Eqs. (7.5) and (7.6) separately, Alice and Bob consider all the linear equations

simultaneously.

Let us imagine that Alice and Bob obtain an infinite number of linear equations in the

form of Eqs. (7.5) and (7.6), e.g., they use an infinite number of intensities µ. In principle,

Alice and Bob can solve the equations to get Y1 and e1 accurately. Mathematically, the

problem is solvable. The intuition is that the contributions from higher order terms of Yi
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and ei decrease exponentially in Eqs. (7.5) and (7.6). For the case coherent state QKD,

one or two decoy states are proven to be sufficient [77]. Shortly, we will see that one

decoy state is sufficient for triggering PDC QKD.

The key underlying assumption of the decoy state method is shown in Eq. (4.2). In

other words, Eve sets the same values of Yi and ei for the decoy and signal states. This

can be guaranteed by the assumption that Eve cannot distinguish decoy and signal states.

In Appendix B.2, we will show that the optimal µ for the infinite decoy state case

is in the order of 1, µ = O(1), which yields final a key rate R = O(η). On the other

hand, the optimal µ for the non-decoy case is µ = O(η), which yields a final key rate

R = O(η2). Therefore, we expect the decoy state QKD to become a standard technique

not only in the coherent state QKD, but also in QKD with triggering PDC sources.

There are various ways to apply the decoy state idea to the triggering PDC QKD [82,

2, 122]. Here, we consider the upper bound (infinite decoy state case) of all possible decoy

protocols of triggering PDC QKD with threshold detectors: triggering PDC+infinite

decoy method [65]. In the infinite decoy state method, Alice and Bob perform an infinite

number of decoy states by choosing different intensities of the PDC source, µ. They

can then solve the linear equations in the form of Eqs. (7.5) and (7.6) to estimate Y1

and e1 accurately. Hence, they can calculate each Q0,j, Q1,j , and e1 accurately. In the

simulation, we will use Eqs. (7.8) and (7.9) directly.

7.4.3 Weak active decoy state with threshold detectors

Here, we assume that Alice and Bob use threshold detectors and focus on triggered

detection events. Alice uses another intensity ν, for instance, by attenuating the pumping

laser, for the weak decoy state. Wang, Wang and Guo proposed a practical decoy method

for triggering PDC QKD [122], which is essentially applying the Vacuum+Weak decoy

state method [77] described in Section 5.1.1. Note that for triggered detection events,

the vacuum contribution can be negligible since ηA ≫ Y0A. Thus there is no need to

estimate the vacuum contribution here. Therefore, Alice and Bob only need to perform

a weak decoy state instead of the Vacuum+Weak decoy states. In this case, only one

weak decoy state is sufficient.

Bounds of Y1 and e1 are given by µ2(1 + ν)3 ×Qν,1 − ν2(1 + µ)3 ×Qµ,1 in Eqs. (7.5)
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and (7.6):

Y1 ≥
1

ηA(µ− ν)
[
µ

ν
(1 + ν)3Qν|1 −

ν

µ
(1 + µ)3Qµ|1]

e1 ≤ min{(1 + µ)2

µ

Eµ,1Qµ,1

ηAY1

,
(1 + ν)2

ν

Eν,1Qν,1

ηAY1

}
(7.15)

where ν is the expected photon pair number of the weak decoy state and ηA is the

efficiency of Alice’s threshold detector.

It is not difficult to show that when ν → 0, Eq. (7.15) approaches the infinite case,

Eqs. (7.8) and (7.9), described in the previous subsection.

7.4.4 Passive decoy state

Recently, Mauerer and Silberhorn proposed a passive decoy state scheme, in which

photon-number resolving detectors are required [82]. Let us recap the heuristic idea

of the original passive decoy state scheme briefly here. As discussed in Section 7.3, Alice

and Bob eventually get different detection events grouped by triggers on Alice’s side. The

key idea proposed by Mauerer and Silberhorn is that Alice and Bob manually combine

the {j}-trigger detection events to get the decoy states with different photon number

statistics and then follow the regular decoy state scheme.

Here, we want to point out that the “combination” step is unnecessary. In general,

each detection event group with a j-trigger has a different photon number statistic on the

photon source arm. Thus, Alice and Bob need to treat all {j}-trigger detection events

statistics separately. Furthermore, photon-number resolving detectors are not necessary

in passive decoy state schemes. Our new generalized passive decoy state scheme is as

follows.

1. Alice uses a PDC source as her triggered photon source. She detects one of the

modes from her PDC source as the trigger and encodes key information into another

mode. Due to the detector Alice uses, she will get different trigger events: j =

0, 1, · · · . When she uses a threshold detector, she will only get j = 0, 1.

2. As the usual BB84 protocol, Bob measures signals in two different bases. Alice and

Bob perform basis reconciliation.

3. Alice announces her trigger detection results for each pulse: j. Bob groups his

detection events by the information j. For each j, they calculate the gain Qµ,j and

test the QBER Eµ,j .
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Mathematically, they will obtain a set of linear equations in the form of Eqs. (7.5)

and (7.6). Notice that the setup parameters, µ and ηj|is, are known to Alice and

Bob. Thus, they can estimate Y1 and e1 by considering Eqs. (7.5) and (7.6).

4. The post-processing is applied accordance to Eq. (7.13).

Note that the scheme is called passive because Alice does not actively select decoy

states. Instead, she determines the decoy states by measuring the trigger mode. Later,

we will show that this is one advantage of using the triggering PDC source for QKD.

Actually, in this case, there are no strict definitions of decoy states and signal states.

In the original decoy state method [77], decoy states are only used to estimate Y1 and

e1 and the key is always generated from signal states6. In a triggering PDC QKD case,

both the triggered j = 0 and non-triggered j = 1 detection events may have positive

contributions to the final key generation.

7.4.5 Passive decoy state with threshold detectors

Here, we will review the decoy protocol proposed by Adachi, Yamamoto, Koashi and

Imoto [2] as a special case of the passive decoy state protocol. The AYKI protocol is

interesting in practice since it does not involve any hardware change to implement the

decoy state idea.

Both Alice and Bob use threshold detectors, thus they have two types of detection

events, triggered (j = 1) and non-triggered (j = 0). Secure keys can be generated from

both types of detection events. Following the passive decoy state method procedure de-

scribed in the previous subsection, Alice and Bob can estimate Y1 and e1 by considering

the statistics of triggered and non-triggered detection events together. This is conceptu-

ally similar to the one decoy state idea [77] described in Section 5.1.2.

By solving two linear equations of Eq. (7.5) with j = 0, 1, [1 − (1 − ηA)2] × Qµ,0 −
(1 − ηA)2 ×Qµ,1, one can get:

Y1 ≥ Y L
1 ≡ (1 + µ)2

µ
[
2 − ηA

1 − ηA

(Qµ,0 −Q0,0) −
1 − ηA

ηA

Qµ,1] (7.16)

where Q0,0 is the vacuum state contribution in non-triggered detection events. One needs

to minimize the key rate of Eq. (7.13) for Q0,0 with the constraint of Eq. (7.6). Note that

this result is essentially Eq. (14) given in Ref. [2]. We can see that when ηA is close to

6In the coherent state QKD, there is an optimal µ for a setup. To maximize the final key rate, Alice
and Bob should publicly compare all detection results from decoy states.
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1 or µ is small, after neglecting Qµ,0 (background counts), the lower bound Y L
1 is tight

(approaches the real value of Y1, see Eq. (3.6)):

lim
ηA→1

Y L
1 = lim

µ→0
Y L

1 = η. (7.17)

By neglecting the vacuum state contribution for triggered detection events, Q0,1 = 0,

e1 can be simply estimated by:

e1 ≤
Eµ,1Qµ,1

Q1,1
. (7.18)

To get the lower bound of Y1 in Eq. (7.16), one has to estimate the background

contribution Q0,0 as well. A simple bound of Q0,0 is 0 ≤ Q0,0e0 ≤ Eµ,0Qµ,0 from Eq. (7.6),

where e0 = 1/2.

Note that the key rate calculated by substituting Eqs. (7.16) and (7.18) into Eq. (7.13)

is not optimal. To get a tighter key rate bound, one can numerically calculate the lower

bound of Eq. (7.13) directly, given the measurement results, Eq. (7.9).

7.4.6 With a perfect photon-number resolving detector

Here, we discuss a special case where Alice uses a perfect photon-number resolving de-

tector, discussed in Section 7.3.3. Now that Alice knows the exact photon number of

the source, Alice and Bob only need to focus the post-processing on single photon state

detection events. In this case, the BB84 protocol is implemented by single photon states

only. Thus, they can directly apply Shor and Preskill’s formula [106, 75]:

R ≥ qQ1[1 − f(e1)H2(e1) −H2(e1)]. (7.19)

Later from the simulation that is shown in Figure 7.2, we can see that a perfect photon-

number resolving detector does not improve the QKD performance dramatically in com-

parison to the threshold detector case.

7.4.7 A few remarks

From the analysis of optimal µ in Appendix B.2, one can see that the key rate for a

case without decoy states quadratically depends on the channel loss, R = O(η2), while

for the case with decoy states, R = O(η). This result is consistent with prior work that

compared the cases of a coherent state QKD with and without decoy states [65].

In the decoy state security proof [65], the key assumption is that the decoy state and

signal state should satisfy Eq. (4.2). This is guaranteed by the assumption that Eve
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cannot distinguish decoy and signal states. However, in the active decoy state method,

Alice may introduce side information that can distinguish decoy and signal states when

she actively prepares decoy and signal states. For example, an attenuator on Alice’s side,

used to prepare different intensities for signal and decoy states, may introduce different

frequency shifts for signal and decoy states [131]. In general, it is difficult to verify the

assumption that Eve cannot distinguish decoy and signal states in real active decoy state

experiments.

In the passive decoy state scheme, decoy and signal states are passively determined

by Alice’s measurement outcome. Alice does not use an extra component (such as in the

active decoy state method) to prepare decoy states. This reduces the possibility of side

information leakage. By passively choosing decoy states, Alice prepares same states on

Bob’s arm7. In fact, Alice can measure trigger signals after Bob finishes his measurements.

Thus, from Eve’s point of view, the states transmitted through the channel is independent

of Alice’s measurement results (j). Therefore, in principle, Eve cannot distinguish the

decoy and signal states in the passive decoy state QKD.

This is the main advantage in using the passive decoy state methods. Note that for

a coherent state QKD, one can only use the active decoy state idea.

7.5 Simulation

In this section, we will compare the passive decoy state with a perfect number resolving

detector and four QKD implementations with threshold detectors: non-decoy, infinite

decoy, weak active decoy and AYKI (passive decoy state).

We deduce experimental parameters from a recent PDC experiment [115], which are

listed in Table 7.1. In the following simulations, we will use q = 1/2 and f(Eµ) = 1.22

in Eq. (7.12). We notice that with the slightly modified experiment setup, a coherent

state QKD with decoy states is implemented [115]. Thus, it is reasonable to use this

experiment setup to simulate the five QKD implementations.

In the simulation, for fair comparison, we always assume Bob uses the same detection

setup (with threshold detectors).

7Strictly speaking, there is one underlying assumption: the PDC source is single-mode.
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Repetition rate Wavelength ηAlice ηBob ed Y0B

249MHz 710 nm 14.5% 14.5% 1.5% 6.024 × 10−6

Table 7.1: List of parameters from the 144 km PDC experiment [115]. Here, ηAlice and

ηBob are the detection efficiencies in Alice and Bob’s detection system, not including the

optical channel loss. ed is the intrinsic detector error rate. Y0B is the background count

rate of Bob’s detection system (for example, if Bob has two detectors, then Y0B will be

the sum of the background count rates of the two detectors). The transmission efficiency

η in Eq. (3.6) is given by ηBob plus the channel loss. Since Alice owns the PDC source,

ηA = ηAlice.

7.5.1 Without statistical fluctuations

In the first simulation, we will consider a case where Alice and Bob perform an infinitely

long QKD (no statistical fluctuations). In this case, the weak active decoy state protocol

will approach the infinite decoy case, similar to the discussion in Section 5.1.1. We

assume that Alice is able to adjust µ (the brightness of the PDC source) in the regime

of [0, 1] arbitrarily. In the simulation, we numerically optimize µ for each of the four

implementation protocols: non-decoy, infinite decoy, AYKI and a case with a perfect

number resolving detector. The simulation result is shown in Figure 7.28.

From Figure 7.2, we have the following remarks.

1. In Appendix B.2, instead of numerically optimizing µ as the case was for Fig-

ure (7.2), we qualitatively investigate the optimal µ for triggering PDC QKD with

and without decoy states. The simulation result is consistent with the qualitative

conclusion R = O(η) for the case with with decoy states and R = O(η2) for the

case without decoy states.

2. The space between the solid and dashed line in Figure 7.2 indicates room left for

improvement by other decoy protocols with threshold detectors after the AYKI

protocol is implemented. We can see that, in a large regime of the optical link loss

(for instance, between 0 dB and 25 dB), the performances of AYKI and the infinite

decoy are close. For instance, the AYKI protocol yields around 50% of the key rate

of the infinite decoy state protocol when the channel loss is within 20 dB.

8Here we simulate a free space QKD setup [115]. Since in a free space QKD system, the channel
transmittance will depend on not only the distance but also other components, such as the size of the
telescope, it is more appropriate to use the optical loss rather than the distance for x-axis of Figure 7.2.
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Figure 7.2: Plot of the key generation rate in terms of the optical loss, comparing four

schemes without considering statistical fluctuations: non-decoy, infinite decoy, AYKI

and a case with a perfect number resolving detector. Here, we use q = 1/2 and f(Eµ) =

1.22. We numerically optimize µ for each curve, see Appendix B.2 for more discussions.

Simulation parameters are listed in Table 7.1.

3. By comparing AYKI and a case with a perfect photon-number resolving detector,

we can see that even with a perfect photon-number resolving detector on Alice’s

side, the key rate has not improved dramatically in a large regime of the optical

link loss.

4. The non-decoy protocol is better than the AYKI in the regime close to maximal

secure distances. This is because we use the bounds of Eqs. (7.16) and (7.18) for

the AYKI curve. In reality, Alice and Bob can use the bound of Eq. (7.14) directly

in this regime.

5. There is a bump in each curve. This is due to the fact that in the key generation

rate formula Eq. (7.13), the non-triggered detection events have no contribution to

the final secure key after the bump.

6. At the point of loss=0 dB, the key rates of four cases (from top to bottom) are
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1.21 × 10−2, 8.6 × 10−3, 4.2 × 10−3 and 1.3 × 10−3.

7. At the point of loss=0 dB, the numerical results for optimal µ for four cases (from

top to bottom) are: 1, 0.52, 0.194, 0.0589. The optimal µ for the case with a perfect

threshold detector is always 1, which is reasonable since µ = 1 maximizes the single

photon state probability. In Appendix B.2, we show that the optimal µs for the

infinite decoy and AYKI case are relatively stable in a large regime of the optical

link loss (for instance, between 0 dB and 25 dB). The optimal µ for the no decoy

state case decreases with channel loss.

8. Note that the real µ used in the experiment [115] is µ = 0.0265. In general, it is

experimentally difficult to increase the brightness (µ) of a PDC source.

9. All of the four cases can tolerate similar optical losses.

7.5.2 With statistical fluctuations

In a real experiment, the key length is always finite. Alice and Bob should consider

statistical fluctuations. As pointed out in Section 5.2, the statistical fluctuation analysis

is a complicated problem in the decoy state QKD scheme.

Similar to the analysis in Section 5.2, we assume a few conditions:

1. Alice knows the exact value of the average photon pair number µ, which is a fixed

number during key transmission.

2. The distribution of the photon number, Eq. (7.3), does not fluctuate.

3. The QKD transmission is assumed to be part of an infinite length experiment.

Here, we focus on three cases with threshold detectors: infinite decoy, weak decoy

and AYKI. We assume that the data size is 6 × 109 pulses of Alice’s pumping laser.

The simulation result is shown in Figure 8.5. From the simulation result, we have the

following observations.

1. Similar to a case without the fluctuation analysis, in a large regime of the optical

link loss, the performances of AYKI and the infinite decoy are close.

2. At the point of loss=0 dB, the key rates of the three cases from top to bottom are

8.6 × 10−3 (infinite), 5.0 × 10−3 (weak) and 4.7 × 10−3 (AYKI).
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Figure 7.3: Plot of the key generation rate in terms of the optical loss, comparing three

cases with threshold detectors after considering statistical fluctuations: infinite decoy,

weak active decoy and AYKI. We numerically optimize µ for each curve. Here, we use

q = 1/2 and f(Eµ) = 1.22. In the weak decoy state case, we assume Alice can randomly

attenuate her PDC source intensity. Simulation parameters are listed in Table 7.1. The

data size is 6 × 109 pumping laser pulses on Alice’s side.

3. The maximal tolerable secure optical losses for the three cases are rather similar:

37 dB (infinite), 32.5 dB (AYKI), 32 dB (weak).

4. The AYKI protocol yields a higher key rate than the weak decoy state protocol

when the loss is greater than 16 dB. AYKI is less affected by statistical fluctuations

than the weak decoy state because in AYKI, Alice does not need to sacrifice extra

pulses for decoy states.

In Section 7.4.7, we pointed out that from a practical security point of view, the

passive decoy state method has an advantage over active decoy state methods. Moreover,

the AYKI method does not require any additional hardware changes to implement the

decoy state, while in the weak decoy state case, Alice needs to add an attenuator to

create decoy states. Now, from the simulation result, we can see that the AYKI and
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weak active decoy state method yield a similar QKD performance. Thus, our conclusion

is that one should just use the AYKI method instead of the weak decoy state method.

7.6 Conclusion

By investigating the optimal photon source intensity, we find that the triggering PDC

QKD setup with decoy states is able to achieve a key rate that linearly depends on the

channel transmittance, in comparison to the quadratic dependence for the case without

decoy states. Therefore, we expect the decoy state QKD to become a standard technique

not only in the coherent state QKD, but also in QKD with triggering PDC sources.

On the practical side, we generalize the passive decoy state idea. The generalized

passive decoy state idea can be applied to cases where either threshold detectors or

photon number resolving detectors are used. The decoy protocol proposed by Adachi,

Yamamoto, Koashi and Imoto (AYKI) can be treated as a special case of the generalized

passive decoy state method. In comparison to the active (regular) decoy state methods,

the passive one opens less possibility for Eve to distinguish decoy and signal states, which

is a key underlying assumption in the security proof of the decoy state QKD scheme.

From this sense, the passive decoy state method is more secure than the active decoy

state methods in practice.

By simulating a recent PDC experiment, we compared various practical decoy state

protocols with the infinite decoy protocol. We also compared cases using threshold de-

tectors and photon-number resolving detectors. Our simulation result shows that with

the AYKI protocol, one can achieve a key generation rate that is close to the theoreti-

cal limit of infinite decoy protocol. Furthermore, our simulation result suggests that a

photon-number resolving detector has little room to improve the QKD performance, in

comparison to the case using threshold detectors.

We also considered the statistical fluctuations. We compared infinite decoy protocol,

weak active decoy state method and AYKI protocol. The simulation result shows that the

weak active decoy state method and AYKI protocol yield a very close QKD performance.

In a large regime of the optical link loss, the AYKI protocol can achieve a performance

that is close to the infinite decoy case. Since the AYKI protocol requires no hardware

changes for triggering PDC QKD, we conclude that AYKI method is a good protocol for

triggering PDC QKD experiments.

Although our analysis is focused on QKD with PDC sources, we emphasize that it
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can also be applied to other QKD setups with triggered single photon sources.



Chapter 8

Entanglement-based QKD

A parametric down-conversion (PDC) source can be used as either a triggered single

photon source or an entangled photon source in QKD. The triggering PDC QKD was

already studied in the previous chapter. However, a model and a post-processing protocol

for the entanglement PDC QKD are still missing. Here, we fill in this important gap

by proposing such a model and a post-processing protocol for the entanglement PDC

QKD. Although the PDC model is proposed for studying the entanglement-based QKD,

we emphasize that our generic model may also be useful for other non-QKD experiments

involving a PDC source. Since an entangled PDC source is a basis independent source, we

apply Koashi-Preskill’s security analysis to the entanglement PDC QKD. We will also

investigate the entanglement PDC QKD with two-way classical communication. Our

results indicate that the recurrence scheme increases the key rate and Gottesman-Lo

protocol helps tolerate higher channel losses. By simulating a recent 144 km open-air

PDC experiment, we will compare three implementations: entanglement PDC QKD,

triggering PDC QKD and coherent state QKD. The simulation result suggests that the

entanglement PDC QKD can tolerate higher channel losses than the coherent state QKD.

The coherent state QKD with decoy states is able to achieve the highest key rate in

the low and medium-loss regions. By applying Gottesman-Lo two-way post-processing

protocol, the entanglement PDC QKD can tolerate up to 70 dB of combined channel

losses (35 dB for each channel) provided that the PDC source is placed in between Alice

and Bob. After considering statistical fluctuations, the PDC setup can tolerate up to a

53 dB channel loss.

This work is published in Ref. [75]. In this work, I build an entangled PDC source

model, apply Koashi-Preskill’s security analysis and simulate a PDC experiment to show

92
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the performance of the entanglement-based QKD in comparison with the triggering PDC

QKD and coherent state QKD.

8.1 Introduction

As we discussed in Chapter 2, there are mainly two types of QKD schemes. One is the

prepare-and-measure scheme, such as BB84 [11] and the other is the entanglement based

QKD, such as Ekert91 [24] and BBM92 [12].

With a PDC source, one can realize either prepare-and-measure or entanglement-

based QKD protocols [44]. To implement a prepare-and-measure QKD protocol, one can

use a PDC source as a triggered single photon source. On the other hand, to implement an

entanglement-based QKD protocol, one can use the polarization entanglement between

two modes of light emitted from a PDC source. We call these two implementations the

triggering PDC QKD and entanglement PDC QKD. With an entangled source, one can

also implement QKD protocols based on causality [81] and Bell’s inequality [1]. We notice

that the PDC QKD based on the time-energy entanglement has been exploited [112].

Here, we present a model for the entanglement PDC QKD. From the model, we find

that an entangled PDC source is a basis independent source for QKD. Based on this

observation, we propose a post-processing scheme by applying Koashi-Preskill’s security

analysis [54].

Recently, a free-space distribution of entangled photons over 144 km was demon-

strated [115]. We will simulate this experiment setup and compare three QKD imple-

mentations: entanglement PDC QKD, triggering PDC QKD and coherent state QKD. In

the simulation, we will also apply Gottesman-Lo two-way post-processing protocol [34]

and a recurrence scheme [118], see also [74].

The main contributions of this chapter are as follows.

• We present a model for the entanglement PDC QKD. Although the model is pro-

posed to study the entanglement-based QKD, this generic model may also be useful

for other non-QKD experiments involving a PDC source.

• From the model, we find that an entangled PDC source is a basis independent

source for QKD. Based on this observation, we propose a post-processing scheme

for the entanglement PDC QKD. Essentially, we apply Koashi-Preskill’s security

analysis [54].
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• By simulating a PDC experiment [115], we compare three QKD implementations:

entanglement PDC QKD, triggering PDC QKD and coherent state QKD. In the

entanglement PDC QKD, we consider two cases: the source in the middle and

source on Alice’s side.

• In the case where the PDC source is placed in between Alice and Bob, we find

that the entanglement PDC QKD can tolerate the highest channel losses, up to 70

dB by applying Gottesman-Lo two-way classical communication post-processing

protocol [34]. Note that a 35 dB channel loss is comparable to the estimated loss

in a satellite to ground transmission in the literature [6, 95, 45, 117, 4].

• We consider statistical fluctuations for the entanglement PDC QKD. In this case,

the PDC setup can tolerate up to a 53 dB channel loss.

• The coherent state QKD with decoy states is able to achieve the highest key rate

in the low and medium-loss regions.

In Section 8.2, we will review two experiment setups of the entanglement PDC QKD.

In Section 8.3, the entanglement PDC QKD will be modeled. In Appendix A.5, we

calculate the quantum bit error rate in the entanglement PDC QKD. In Section 8.4, a

post-processing scheme for the entanglement PDC QKD will be proposed. In Section 8.5,

we will compare the entanglement PDC QKD, the triggering PDC QKD and the coherent

state QKD by simulating a real PDC experiment. We also apply protocols based on two-

way classical communication and consider statistical fluctuations. In Appendix B.3, the

optimal µ for the entanglement PDC QKD is investigated.

8.2 Implementation

In general, the entangled PDC source does not necessarily belong to one of the two

legitimate QKD users, Alice or Bob. One can even assume that an eavesdropper, Eve,

owns the PDC source. In this section, we will compare two experimental setups of the

entanglement PDC QKD due to the position of the PDC source; in between Alice and

Bob or on Alice’s side.

Let us start with a general discussion about an entangled PDC source. With the

rotating-wave approximation, the Hamiltonian of the PDC process can be written as

[55]:

H = iχ(a†Hb
†
V − a†V b

†
H) + h.c. (8.1)
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where h.c. means Hermitian conjugate and χ is a coupling constant depending on the

crystal nonlinearity and the amplitude of the pump beam. The operators ai and bi are

the annihilation operators for rectilinear polarizations i ∈ {H, V } in modes a and b

respectively. Modes a and b are the modes sent to Alice and Bob, respectively. Notice

that the difference between this Hamiltonian and Eq. (7.1) is that in this case, one should

consider two freedoms: polarization (H and V ) and space (a and b).

In Section 8.3, we will focus on modeling the measurement of the rectilinear polar-

ization (Z) basis. Due to symmetry, all the calculations can be applied to X basis too.

8.2.1 Source in the middle

First, we consider a case where the PDC source sits in between Alice and Bob. The

schematic diagram is shown in Figure 8.1.

 

Channel 
B 

Bob 

DB0 

PC DB1 

DA0 

PC 

Alice 

DA1 PBS PBS 
Channel 

A 

 
PDC 

 

Figure 8.1: A schematic diagram for the entanglement PDC QKD. Alice and Bob connect

to an entangled PDC source by optical links. They each receive one of two entangled

modes coming out from the PDC source. Both Alice and Bob randomly choose basis (by

polarization controllers) to measure the arrived signals (by single photon detectors). PC:

polarization controller; PBS: polarization beam splitter; DA0, DA1, DB0, DB1: threshold

detectors.

As shown in Figure 8.1, a PDC source provides two entangled modes, a and b, which

are sent to Alice and Bob, respectively. After receiving the signals, Alice and Bob each

randomly choose a basis (X or Z) to perform a measurement. A key observation of this

setup is that the state emitted from the PDC source is independent of the bases Alice

and Bob that choose for the measurements.

8.2.2 Source on Alice’s side

Another case is where Alice owns the PDC source. The schematic diagram is shown in

Figure 8.2.
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Figure 8.2: A schematic diagram for the entanglement PDC QKD. Alice measures one

of entangled modes coming out from the PDC source and sends Bob the other mode.

In comparing Figures 8.1 and 8.2, we can see that the only difference is the position

of the PDC source. As we will see Section 8.4, the post-processing of these two setups

are similar.

Note that in the second setup, Alice’s measurement commutes with Bob’s measure-

ment. Thus, we have the same observation as before where the PDC source state is

independent of the measurement bases.

Therefore, for both setups, the entangled PDC source is a basis-independent source.

It follows that the entanglement PDC QKD is a basis independent QKD.

8.3 Model

In this section, we will model an entangled PDC source, channel and detectors for the

entanglement PDC QKD. We emphasize that this model is applicable for both experiment

setups described in Section 8.2.

8.3.1 An entangled PDC source

From Eq. (8.1), the state emitted from a type-II PDC source can be written as [55]:

|Ψ〉 = (coshχ)−2

∞
∑

n=0

√
n + 1 tanhn χ|Φn〉, (8.2)

where |Φn〉 is the state of an n-photon-pair, given by:

|Φn〉 =
1√
n+ 1

n
∑

m=0

(−1)m|n−m,m〉a|m,n−m〉b. (8.3)
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For example, when n = 1, Eq. (8.3) will give a Bell state:

|Φ1〉 =
1√
2
(|1, 0〉a|0, 1〉b − |0, 1〉a|1, 0〉b)

=
1√
2
(| ↔〉a| l〉b − | l〉a| ↔〉b),

(8.4)

Here, we use the polarizations |1, 0〉 = | ↔〉 and |0, 1〉 = | l〉 as a qubit basis (Z basis)

for QKD. From Eq. (8.2), the probability of getting an n-photon-pair is:

P (n) =
(n+ 1)λn

(1 + λ)n+2
(8.5)

where we define λ ≡ sinh2 χ. The expected photon pair number is µ = 2λ, which is

the average number of photon pairs generated by one pump pulse, characterizing the

brightness of a PDC source.

8.3.2 Detection

Now we need to consider two channels: one for Alice and the other for Bob. We can apply

the photon number channel model, described in Section 3.2.3, to each arm. The yield of

an n-photon-pair Yn mainly comes from two parts, the background and the true signal.

Assuming that the background counts are independent of the signal photon detection,

then Yn is given by:

Yn = [1 − (1 − Y0A)(1 − ηA)n][1 − (1 − Y0B)(1 − ηB)n] (8.6)

where Y0A and Y0B are the background count rates on the sides of Alice and Bob, respec-

tively. The vacuum state contribution is Y0 = Y0AY0B. The gain of the n-photon-pair

Qn, which is the product of Eqs. (8.5) and (8.6), is given by:

Qn = YnP (n)

= [1 − (1 − Y0A)(1 − ηA)n][1 − (1 − Y0B)(1 − ηB)n]
(n + 1)λn

(1 + λ)n+2
.

(8.7)

The overall gain is given by:

Qλ =

∞
∑

n=0

Qn

= 1 − 1 − Y0A

(1 + ηAλ)2
− 1 − Y0B

(1 + ηBλ)2
+

(1 − Y0A)(1 − Y0B)

(1 + ηAλ+ ηBλ− ηAηBλ)2
.

(8.8)
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Here, the overall gain Qλ is the probability of a coincident detection event given a pump

pulse. Note that the parameter λ is one half of the expected photon pair number µ.

The overall quantum bit error rate (QBER, Eλ) is given by:

EλQλ =e0Qλ − 2(e0 − ed)ηAηBλ(1 + λ)

(1 + ηAλ)(1 + ηBλ)(1 + ηAλ+ ηBλ− ηAηBλ)
(8.9)

where Qλ is the gain given in Eq. (8.8). The calculation of the Eλ is shown in Appendix

A.5.

8.4 Post-processing

As mentioned in Section 8.2, the entanglement PDC QKD is a basis-independent QKD.

Thus, we can apply Koashi and Preskill’s security proof [54]. The key generation rate is

given by:

R ≥ q{Qλ[1 − f(δb)H2(δb) −H2(δp)]}. (8.10)

where the subscript λ denotes for one half of the expected photon number µ, Qλ is the

overall gain, δb (δp) is the bit (phase) error rate, f(x) is the bi-direction error correction

efficiency.

Due to the symmetry of X and Z bases measurements, as shown in Section 8.2, δb

and δp are given by:

δb = δp = Eλ, (8.11)

where Eλ is the overall QBER. This equation is true for the asymptotic limit of an

infinitely long key distribution. Later, in Section 8.5.3, we will see that Eq. (8.11) may

not be true when statistical fluctuations are taken into account.

Note that in Koashi and Preskill’s security proof, the squash model [35] is applied.

In the squash model, Alice and Bob project the state onto the qubit Hilbert space before

X or Z measurements. For more details of the squash model, one can refer to [35]. In

the case where Alice owns the PDC source, as discussed in Subsection 8.2.2, the key

rate formula of Eq. (8.10) has been proven [51] to be valid for the QKD with threshold

detectors without the squash model, see also [67]. We also notice that this post-processing

scheme, Eqs. (8.10) and (8.11), can be derived from the security analysis based on the

uncertainty principle [52].

In Eq. (8.10), Qλ can be directly measured from a QKD experiment and Eλ can be

estimated by error testing. In the simulation shown in Section 8.5, we will use Eqs. (8.8)

and (8.9).
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Note that the post-processing for the entanglement PDC QKD is simpler than the

coherent state QKD and triggering PDC QKD. In the entanglement PDC QKD, all

the parameters needed for the post-processing (Qλ and Eλ) can be directly calculated

or tested from the measured classical data. On the other hand, in the coherent PDC

QKD and the triggering PDC QKD, Alice and Bob need to know the value of some

experimental parameters ahead of time, such as the expected photon number µ. They

also need to estimate the gain and error rate of the single photon states Q1 and e1, which

make the statistical fluctuation analysis difficult [77], as investigated in Section 5.2.

The post-processing can be further improved by introducing two-way classical com-

munication between Alice and Bob [34, 74]. Moreover, the adding noise technique may

enhance the performance [56].

8.5 Simulation

In this section, we will first compare three QKD implementations: entanglement PDC

QKD, triggering PDC QKD and coherent state QKD. Then we will apply post-processing

protocols with two-way classical communication to the entanglement PDC QKD. Finally,

we will consider the statistical fluctuations.

We deduce parameters from a recent PDC experiment [115] with respect to the model

given in Section 8.3, which are listed in Table 7.1. For the coherent state QKD, we use

ηA = 1 since Alice prepares the states in this case. In the following simulations, we will

use q = 1/2 and f(Eµ) = 1.22 [16].

The optimal expected photon number µ of the coherent state QKD is discussed in

Ref. [70, 77]. In Appendix B.3, we investigate the optimal µ (2λ) for the entanglement

PDC QKD. Not surprisingly, we find that the optimal µ for the entanglement PDC QKD

is in the order of 1, µ = 2λ = O(1). Thus, the key generation rate given in Eq. (8.10)

depends linearly on the channel transmittance.

8.5.1 Comparison of three QKD implementations

In the first simulation, we assumed that Alice was able to adjust the expected photon

pair number µ (2λ, the brightness of the PDC source) in the region of [0, 1]. Thus,

we can optimize µ for the entanglement PDC QKD and the triggering PDC QKD. The

simulation results are shown in Figure 8.3. For the simulation of triggering PDC QKD

with decoy states, one can refer to Section 7.5.
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Figure 8.3: Plot of the key generation rate in terms of the optical loss, comparing four

cases: coherent state QKD+aysmptotic decoy, triggering PDC+asymptotic decoy, and

entanglement PDC QKD (source in the middle and source on Alice’s side). For the

coherent state QKD+decoy, we use ηA = 1. We numerically optimize µ (2λ) for each

curve. The simulation of triggering PDC QKD with decoy states can be found in Section

7.5.

From Figure 8.3, we have the following remarks.

1. The entanglement PDC QKD can tolerate the highest channel losses in the case

where the source is placed in the middle between Alice and Bob.

2. The coherent state QKD with decoy states is able to achieve the highest key rate

in the low and medium-loss region. This is because in the coherent state QKD

implementation, Alice does not need to detect any photons, which will effectively

give ηA = 1 in the PDC QKD implementations.

3. In comparing two cases of the entanglement PDC QKD with a source in the middle

and source on Alice’s side, they yield a similar key rate in the low and media- region.

However, the source in the middle case can tolerate higher channel losses.

In the following simulations, we will focus on the case where the entangled PDC



Chapter 8. Entanglement-based QKD 101

source sits in the middle between Alice and Bob.

8.5.2 With two-way classical communication

We can also apply the idea of post-processing with two-way classical communication.

Similar to the argument in Chapter 6, we can apply the recurrence idea [118] and the B

steps described in Section 6.1.1. The simulation results are shown in Figure 8.4.
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Figure 8.4: Plot of the key generation rate in terms of the optical loss. We apply the

recurrence idea and up to 3 B steps. µ is numerically optimized for each curve.

From Figure 8.4, we can see that the recurrence scheme can increase the key rate by

around 10% and extend the maximal tolerable loss by around 1 dB. The PDC experiment

setup can tolerate up to a 70 dB channel loss with 3 B steps. Note that 70 dB (35 dB in

each channel) is comparable to the estimated loss in a satellite to ground transmission

[117]. This result suggests that satellite-ground QKD may be possible. However, this

simulation assumes an ideal situation where an infinite number of signals are transmitted.

Moreover, we assume that µ (the brightness of the PDC source) is a freely adjustable

parameter in the PDC experiment. In a more realistic case where a finite number of

signals are transmitted and µ is a fixed parameter, the tolerable channel loss becomes

smaller, which will be shown next.
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8.5.3 Statistical fluctuations

In Eq. (8.11), we assume that δb and δp are the same due to the symmetry between X

and Z measurements. Alice and Bob randomly choose to measure in X or Z basis. Then

asymptotically, δb is good estimate of δp. However, in a realistic QKD experiment, only a

finite number of signals are transmitted. Thus δp may slightly differ from δb. We assume

that Alice and Bob do not perform error testing explicitly. Instead, they obtain the bit

error rate directly from an error correction protocol (e.g., the Cascade protocol [16]). In

such a case, there is no fluctuation in the bit error rate δb = Eλ. On the other hand, the

phase error rate may fluctuate to a certain value of δp = δb + ǫ. Following the fluctuation

analysis of Ref. [106], we know that the probability of getting an ǫ bias is

Pǫ ≤ exp[− ǫ2n

4δb(1 − δb)
], (8.12)

where n = NQλ the number of detection events, the product of total number of pulses

N and the overall gain Qλ.

In the 144 km PDC experiment [115], the repetition rate of the pump pulse is 249MHz

as given in Table 7.1. As discussed in Ref. [117], the typical time of a ground-satellite

QKD allowed by satellite visibility is 40 minutes. Here, we assume the experiment runs 10

minutes, which means the data size (the number of the pumping pulses) is N = 1.5×1011.

By taking this data size, we considered the fluctuations for the entanglement PDC QKD.

In a realistic case, the brightness of the PDC source µ cannot be set freely. In the 144

km PDC experiment [115], the expected photon pair number is µ = 2λ = 0.053. After

taking µ = 0.053 and the data size of N = 1.5 × 1011 for the fluctuation analysis, the

simulation result is shown in Figure 8.5.

We have a couple remarks about Figure 8.5.

1. In Figure 8.5, if we use the key rate of 10−10 as the cut-off point1, the entanglement

PDC QKD with one B step can tolerate up to a 53 dB transmission loss.

2. We have tried simulations with various µs. We find that the key rate is stable

with moderate changes of µ. With the above fluctuation analysis, if we numerically

optimize µ for each curve, the maximal tolerable channel loss (with cut off key rate

of 10−10) is only 1 dB larger than the one given by µ = 0.053. Thus, one cannot

1Then the final key length is 15 bits. One should also consider the cost in the authentication procedure.
Thus this is a reasonable cut off point.
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Figure 8.5: Plot of the key generation rate in terms of the optical loss. We take a realistic

µ = 2λ = 0.053, and consider a fluctuation with a data size (the number of the pumping

pulses) of N = 1.5 × 1011 and a confident interval of 1 − Pǫ ≥ 1 − e−50.

significantly improve the maximal tolerable channel loss by just using a better PDC

source in the 144 km PDC experiment setup [115].

8.6 Conclusion

We proposed a model and post-processing protocol for the entanglement PDC QKD. We

find that the post-processing is simple by applying Koashi-Preskill’s security proof due

to the fact that the entanglement PDC QKD is a basis independent QKD. Specifically,

only directly measured data (the overall gain and the overall QBER) are needed to

perform the post-processing. By simulating a recent experiment, we compare three QKD

schemes: coherent state QKD+aysmptotic decoy, triggering PDC+asymptotic decoy,

and entanglement PDC QKD (source in the middle and on Alice’s side). We find that

a) the entanglement PDC (with source in the middle) can tolerate the highest channel

loss; b) the coherent state QKD with decoy states can achieve the highest key rate in

the medium- and low-loss regions; c) asymptotically, with a realistic PDC experiment
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setup, the entanglement PDC QKD can tolerate up to a 70 dB channel loss by applying

post-processing schemes with two-way classical communication; d) the PDC setup can

tolerate up to a 53 dB channel loss when statistical fluctuations are taken into account.



Chapter 9

Quantum cryptanalysis

In this chapter, we will discuss existing security loopholes in current QKD setups. We

propose a technologically feasible attack and present possible solutions. Note that al-

though the attack is proposed for the BB84 coherent state QKD implementation, the

attack works for many other protocols as well.

The theoretical work of the time-shift attack is published in Ref. [90]. The security

proof of efficiency mismatch is presented in Ref. [29]. Aside from the decoy state method,

we also studied other methods to improve the QKD performance, such as dual detector

scheme [93, 92]. Note that I am not the main contributor of these projects. I joined in

discussions and helped work out the details.

9.1 Side information

In Chapter 2, we discussed various security analyses of QKD. In many cases, we assumed

that Eve cannot learn about bit values or basis information directly from Alice and Bob’s

systems, e.g., by breaking into Alice or Bob’s box. As we pointed out in Section 2.2, in

the security proofs, many rely on the assumption of the squash model. In reality, the

bit value or basis information might be revealed to Eve through some side channels. For

example, two detectors used in QKD systems may have different properties, which might

reveal to Eve partial information about the bit values.

9.1.1 Detector inefficiency loophole

Before examining the details of possible side information channels in current QKD setups,

let us take a look at a fundamental reason for existence of these loopholes.
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An important piece of evidence that indicates the validity of quantum mechanics is

shown by the violation of the Bell inequality [8] and its descendant experiment verifica-

tions (see for example, Ref. [5]). The experiments show that the concept of traditional

local realism is inconsistent with quantum mechanics and then, with the real world.

However, this verification has not been completely conclusive, since there exists certain

loopholes in these experiments. See for example, [87, 19, 30].

Since entanglement is the precondition of QKD security [20] and the concept of entan-

glement is closely related to Bell’s inequality1, a natural question is “Does this detector

inefficiency loophole affect the security of QKD?” As we will show shortly, the answer is

yes.

9.1.2 Timing information

In many QKD systems, detectors are operated in a gated mode in order to reduce the dark

count rate. In general, the width of SPD’s open window (a few ns) is often substantially

larger than the laser pulse duration (a few hundreds ps). Here, we treat the signal pulse

as a delta function in time-domain.

Typically, Bob uses two separate single photon detectors, which are labeled as SPD0

and SPD1, to detect bit “0” and bit “1”, respectively. In real life, due to device imper-

fections, the time-dependent efficiencies of the two detectors are not identical in general

as shown in Figure 9.1.

Ideally, Alice and Bob can synchronize the laser pulse with the center of the time

window (T0 in Figure 9.1). This ensures that a small detector efficiency mismatch will

not affect the normal operation of the QKD system. In reality, the timing may be shifted

by a small amount due to fluctuations or device imperfections2. Thus, the pulse timing

contains information about the detector efficiencies, which may reveal the detection bit

values.

Note that other freedoms of the signal may also introduce similar problems. For

example, two detectors may respond differently in the frequency domain [91]. In the

following discussions, we will focus on the efficiency mismatch due to signal timing.

1Although entanglement does not promise violation of the Bell’s inequality.
2Shortly, we will see that Eve may shift the pulse large for her attack.
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Figure 9.1: The time-dependence efficiencies of single photon detectors (SPDs).

9.2 Time-shift attack

Recently, an eavesdropping attack that exploits this efficiency mismatch of detectors in

the QKD system has been proposed [78]. In this attack, Eve intercepts and performs

a complete von Neumann measurement on each quantum state sent out by Alice. She

then generates a new time-shifted signal based on her measurement result and sends it

to Bob.

Note that to implement this attack in Ref. [78], Eve will need a complicated detection

(similar to Bob’s system) and resend (similar to Alice’s system) system. If we assume

that Eve builds her “practical” eavesdropping device based on today’s technology, she

will also experience the problem of low detection efficiency and will introduce additional

errors due to imperfections in her setup.

Based on this work, we propose a simple practical attack: time-shift attack [90]. In

our attack, Eve does not measure the quantum state that is sent to Alice. Instead, Eve

simply shifts the arrival time of either the signal pulse or the synchronization (reference)

pulse or both between Alice and Bob. Consequently, Eve has control of the arriving time

of the pulse. For example, she shifts the pulse to t0 in Figure 9.1 and then Bob claims a

detection event of that pulse. Now, Eve knows with a high probability that SPD0 clicks.

Hence, she can guess Bob’s measurement result 0. In an extreme case where there is a
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complete detector efficiency mismatch3, Eve can acquire full information on the final key

without introducing any error. In other words, a näıve application of standard security

proofs, for instance, the GLLP [35] security analysis, without taking into account the

detector efficiency mismatch is invalid.

Figure 9.2 shows a schematic diagram for the experimental realization of the time-

shift attack. Instead of measuring Alice’s quantum state, Eve just randomly shifts the

time of Alice’s quantum state to make sure that it arrives at Bob’s detector at either

time t0 or t1. When Eve chooses time t0 and Bob detects a signal, with the probability

of η0/(η0 + η1), the bit value will be “0”. Here, we assume that the detector efficiencies

of SPD0 and SPD1 are η0 and η1 at time t0 and Alice chooses bit “0” and “1” with an

equal prior probability. Because the probability that Eve incorrectly guesses Bob’s bit

value is η1/(η0 + η1), therefore, Eve’s knowledge about the final key is given by:

I(B : E) = 1 −H2(
η1

η0 + η1

). (9.1)

Note in this attack, Eve does not measure Alice’s state. Therefore, Eve will not introduce

extra errors. Due to the symmetry, the same analysis can also applied to the case when

Eve chooses t1.

 

Eve 

Alice Bob 
HOS HOS -�t 

+�t 

Figure 9.2: A schematic diagram of Eve’s attack. HOS: high-speed optical switch.

In comparison with the attack in Ref. [78], our attack is simpler and can be easily

realized with today’s technology: Eve can use high speed optical switches to re-route

Alice’s signal through either a long or short optical path to achieve the desired time

shift. Another advantage of our attack is that Eve will never introduce errors. Therefore,

it is difficult for Alice and Bob to detect Eve’s presence.

For details of the time-shift attack, one can refer to Ref. [90]. Note that our time-shift

attack was experimentally realized in our lab [130].

3That is to say, there is a time window where SPD0 (or SPD1) is active while SPD1 (or SPD0) is
completely inactive.
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9.3 Security against time-shift attack

Now that we know about the time-shift attack, we can provide a secure QKD against the

attack. There are two approaches: hardware based and software based. In the hardware

based approach, we perform some counter measurements or improve the system setups.

In the software based approach, we provide a security analysis with detector efficiency

mismatch.

9.3.1 A simple solution

To counter Eve’s attack, Alice and Bob could develop various countermeasures, such as

those discussed in Ref. [78]. Note that a recently proposed single SPD QKD system is also

immune to this attack [58]. In a phase encoding BB84 version of this design, instead of

randomly selecting from a set of two values, Bob’s phase modulation is randomly selected

from a set of four values, which is identical to the set for Alice’s phase modulation. In this

case, Bob not only randomly chooses his measuring basis for each incoming pulse, he also

randomly determines which SPD is used for detecting bit “0” or bit “1”. Bob broadcasts

his basis choice, but keeps his choice of detector (for the bit “0” or “1”) secretly. In such

a set-up, even if Eve has information about which detector clicks, Eve still cannot work

out Bob’s bit value because she does not know which detector corresponds to the bit “0”.

Bob’s random choice of detectors to detect the bit “0” or “1” will even out the efficiency

mismatch.

9.3.2 Security proof for a QKD system with detector efficiency

mismatch

Here, we will only discuss the security proof for a simple scenario: single photon source,

noiseless channel and the efficiencies of two detectors, which are η0 and η1, to detect

the bit “0” and “1”4. For a full discussion of the security proof for a QKD system with

efficiency mismatch detectors, one can refer to Ref. [29].

In this simple QKD picture, Eve does not introduce any bit or phase errors, but only

intervenes in the auxiliary dimension to gain side information. As discussed in Section

2.4, the state shared by Alice and Bob after transmission (Eve’s intervention) and basis

4In real time-shift attack, Eve might shift the pulse in various positions. Here, we only consider one
point that will cause a detector efficiency mismatch. In general, η0 and η1 can be characterized by a
tensor in the auxiliary dimension (for instance, time domain).
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reconciliation is

(|00〉 + |11〉)AB 7→ (
√
η0|00〉 +

√
η1|11〉)AB (9.2)

Eve does not introduce any bit errors and she simply attaches an extra system T , by

shifting the timing of the signals that represents her intervention in the auxiliary dimen-

sion.

With a hashing based EDP [13], the amount of EPR pairs that Alice and Bob can

distill from the final state is H2(η0/(η0 + η1)), which is consistent with the result of

Eq. (9.1). Note that when η0 6= η1, the key rate is less than 1 in comparison to the

perfect case of R = 1.

9.4 Discussion

From this cryptanalysis exercise, we learn that a security proof is only as good as its

underlying assumptions. Once a security loophole has been discovered, it is often not very

difficult to develop countermeasures that will plug the loophole and regain unconditional

proofs of security of the QKD system. One example is the time-shift attack that we

mentioned above. However, the difficult part is how to identify such security loopholes in

the first place. A QKD system is a complicated system with many intrinsic imperfections.

It is, thus, very important to conduct extensive research on such imperfections carefully

to determine if they are innocent or fatal for security. We need more quantum hackers in

the field. The investigation of loopholes and countermeasures in practical QKD systems

plays a complementary role to security proofs.

Given that a practical QKD system will always have imperfections, one might wonder

if QKD systems offer any real advantages over conventional systems. Our answer is

three-fold. First of all, implementation loopholes are a fact of life. Even conventional

security systems, such as smart cards, suffer implementation loopholes. For instance,

Eve may attempt to read off a private key from a smart card by using various techniques

(including X-ray) to reverse-engineer the circuit embedded in a smart card. Secondly,

QKD can be used in concatenation with a conventional system to ensure security. By

defending in depth, QKD can only increase security, not reduce it. Thirdly, QKD has

an important advantage of being future-proof: The signals are quantum. Once the

transmission is done, there is no transcript for the transmission. For an eavesdropper to

launch a quantum attack, she has to possess much of the quantum technology during the

quantum transmission. In contrast, in a standard Diffie-Hellman public-key key exchange
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scheme, Eve has a complete transcript of the transmission and can save such a transcript

for decades to wait for unexpected future advances in hardware and algorithms. Given

that public key crypto-systems are an unexpected discovery made only three decades ago,

our view is that it will be complacent to believe that our standard public key crypto-

systems will be safe forever. Therefore, it pays to reduce one’s risk by defending in depth

with a QKD system in concatenation with a conventional cryptosystem.



Chapter 10

Conclusions and outlook

In this chapter, I will conclude my thesis by summarizing the results of my Ph.D. study

and stating some interesting topics for future research.

10.1 Decoy state QKD

The major topic in my Ph.D. study is decoy state quantum key distribution (QKD). The

main results are presented in Chapters 4, 5, 6 and 7.

Recall that the motivation of this thesis is to bridge the gap between theory and

practice of QKD. One of the major problems in a practical QKD system is that a sin-

gle photon source is difficult to obtain with current technology. Now, with the decoy

state method, the key rate is linearly dependent on the channel transmission. Note that

this is the highest order that the key rate can reach even with a perfect single photon

source. Hence, with decoy states, one can treat weak coherent state sources and trigger-

ing parametric down-conversion (PDC) sources as good single photon sources for QKD

setups.

For practical implementations, we showed that with only one or two decoy states,

one can achieve most of the benefits of the decoy state method. Further improvement

for the decoy state QKD was studied by considering two-way classical communication

in the post-processing step. With our two-way classical communication based schemes,

one can obtain a performance that is close to the theoretical limit. We also investigated

the decoy state method for other photon sources, triggering PDC source. With similar

results concluded, we expected the decoy state QKD to become a standard technique not

only in the coherent state QKD, but also in QKD with triggering PDC sources.
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All the decoy state QKD experiment demonstrations, including our first realization,

showed that the decoy state idea is easy to implement in real system setups. Therefore,

we conclude that the practical quantum cryptography is close to real-life applications.

10.2 Other topics

As an extension of the decoy state QKD work, we searched for other techniques to

improve the QKD performance of practical systems. We proposed a dual detector scheme

to improve the case when fast and noisy detectors are in use.

We also investigated other QKD protocols, such as the entanglement based QKD

protocols. By simulating a recent experiment, we showed that a) with an entangled PDC

source in the middle, the QKD setup can tolerate highest channel loss comparing to

decoy state QKD protocols; b) the coherent state QKD with decoy states can achieve

the highest key rate in the medium- and low-loss regions.

Security is the most important issue in QKD. We studied various eavesdropping attack

schemes in quantum cryptography. We proposed a technologically feasible attack scheme

and presented possible solutions. Note that although the attack is proposed for the BB84

coherent state QKD implementation, the attack works for many other protocols as well.

We also studied the countermeasures against this attack. We provided a security proof

for a QKD system with detector efficiency mismatch.

10.3 Future work outlook

In the future, one interesting topic is a natural extension of my previous work: enhancing

the performance of practical QKD systems. Further improvements, both in key rate and

secure transmission distance, are required for some applications. Another crucial point

is that, in real life, one needs to consider some extra disturbances (e.g., quantum signals

may share the channel with regular classical signals). The final goal is to achieve a

customer friendly QKD system that can be easily integrated with the Internet.

To achieve an intercontinental transmission distance, ground-satellite QKD is a

promising proposal. One interesting project is to test the feasibility of ground-satellite

QKD. In Chapter 8, we have preliminarily studied the feasibility of ground-satellite QKD

with the current entangled photon source. Previously, we used a beam splitter as a chan-

nel model for ground-satellite QKD. A study of the disturbance of atmosphere is needed



Chapter 10. Conclusions and outlook 114

to develop a more realistic model for the ground-satellite channel. By modeling and

simulating, one can investigate the requirement for QKD components. For example,

what efficiency and noise level of single photon detectors are required and how large

the telescope is needed. Meanwhile, it is interesting to explore good QKD schemes for

ground-satellite QKD.

To achieve a higher QKD key rate, one can consider other QKD protocols. Contin-

uous variable QKD is proposed to achieve a higher key rate in the short and medium

transmission distance. One open question is the security of continuous variable QKD.

This is an appealing topic in the field. Modeling and simulations for continuous variable

QKD are also interesting.

Statistical fluctuations need to be considered in QKD with a finite key length. There

is some work on this topic recently (e.g., by Renner [96]). One interesting topic is to

apply Koashi’s complementary idea [53] to finite key QKD and compare it with prior

results.

It has already been known that one can realize quantum gates by quantum telepor-

tation [33]. There are some proposals for the experimental quantum computation with

linear optics [47]. However, the scalability is a huge challenge. As yet, no one knows

how to build a large scale quantum computer. A long-term challenge in the field is to

find a practical proposal for a quantum factoring machine with current technology. Here

a interesting topic is that whether those techniques developed in QKD could be useful

to quantum computing. For instance, can the restrictions in single photon source be

loosened by applying decoy idea?



Appendix A

Abbreviations and mathematical

derivations

A.1 Abbreviations

The following abbreviations are used in this thesis.

• QKD: quantum key distribution

• BB84: the QKD protocol presented by Bennett and Brassard in 1984 [11]

• EPR pair: a maximally entangled photon pair that originated from the Einstein-

Podolsky-Rosen paradox [89]

• EDP: entanglement distillation protocol

• LOCC: local operations and classical communication; 1-LOCC: local operations and

one-way classical communication; 2-LOCC: local operations and two-way classical

communication

• PDC: parametric down-conversion

• GLLP: the security proof of QKD with imperfect devices proposed by Gottesman,

Lo, Lütkenhaus, and Preskill [35]
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A.2 Key rate of the recurrence scheme with an ideal

single photon source

In this section, we will review the recurrence EDP and develop the key generation rate

formula given by:

R = q · r, (A.1)

where q is the basis reconciliation factor and r is the residue of post-processing which we

will find in the sequel. In the following, we use the same notation as in Section 2.4 and

consider a Bell diagonal state (q00, q10, q11, q01).

A.2.1 Parity check

As the first step of recurrence, Alice and Bob check the parity of two pairs (labeled by

control qubit C and target qubit T ). They will get an even parity if the two pairs are in

one of the following states:

0000, 0001, 0100, 0101, 1010, 1011, 1110, 1111,

and will get odd parity if they are in one of the following states:

0010, 0011, 0110, 0111, 1000, 1001, 1100, 1101,

where the first two bits represent the control qubit, and the last two bits represent

the target qubit. That is, ij represents the Bell state |ψij〉 as given in Eq. (2.2) with

i, j = 0, 1. For example, 1110 means that there is a bit error and a phase error in the

control qubit (|ψ11〉), and a bit error and no phase error in the target qubit (|ψ10〉). Thus,

the probability to get an even parity is given by:

pS = (qC
00 + qC

01)(q
T
00 + qT

01) + (qC
10 + qC

11)(q
T
10 + qT

11)

= (1 − δC
b )(1 − δT

b ) + δC
b δ

T
b ,

(A.2)

where δC
b = qC

10 + qC
11 and δT

b = qT
10 + qT

11 are the bit error rates of the input control and

target qubits, respectively. During the parity check, the number of pure EPR pairs (or

secret bits) that Alice and Bob need to sacrifice is given by:

1

2
H2(pS), (A.3)

where the factor 1/2 is for the reason that Alice and Bob compute the parity of two-qubit

pairs at one time.
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After the parity check, the qubits are divided into two groups, qubits with even parity

and odd parity. In the following, we will discuss the error correction and privacy ampli-

fication on these two groups separately. The recurrence protocol appearing in Ref. [118]

only performs error correction on qubits with even parity.

A.2.2 Error correction

For even parity qubits, we can see that the bit error syndrome of control qubits will be

the same as that of target qubits. Thus, Alice and Bob only need to do error correction

on the control (or target) qubits. Similar to Eq. (6.3), the bit error rate of control qubits

after recurrence is given by:

δ̃C
b =

(qC
10 + qC

11)(q
T
10 + qT

11)

pS

=
δC
b δ

T
b

pS

(A.4)

where pS is the probability of even parity in the recurrence given by Eq. (A.2). Therefore,

Alice and Bob need to sacrifice a fraction:

1

2
pSH2(δ̃

C
b ) =

1

2
pSH2(

δC
b δ

T
b

pS

) (A.5)

to do the overall error correction. The factor 1/2 is due to the fact that control qubits

have the same error syndrome as target qubits.

Therefore, the residue of data post-processing can be expressed as:

r = −1

2
H2(pS) − 1

2
pSH2(

δC
b δ

T
b

pS

) +K (A.6)

where pS is given in Eq. (A.2), δC
b and δT

b are the QBER of control and target qubits

respectively, and K is the residue of privacy amplification, which we will focus on in the

following discussion.

A.2.3 Privacy amplification

Alice and Bob perform privacy amplification to the qubits with even and odd parities

separately.

Even parity: Now, Alice and Bob already know the bit error syndrome. The control

and target qubits have the same bit error syndromes, but may have different phase error

syndromes. Thus, Alice and Bob can divide the even parity qubits into four groups: con-

trol qubits with bit error syndrome 0 and 1, and target qubits with bit error syndrome
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0 and 1, and treat these groups separately in the privacy amplification step. The proba-

bility of each group (summing together the even parity probabilities given in Eq. (A.2))

is given by:

(qC
00 + qC

01)(q
T
00 + qT

01)

2
,
(qC

10 + qC
11)(q

T
10 + qT

11)

2
,
(qC

00 + qC
01)(q

T
00 + qT

01)

2
,
(qC

10 + qC
11)(q

T
10 + qT

11)

2

with phase error rate:

qC
01

qC
00 + qC

01

,
qC
11

qC
10 + qC

11

,
qT
01

qT
00 + qT

01

,
qT
11

qT
10 + qT

11

.

Since the error syndrome of each group of qubits is known to Alice and Bob, privacy

amplification can be applied to the different groups separately. Then, Alice and Bob

should sacrifice a fraction:

(qC
00 + qC

01)(q
T
00 + qT

01)

2
H2(

qC
01

qC
00 + qC

01

) +
(qC

10 + qC
11)(q

T
10 + qT

11)

2
H2(

qC
11

qC
10 + qC

11

)+

(qC
00 + qC

01)(q
T
00 + qT

01)

2
H2(

qT
01

qT
00 + qT

01

) +
(qC

10 + qC
11)(q

T
10 + qT

11)

2
H2(

qT
11

qT
10 + qT

11

)

(A.7)

to do the privacy amplification. Given the bit and phase error rates of input control and

target qubits δC
p = qC

11 + qC
01 and δT

p = qT
11 + qT

01, Eq. (A.7) can be written as:

1

2
(1 − δC

b )(1 − δT
b )[H2(

δC
p − qC

11

1 − δC
b

) +H2(
δT
p − qT

11

1 − δT
b

)] +
1

2
δC
b δ

T
b [H2(

qC
11

δC
b

) +H2(
qT
11

δT
b

)]. (A.8)

Thus, the privacy amplification residue of even parity qubits is given by:

Keven = pS − 1

2
(1 − δC

b )(1 − δT
b )[H2(

δC
p − qC

11

1 − δC
b

) +H2(
δT
p − qT

11

1 − δT
b

)] − 1

2
δC
b δ

T
b [H2(

qC
11

δC
b

) +H2(
qT
11

δT
b

)].

(A.9)

Odd parity: It turns out that pairs with odd parity during the recurrence can also

contribute to the final key [118]. Instead of including them in the error correction, Alice

and Bob measure one of the two qubits and hence, they know the bit error syndrome of

the remaining qubit. They can then proceed with privacy amplification on these qubits.

Suppose Alice and Bob always choose to measure the target qubits and obtain the

error syndrome of the control qubits. Similar to the even parity case, now, Alice and

Bob can divide the control qubits with odd parity into two parts in accordance to the

bit error syndrome. The probability of each part is given by:

(qC
00 + qC

01)(q
T
10 + qT

11)

2
,
(qC

10 + qC
11)(q

T
00 + qT

01)

2
,
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with a phase error rate:
qC
01

qC
00 + qC

01

,
qC
11

qC
10 + qC

11

.

With the same argument as Eq. (A.7), the number of qubits that need to be sacrificed

to privacy amplification is given by:

(qC
00 + qC

01)(q
T
10 + qT

11)

2
H2(

qC
01

qC
00 + qC

01

) +
(qC

10 + qC
11)(q

T
00 + qT

01)

2
H2(

qC
11

qC
10 + qC

11

)

=
1

2
[(1 − δC

b )δT
b H2(

δC
p − qC

11

1 − δC
b

) + δC
b (1 − δT

b )H2(
qC
11

δC
b

)]

(A.10)

Hence, the privacy amplification residue of odd parity qubits is given by:

Kodd =
1

2
(1 − δC

b )δT
b [1 −H2(

δC
p − qC

11

1 − δC
b

)] +
1

2
δC
b (1 − δT

b )[1 −H2(
qC
11

δC
b

)] (A.11)

Therefore, the privacy amplification residue, K in Eq. (A.6), by adding Eqs. (A.9)

and (A.11) and substituting Eq. (A.2), is given by:

K =Keven +Kodd

=1 − 1

2
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b )δT
b − 1

2
δC
b (1 − δT
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) − 1

2
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T
b H2(

qT
11

δT
b

).

(A.12)

Note that there are two free parameters qC
11 and qT

11 in Eq. (A.12), which should be

minimized over to lower-bound the key rate.

A.3 Security against basis dependent source

Here, we derive Eq. (6.8) in Section 6.1.3. Rewriting Eq. (9) of [50] gives:

√
F ≤

√

(1 − δbx)(1 − δpz) +
√

δbxδpz, (A.13)

where F is the fidelity between the two states with two bases (X and Z) sent by Alice,

δbx is the QBER of X-basis states from error testing, and δpz is the phase error rate of

the Z-basis states1. Similarly, we have another inequality between the QBER of Z-basis

states δbz , and the phase error rate of X-basis states δpx:

√
F ≤

√

(1 − δbz)(1 − δpx) +
√

δbzδpx. (A.14)

1Note that we have used different notations from those in Ref. [50]. By letting δ1 = δbx and δph = δpz,
and substituting Eq. (3) of [50], we can recover Eq. (9) of [50] from Eq. (A.13).
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Adding Eqs. (A.13) and (A.14) gives:

√
F ≤ 1

2

(

√

(1 − δbx)(1 − δpz) +
√

δbxδpz +
√

(1 − δbz)(1 − δpx) +
√

δbzδpx

)

≤
√

(1 − (δbx + δbz)/2)(1 − (δpz + δpx)/2) +
√

(δbx + δbz)/2(δpz + δpx)/2

=
√

(1 − δb)(1 − δp) +
√

δbδp,

(A.15)

where the second inequality is due to the concavity of the function
√

(1 − x)(1 − y)+
√
xy

in [0, 1]× [0, 1] and we have used the definitions δb ≡ (δbx + δbz)/2 and δp ≡ (δpz + δpx)/2.

Here, we assume the number of received qubits with Z basis and X basis is the same.

A.4 Residue for the Decoy+GLLP+Recurrence

scheme

We calculate the residues, Ki, in Eq. (6.19) for the five cases: V
⊕

S, S
⊕

V , S
⊕

S,

S
⊕

M , M
⊕

S. Here, we apply each case, with parameters shown in Table 6.1 into

Eq. (A.12) to calculate each Ki.

V
⊕

S: the probability of this case is ΩV S = ΩV Ω.

KV S = 1 − 1

4
− 1

4
H2(1 − 2qV

11) −
1

4
H2(2q

V
11) −

1

4
(1 − e1)H2

(

e1 − a

1 − e1

)

− 1

4
e1H2

(

a

e1

)

≥ 1

4
− 1

4
(1 − e1)H2

(

e1 − a

1 − e1

)

− 1

4
e1H2

(

a

e1

)

(A.16)

with equality when qV
11 = 1/4. This is due to the concavity of function H2(·).

S
⊕

V : the probability of this case is ΩV S = ΩV Ω.

KSV ≥ 1 − 1

4
− 1

2
(1 − e1)H2

(

e1 − a

1 − e1

)

− 1

2
e1H2

(

a

e1

)

− 1

4
(1 − e1)H2

(

1 − 2qV
11

)

− 1

4
e1H2

(

2qV
11

)

≥ 1

2
− 1

2
(1 − e1)H2

(

e1 − a

1 − e1

)

− 1

2
e1H2

(

a

e1

)

(A.17)

with equality when qV
11 = 1/4.

S
⊕

S: the probability of this case is ΩV V = Ω2.

KSS = 1 − e1(1 − e1) −
1

2
(1 − e1)H2

(

e1 − a

1 − e1

)

− 1

2
e1H2

(

a

e1

)

− 1

2
(1 − e1)

2H2

(

e1 − a

1 − e1

)

− 1

2
e21H2

(

a

e1

)

.

(A.18)
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S
⊕

M : the probability of this case is ΩSM = ΩΩM .

KSM = 1 − 1

2
e1(1 − eM) − 1

2
eM(1 − e1) −

1

2
(1 − e1)H2

(

e1 − a

1 − e1

)

− 1

2
e1H2

(

a

e1

)

− 1

2
(1 − e1)(1 − eM)H2

(

1 − 2qM
11

2 − 2eM

)

− 1

2
e1eMH2

(

qM
11

eM

)

≥ 1

2
− 1

2
(1 − e1)H2

(

e1 − a

1 − e1

)

− 1

2
e1H2

(

a

e1

)

,

(A.19)

with equality when qM
11 = eM/2.

M
⊕

S: the probability of this case is ΩMS = ΩMΩ.

KMS = 1 − 1

2
eM(1 − e1) −

1

2
e1(1 − eM ) − 1

2
(1 − eM )H2

(

1 − 2qM
11

2 − 2eM

)

− 1

2
eMH2

(

qM
11

eM

)

− 1

2
(1 − e1)(1 − eM)H2

(

e1 − a

1 − e1

)

− 1

2
e1eMH2

(

a

e1

)

≥ 1

2
− 1

2
eM(1 − e1) −

1

2
e1(1 − eM)

− 1

2
(1 − e1)(1 − eM)H2

(

e1 − a

1 − e1

)

− 1

2
e1eMH2

(

a

e1

)

,

(A.20)

with equality when qM
11 = eM/2.

Therefore, the data post-processing residue of the Decoy+GLLP+Recurrence scheme

will be given by substituting Eqs. (A.16), (A.17), (A.18), (A.19) and (A.20) into
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Eq. (6.19):

r = − 1

2
f(pS)H2(pS) − 1

2
pSf(

δ2

pS

)H2(
δ2

pS

) +KV S +KSV +KSS +KSM +KMS

≥− 1

2
f(pS)H2(pS) − 1

2
pSf(

δ2

pS

)H2(
δ2

pS

)

+ ΩV Ω

[

1

4
− 1

4
(1 − e1)H2

(

e1 − a

1 − e1

)

− 1

4
e1H2

(

a

e1

)]

+ ΩV Ω

[

1

2
− 1

2
(1 − e1)H2

(

e1 − a

1 − e1

)

− 1

2
e1H2

(

a

e1

)]

+ Ω2[1 − e1(1 − e1) −
1

2
(1 − e1)H2

(

e1 − a

1 − e1

)

− 1

2
e1H2

(

a

e1

)

− 1

2
(1 − e1)

2H2

(

e1 − a

1 − e1

)

− 1

2
e21H2

(

a

e1

)

]

+ ΩΩM [
1

2
− 1

2
(1 − e1)H2

(

e1 − a

1 − e1

)

− 1

2
e1H2

(

a

e1

)

]

+ ΩΩM [
1

2
− 1

2
eM(1 − e1) −

1

2
e1(1 − eM)

− 1

2
(1 − e1)(1 − eM )H2

(

e1 − a

1 − e1

)

− 1

2
e1eMH2

(

a

e1

)

]

(A.21)

with equality when qV
11 = 1/4 and qM

11 = eM/2. In order to simplify this formula, we

define some variables:

B =
1

2
f(pS)H2(pS) +

1

2
pSf(

δ2

pS

)H2(
δ2

pS

)

C =
3

4
ΩV Ω + Ω2(1 − e1 + e21) +

1

2
ΩΩM(2 − e1 − eM + 2e1eM)

D1 =
3

4
ΩV Ω +

1

2
Ω2(2 − e1) +

1

2
ΩΩM (2 − eM)

D2 =
3

4
ΩV Ω +

1

2
Ω2(1 + e1) +

1

2
ΩΩM (eM + 1)

(A.22)

Thus, Eq. (6.20) can be expressed as:

r = − B +KV S +KSV +KSS +KSM +KMS

≥− B + C − Fa

(A.23)

where

Fa = D1(1 − e1)H2(
e1 − a

1 − e1
) +D2e1H2(

a

e1
) (A.24)

with equality when qV
11 = 1/4 and qM

11 = eM/2.

To obtain the lower bound r in Eq. (A.23), we need to find the maximum value of

Fa over the free variable a. We are interested in the range of a ∈ [0, e1] with e1 ≤ 1/2.



Appendix A. Abbreviations and mathematical derivations 123

Note that Fa is a concave function of a in the valid range, since a sum of two concave

functions is also a concave function, and reflecting and shifting a concave function is also

a concave function. Thus, we can take the derivative of Fa with respect to a and set it

to zero to find the maximum of Fa. Differentiating Fa with respect to a gives:

dFa

da
= D1

[

log2

(

e1 − a

1 − e1

)

− log2

(

1 − e1 − a

1 − e1

)]

+D2

[

log2

(

1 − a

e1

)

− log2

(

a

e1

)]

Setting 2
dFa
da = 1 gives

(

1 − e1
e1 − a

− 1

)−D1 (e1
a

− 1
)D2

= 1.

Denoting the left-hand side to be f(a), f(a) is a decreasing function of a since dFa

da
is a

decreasing function of a. Therefore, we can use the bisection method to find a such that

f(a) = 1. The initial range for the bisection method is [0, e1].

A.5 QBER for entanglement PDC QKD

Here, we will study the quantum bit error rate (QBER) of the entanglement PDC QKD.

Our objective is to derive the QBER formula given in Eq. (8.9) used in the simulation.

The QBER has three main contributions:

1. background counts, which are random noises e0 = 1/2;

2. intrinsic detector errors, ed, which is the probability that a photon hits the erroneous

detector. ed characterizes the alignment and stability of the optical system between

the detection systems of Alice and Bob;

3. errors introduced by multi-photon-pair states: a) Alice and Bob may detect differ-

ent photon pairs; b) double clicks. Due to the strong pulsing attack [69], we assume

that Alice and Bob will assign a random bit when they get a double click. In either

case, the error rate will be e0 = 1/2.

Let us start with the single-photon-pair case, a Bell state given in Eq. (8.4). The error

rate of single-photon-pair e1 has two sources: background counts and intrinsic detector

errors:

e1 = e0 −
(e0 − ed)ηAηB

Y1

(A.25)



Appendix A. Abbreviations and mathematical derivations 124

If we neglect the case where both background and true signal cause clicks, then e1 can

be written as:

e1 ≈
e0(Y0AY0B + Y0AηB + ηAY0B) + edηAηB

Y1
. (A.26)

where e0 = 1/2 is the error rate of background counts. The first term of the numerator is

the background contribution and the second term comes from the errors of true signals.

In the following, we will discuss the errors introduced by multi-photon pair states,

en with n ≥ 2. Here, we assume that Alice and Bob use threshold detectors. One can

imagine the detection of an n-photon-pair state as follows.

1. Alice and Bob project the n-photon-pair state, Eq. (8.3), into Z⊗n basis.

2. Afterwards, they detect each photon with certain probabilities (ηA for Alice and

ηB for Bob).

3. If either Alice or Bob detects vacuum, then we regard it as a loss. If Alice and Bob

both detect non-vacuum only in one polarization (↔ or l), we regard it as a single

click event. Otherwise, we regard it as a double click event.

The state of a 2-photon-pair state, according to Eq. (8.3), can be written as:

|Φ2〉 =
1√
3
(|2, 0〉a|0, 2〉b − |1, 1〉a|1, 1〉b + |0, 2〉a|2, 0〉b

=
1√
3
[| ↔↔〉a| ll〉b −

1

2
(| ↔l〉 + | l↔〉)a ⊗ (| l↔〉 + | ↔l〉)b + | ll〉a| ↔↔〉b].

(A.27)

As discussed above, Alice and Bob project the state into Z ⊗ Z basis. If they end

up with the first or the third state in the bracket of Eq. (A.27), they will get perfect

anti-correlation, which will not contribute to errors. If they get the second state in the

bracket of Eq. (A.27), their results are totally independent, which will cause an error with

a probability e0 = 1/2. Thus, the error probability introduced by a 2-photon-pair state is

1/6. Here, we have only considered the errors introduced by multi photon states, which

is item 3 discussed in the beginning of this Appendix. We should also take into account

the effects of background counts and intrinsic detector errors. With these modifications,

the error rate of 2-photon-pair state is given by:

e2 = e0 −
2(e0 − ed)[1 − (1 − ηA)2][1 − (1 − ηB)2]

3Y2

(A.28)

where Y2 is given in Eq. (8.6). Eq. (A.28) can be understood as follows. Only when

Alice and Bob project Eq. (A.27) into | ↔↔〉a| ll〉b or | ll〉a| ↔↔〉b and no background
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count occurs, they have a probability of ed to get the wrong answer. Given a coincident

detection, the conditional probability for this case is 2[1 − (1 − ηA)2][1 − (1 − ηB)2]/3Y2.

All other cases, a background count, a double click and measuring different photon pairs,

will contribute to an error probability e0 = 1/2.

Next, let us study the errors coming from the state |n −m,m〉a|m,n −m〉b. When

Alice detects at least one of n −m | l〉 photons, but none of m | ↔〉 photons, and Bob

detects at least one of n−m | ↔〉 photons, but none of m | l〉 photons, or both Alice and

Bob have bit flips of this case, they will end up with an error probability of ed. Given a

coincident detection, the conditional probability for these two cases is:

1

Yn

{[1 − (1 − ηA)n−m](1 − ηA)m[1 − (1 − ηB)n−m](1 − ηB)m

+ [1 − (1 − ηA)m](1 − ηA)n−m[1 − (1 − ηB)m](1 − ηB)n−m}.

When Alice detects at least one of n −m | l〉 polarizations, but none of m | ↔〉 polar-

izations, and Bob detects at least one of m | l〉 polarizations, but none of n −m | ↔〉
polarizations, or both Alice and Bob have bit flips of this case, they will end up with an

error probability of 1 − ed. Given a coincident detection, the conditional probability for

these two cases is:

1

Yn

{[1 − (1 − ηA)m](1 − ηA)n−m[1 − (1 − ηB)n−m](1 − ηB)m

+ [1 − (1 − ηA)n−m](1 − ηA)m[1 − (1 − ηB)m](1 − ηB)n−m}.

For all other cases, the error probability is e0. Thus, the error probability for the state

|n−m,m〉a|m,n−m〉b is:

enm =e0 −
e0 − ed

Yn

{(1 − ηA)n−m(1 − ηB)n−m[1 − (1 − ηA)m][1 − (1 − ηB)m]

+ (1 − ηA)m(1 − ηB)m[1 − (1 − ηA)n−m][1 − (1 − ηB)n−m]

− (1 − ηA)n−m(1 − ηB)m[1 − (1 − ηA)m][1 − (1 − ηB)n−m]

− (1 − ηA)m(1 − ηB)n−m[1 − (1 − ηA)n−m][1 − (1 − ηB)m]}

=e0 −
e0 − ed

Yn

[(1 − ηA)n−m − (1 − ηA)m][(1 − ηB)n−m − (1 − ηB)m]

(A.29)
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In general, for an n-photon-pair state described by Eq. (8.3), the error rate is given

by:

en =
1

n+ 1

n
∑

m=0

enm

=
1

n+ 1

n
∑

m=0

e0 −
e0 − ed

Yn

[(1 − ηA)n−m − (1 − ηA)m][(1 − ηB)n−m − (1 − ηB)m]

= e0 −
e0 − ed

(n+ 1)Yn

n
∑

m=0

[(1 − ηA)n−m − (1 − ηA)m][(1 − ηB)n−m − (1 − ηB)m]

= e0 −
2(e0 − ed)

(n + 1)Yn

[
1 − (1 − ηA)n+1(1 − ηB)n+1

1 − (1 − ηA)(1 − ηB)
− (1 − ηA)n+1 − (1 − ηB)n+1

ηB − ηA

]

(A.30)

The overall QBER is given by:

EλQλ =
∞
∑

n=0

enYnP (n)

=e0Qλ −
∞
∑

n=0

2(e0 − ed)λ
n

(1 + λ)n+2
[
1 − (1 − ηA)n+1(1 − ηB)n+1

1 − (1 − ηA)(1 − ηB)
− (1 − ηA)n+1 − (1 − ηB)n+1

ηB − ηA

]

=e0Qλ − 2(e0 − ed)ηAηBλ(1 + λ)

(1 + ηAλ)(1 + ηBλ)(1 + ηAλ+ ηBλ− ηAηBλ)
(A.31)

where Qλ is the gain given in Eq. (8.8).



Appendix B

Optimal µ

In this appendix, we will discuss the optimal expected photon number µ for various

protocols.

B.1 Coherent state QKD

Here, we will discuss the optimal choice of the expected photon number µ of the coherent

state QKD with and without decoy states.

Let us start with a generic discussion. On the one hand, we need to maximize the

probability of a single photon detection, which is the only source of the final secure key (for

BB84). To achieve this point, we should maximize the single photon sources. Considering

a weak coherent state photon sources in accordance to the Poisson distribution of the

photon number as shown in Eq. (3.3), the single photon source reaches its maximum

when µ = 1. On the other hand, we have to control the probability of the multi photon

detection to ensure the security of the system. Thus, we should keep the untagged

states (single photon states) ratio large, which requires µ to be not too large. Therefore,

intuitively we have:

µ ∈ (0, 1].

B.1.1 Without decoy states

Here, we will consider the case of the coherent state QKD without decoy states, following

the discussion in Ref. [70]. Assume that Alice and Bob apply the GLLP security analysis

as discussed in Section 2.5. We desire to get an optimal value of µ that maximizes the

key generation rate R in Eq. (2.6) with other parameters fixed. The key parameters here

127
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are the overall transmittance η given in Eq. (3.4), background rate Y0, and the intrinsic

detection error rate ed.

Let us make an approximation first: if the background contribution is negligible, that

is, Y0 ≪ η, then from Eqs. (3.11):

Qµ
∼= 1 − e−ηµ

Eµ
∼= ed

(B.1)

Then according to Eq. (4.1), the estimation of Q1 and e1 is:

Q1 ≥ Qµ −
∞
∑

i=2

µi

i!
e−µ

∼= (1 + µ)e−µ − e−ηµ

e1 ≤
ed(1 − e−ηµ)

(1 + µ)e−µ − e−ηµ

(B.2)

Then we can substitute these approximations into the key rate formula Eq. (2.6) and

take the derivative of µ to get the optimal µ.

R ≤ 1

2
(Qµ − pM)

=
1

2
[(1 + µ) exp(−µ) − exp(−ηµ)]

with the pessimistic assumption Eq. (4.1). This expression is optimized if we choose

µ = µOptimal, which fulfills:

−µ exp(−µ) + η exp(−ηµ) = 0.

Since for a realistic setup, we expect that ηµ≪ 1, we find:

ηOptimal ≈ η. (B.3)

We use the numerical analysis to verify Eq. (B.3). When we keep all parameters fixed

and vary the expected photon number µ of the signal, we can determine the µOptimal to

maximize the key generation rate by Eq. (2.6). If we fix the background rate Y0 and

the probability of erroneous detection ed, and vary the transmittance η, we can draw the

relationship between the optimal µOptimal and η. The result is shown in Figure B.1, from

which we can see that Eq. (B.3) is a good approximation.
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Figure B.1: Plot of the optimal expected photon number µ as a function of transmittance

η for the coherent state QKD+non decoy. The parameters used in the simulation are

listed in Table 3.1. Here, we numerically calculate the optimal µ that maximizes the key

generation rate by Eqs. (2.6) and (4.1). In the regime around η ≈ 0, the key rate is 0.

Thus, there is no point to talk about optimal µ in that regime.

B.1.2 With decoy state

In principle, Alice and Bob can estimate Q1 and e1 accurately with the decoy state.

Hence, µOptimal should maximize the untagged states ratio Ω = Q1/Qµ. Thus, we can

expect that µOptimal should be greater than (B.3).

Let us start with a numerical analysis on Eq. (2.6) directly. For each distance, we

determine the optimal µ that maximizes the key generation rate. The result is shown in

Figure B.2. We can see that the optimal µ for GYS is around 0.48 when f(δ) = 1.22.

Now, we would like to do an analytical discussion under some approximations. We

take the approximations Y0 ≪ η ≪ 1. Then Eqs. (3.7), (3.9), (3.8) and (3.10) are reduced
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Figure B.2: Plot of the optimal expected photon number µ as a function of transmittance

η for the coherent state QKD+infinite decoy. The parameters used in the simulation are

listed in Table 3.1.

to:
Q1

∼= ηµe−µ

e1 ∼= ed

Qµ
∼= ηµ

Eµ
∼= ed

Substituting these formulas into Eq. (2.6), the key generation rate is given by:

R ≈ 1

2
{−ηµf(ed)H2(ed) + ηµe−µ[1 −H2(ed)]}

The expression is optimized if we choose µ = µOptimal which fulfills:

(1 − µ) exp(−µ) =
f(ed)H2(ed)

1 −H2(ed)
. (B.4)

Then we can solve this equation and obtain, by using f(δ) = 1.22:

µGY S
Optimal ≈ 0.48

where for the GYS experiment, ed = 3.3%, as listed in Table 3.1. In comparison of this

result to Figure B.2, we can see that Eq. (B.4) is a good approximation.
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B.2 Triggering PDC QKD

Here, instead of numerically optimizing µ as implemented for Figure (7.2), we qualita-

tively investigate the optimal µ for the triggering PDC QKD with and without decoy

states. We are interested in the case where Alice uses a threshold detector.

B.2.1 Without decoy states

Let us begin with the optimal µ of the case without decoy states. Here, we will apply

the GLLP [35] security analysis. As shown in Ref. [73], GLLP and Lütkenhaus’s [70]

security analyses achieve similar performances for the coherent state QKD. Intuitively,

we should get a similar optimal µ as given in Ref. [70], µ ≈ η/2.

From Eq. (7.8), we can see that the gain Qµ,j (j = 0, 1) is in the order of µη. To keep

Q1,0 or Q1,1 in Eq. (7.14) positive, µ should be in the order of η. By assuming µ, η and

Y0B are small, we can simplify Eq. (7.8):

Qµ,0 +Qµ,1 ≈ ηµ

Eµ,0 ≈ Eµ,0 ≈ ed

QL
1,0 +QL

1,1 ≈ ηµ− µ2

eU
1 ≈ ηed

η − µ

(B.5)

where QL
1,0 + QL

1,1 is the lower bound of Q1,0 + Q1,1 and eU
1 is the upper bound of e1

from Eq. (7.14). Since the error rates from triggered (j = 1) and non-triggered (j = 0)

detection events are the same, the key generation rate given by Eq. (7.19) can be simplified

to:
R ≥ q{−f(Eµ)QµH2(Eµ) +Q1[1 −H2(e1)] +Q0}

≈ q{−f(ed)ηµH2(ed) + (ηµ− µ2)[1 −H2(
ηed

η − µ
)]}

(B.6)

By taking the derivative of R, the optimal µ ≡ xη satisfies:

− f(ed)H2(ed) + 1 − 2x+ ed log2

ed

1 − x
+ (1 − ed − 2x) log2(1 − ed

1 − x
) = 0. (B.7)

Here if set ed = 0, then we get x = 1/2, which is compatible with Lükenthaus’ result

[70]. Note that x = 1/2 essentially maximizes the probability of the single photon source

QL
1,0+Q

L
1,1 in Eq. (B.5). More precisely, we can solve Eq. (B.7) numerically, see Figure B.3.

From Figure B.3, we can see that the optimal µ for triggering PDC+non-decoy is

µ = O(η), which will lead the final key generation rate R = O(η2).
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Figure B.3: Plot of the optimal µ in terms of ed for triggering PDC+non-decoy. Here,

we use f(ed) = 1.22.

B.2.2 With decoy states

With decoy states, Alice and Bob can estimate Q1 and e1 better. Here, we consider the

infinite decoy state case with threshold detectors. Under the assumption that η and Y0B

are small, we can simplify Eqs. (7.8) and (7.9):

Qµ,0 +Qµ,1 ≈ ηµ

Eµ,0 ≈ Eµ,0 ≈ ed

Q1,0 +Q1,1 ≈
ηµ

(1 + µ)2

e1 ≈ ed

(B.8)

With these approximations, the key generation rate given in Eq. (7.19) can be sim-

plified to:

R ≈ q{−f(ed)ηµH2(ed) +
ηµ

(1 + µ)2
[1 −H2(ed)]}. (B.9)

The optimal µ satisfies:
1 − µ

(1 + µ)3
=
f(ed)H2(ed)

1 −H2(ed)
(B.10)
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Here, if set ed = 0, then we get µ = 1 with which the probability to getting a single

photon state is maximized. The numerical result of Eq. (B.10) is shown in Figure B.4.
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Figure B.4: Plot of the optimal µ in terms of ed for the triggering PDC+infinite decoy.

Here, we use f(ed) = 1.22.

From Figure B.4, which is similar to the case coherent state QKD with decoy states

[77], one can see that the optimal µ is independent of channel loss η for the infinite

decoy state case with threshold detectors, i.e., µ = O(1), which will lead the final key

generation rate R = O(η).

B.2.3 Numerical checking

Now we would like to numerically compare the optimal µ with and without decoy states

by simulating a recent PDC experiment [115], with parameters listed in Table 7.1. In

the simulation, we numerically optimize µ for the key rate given by Eq. (7.13) for the

non-decoy and infinite decoy methods. For this particular setup, the optimal µ is shown

in Figure B.5.

From the figure, we can see that the optimal µ for the non-decoy case is in the order

of η, while the optimal µ for the infinite-decoy case is in the order of 1. This is consistent

with the results of the analysis in the two previous subsections.
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Figure B.5: Plot of the optimal µ in terms of optical loss for triggering PDC+non-decoy

and triggering PDC+infinite-decoy. Here, we use q = 1/2 and f(Eµ) = 1.22. Simulation

parameters are listed in Table 7.1.

B.3 Entanglement PDC QKD

The optimal µ for the coherent state QKD has already been discussed [70, 77]. Here,

we need to determine the optimal µ for the entanglement PDC QKD. In the following

calculation, we will focus on optimizing the parameter λ (= µ/2) for the key generation

rate given in Eq. (8.10).

By assuming ηB to be small and neglecting Y0, we can simplify Eq. (8.8):

Qλ ≈ 2ηBλ[1 − 1 − ηA

(1 + ηAλ)3
]. (B.11)

The overall QBER given in Eq. (8.9) can be simplified to:

Eλ ≈ 1

2
− (1 − 2ed)(1 + λ)(1 + ηAλ)

2(1 + 3λ+ 3ηAλ2 + η2
Aλ

3)
. (B.12)

In order to maximize the key generation rate given by Eq. (8.10), the optimal λ

satisfies:

∂Qλ

∂λ
[1 − (1 + f(Eλ))H2(Eλ)] −Qλ[1 + f(Eλ)]

∂Eλ

∂λ
log2

1 − Eλ

Eλ

= 0. (B.13)
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Here, we treat f(Eλ) as a constant. In the following, we will consider two extremes:

ηA ≈ 1 and ηA ≪ 1.

When ηA ≈ 1, the overall gain and QBER are given by:

Qλ ≈ 2ηBλ

Eλ ≈ 2ed + λ

2 + 2λ
.

(B.14)

Thus, Eq. (B.13) can be simplified to:

1 − [1 + f(Eλ)]H2(Eλ) − λ[1 + f(Eλ)]
1 − 2ed

2(1 + λ)2
log2

1 − Eλ

Eλ

= 0. (B.15)

When ηA ≪ 1,

Qλ ≈ 2ηAηBλ(1 + 3λ)

Eλ ≈ ed + λ+ edλ

1 + 3λ
.

(B.16)

Thus, Eq. (B.13) can be simplified to:

(1 + 6λ){1 − [1 + f(Eλ)]H2(Eλ)} − λ[1 + f(Eλ)]
1 − 2ed

1 + 3λ
log2

1 − Eλ

Eλ

= 0. (B.17)

The solutions to Eqs. (B.15) and (B.17) are shown in Figure B.6.

From Figure B.6, we can see that the optimal µ = 2λ for the entanglement PDC is

in the order of 1, µ = 2λ = O(1), which will lead the final key generation rate to be

R = O(ηAηB).
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f(ed) = 1.22.
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