
One-level density for the family of super-even L-functions over

function fields [DRAFT]

Dang Dang, Hari R. Iyer, Sanford Lu, Steven J. Miller, Ezra Waxman

Abstract

Katz and Sarnak conjectured a correspondence between n-level density statistics of zeroes
of families of L-functions and the eigenvalues of random matrix ensembles. The particular
ensemble depends on the symmetry type of the family, which is a classical compact group
(unitary, symplectic, or orthogonal). The latter are often studied by random matrix theory
(RMT). We build upon previous work by Waxman, which showed that L-functions associated
with Hecke characters on the Gaussian integers Z[i] have zeroes which are modeled by the
eigenvalues of symplectic matrices. We consider analogous L-functions associated with “super-
even” characters in the function field setting. Though these characters were studied from an
RMT perspective as q → ∞ (for Fq[t]), we instead consider the limit where the degree K of
the modulus of the Dirichlet character is large; also note that this is equivalent to the large
conductor limit, since K log q is proportional to the average logarithmic conductor of the family
of super-even L-functions evaluated at s = 1/2. We compute the limiting one-level density
for this family of L-functions and show that it matches a symplectic distribution for a class
of test functions f whose Fourier transform f̂ is compactly supported in (−1, 1). We directly
calculate the main term and a lower order term for the one-level density. In addition, we apply
the L-functions Ratios Conjecture to compute the one-level density, and show agreement with
the unconditional result for restricted support to order O(K−a) for all a > 1.

1 Introduction

1.1 L–function statistics and random matrix theory

Since Hilbert and Pólya (circ. 1912-1914) conjectured a spectral interpretation of the nontriv-
ial zeroes of the Riemann zeta function as the eigenvalues of a self-adjoint operator, there has
been much investigation into the relationship between zeroes of L-functions and spectra of ran-
dom matrices. For instance, in the 1970s, Dyson and Montgomery [49] conjectured that the pair
correlation between zeroes of the Riemann zeta function should match the pair correlation dis-
tribution for the eigenvalues of a random Hermitian matrix drawn from the Gaussian Unitary
Ensemble, which arises in models for energy levels of heavy nuclei. These conjectures have been
further supported by numerical computations due to Odlyzko [51] and spectral interpretations for
zeroes of L-functions in the function field setting due to Deligne’s work on the Weil conjectures
[16]. Motivated partly by these developments, Katz and Sarnak generalized these conjectures to
other families of L-functions. In particular, they suggest in [35, 37] that statistics for zeroes of
various families of L-functions agree with similar statistics for eigenangles of random matrices in
some classical compact group in the limit of large analytic conductor for the L-function. For a
survey of these developments, see [4, 14, 38, 39, 40, 41]. There are also a number of books about
this subject [15, 18, 25, 31, 32, 36, 43, 60] as well as popular accounts of the connections between
number theory and random matrix theory [23, 28].
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The statistic that we consider is the one-level density. Given a family F of L-functions Lχ
indexed by χ ∈ F (e.g. representing a character) with ρχ = 1/2 + iγχ the nontrivial zeroes, and f

an even Schwartz function with f̂ compactly supported, the scaled one-level density is defined
as

D1(χ, f,R) :=
∑
ρχ

f

(
logR

π
γχ

)
, (1.1)

where R is a scaling parameter (dependent on the analytic conductor of Lχ) which ensures that
the mean spacing between zeroes is normalized to 1 in the argument of the test function.

Then, if F := F(R) is a family of L-functions with analytic conductor bounded by some value
depending on the scaling parameter R, the averaged one-level density over the family is

D1(F(R), f) :=
1

|F|
∑
χ∈F

D1(χ, f,R). (1.2)

In the number field setting, many families of L-functions have been investigated, such as those
attached to Dirichlet characters [26, 52, 55], Hecke characters [61], elliptic curves [47], cuspidal
newforms [33], Maass forms [1], other automorphic forms [17] and various other families. We refer
the reader to the survey article [42] for an extensive set of references.

In order to describe the random matrix theory side of the Katz-Sarnak philosophy, we follow
the exposition in [61]. Let G be a classical compact matrix group (unitary, symplectic, orthogonal
or special orthogonal matrices) of M ×M matrices, and let dA be the normalized Haar measure
on G. Since G ⊂ U(M), a matrix A ∈ G has M eigenvalues of absolute value 1, and we can order
the eigenangles as

0 ≤ θ1(A) ≤ θ2(A) ≤ · · · ≤ θM (A) < 2π. (1.3)

Set θj+l·M (A) := θj(A) + 2π · l for l ∈ Z. We can normalize this set of eigenvalues {θj}j∈Z
to have an average spacing of one, by multiplying it by a factor of M

2π . So we can define the
corresponding one-level statistics for random matrices with the function f above as

W1(f,A) :=
∑
j∈Z

f

(
Mθj(A)

2π

)
(1.4)

and

W1(f,G) :=

∫
G
W1(f,A) dA. (1.5)

The Katz-Sarnak Density Conjecture [35, 37] then formally states that in the large conductor limit,
for an appropriate test function f , the following expressions from number theory and random matrix
theory agree:

lim
R→∞

D1(F(R), f) = lim
M→∞

W1(f,G) =

∫
R
f(x)W1,G(x) dx. (1.6)

For our particular classical compact matrix groups, the averaged statistic in the integrand on
the right hand side is

W1,G(x) =



1 if G = U

1− sin(2πx)
2πx if G = USp

1 + 1
2δ0(x) if G = O

1 + sin(2πx)
2πx if G = SO(even)

1 + δ0(x)− sin(2πx)
2πx if G = SO(odd).

(1.7)
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In the above, which is computed in [35, AD.12.6], δ0 is the Dirac delta function centered at
0, while U , USp, O, SO(even), SO(odd) denote the unitary, symplectic, orthogonal, special even-
orthogonal, and special odd-orthogonal matrix groups, respectively.

One motivation for the Katz-Sarnak conjecture (and for our work in this paper) is the number
field-function field analogy, which suggests that many statements which hold true or are conjectured
to be true over number fields (extensions of Q) have analogous statements for global function fields
(extensions of Fq(T )). For instance, the Riemann zeta function and Dirichlet/Hecke L-functions
possess function field analogues corresponding to zeta functions of projective curves over finite
fields. Deligne’s proof of the Weil conjectures identifies the zeroes of these zeta functions with
reciprocal eigenvalues of the Frobenius conjugacy class acting on l-adic cohomology [16]. Using
Deligne’s theorem [24] on the equidistribution of Frobenii in the matrix group with respect to Haar
measure in the q →∞ limit, Katz and Sarnak [35] showed agreement with the n-level correlations
of the Gaussian unitary ensemble for the family of L-functions associated to genus g curves over
Fq, in both the g →∞ and q →∞ limits.

Much work on n-level statistics and moments of L-functions has also been done in the function
field setting. For instance, Dirichlet L-functions over function fields have been studied extensively,
such as in [3], which computes 1 and 2-level statistics for a family of primitive Dirichlet L-functions
over Fq(T ), showing unitary symmetry in the large conductor limit. There has also been particular
focus on quadratic Dirichlet L-functions associated with zeta functions of hyperelliptic curves (the
“hyperelliptic ensemble”). For instance, [19] shows a particular agreement of the n-level density
with RMT for this family in order to solve a similar problem for quadratic Dirichlet L-functions
over number fields. In [56], Rudnick studies the average trace of powers of Frobenii associated to
this ensemble and computes one-level density for support (−2, 2), showing symplectic statistics.
In [53], Roditty-Gershon extends Rudnick’s work to compute averages of products of trace powers
and n-level densities for the same family. There has also been interest in L-functions attached to
elliptic curves defined over Fq(T ), as in [44], where Meisner and Sodergren investigate quadratic
and cubic twists of elliptic curves, computing one-level densities and showing that the family has
orthogonal symmetry type, in addition to isolating lower order terms.

In our work, we consider a function field analogue for a family of Hecke L-functions on the
Gaussian field Q(i), whose one-level density was computed by Waxman in [61]. The family which
we study, namely the family of L-functions associated to “super-even” characters (a subfamily
of Hecke characters) on a quadratic function field, was defined in [57] by Rudnick and Waxman.
In that work the authors were motivated by a geometric analogy to a theorem of Hecke on the
distribution of Gaussian primes in angular sectors of the complex plane; we describe this analogy
in some detail in Section 2 below.

The family of L-functions attached to super-even characters was further studied by Katz, who
showed [34, Theorem 5.1] that for any sequence of odd q →∞, the Frobenii

{Θχ : χ primitive super-even mod S2κ} (1.8)

associated to the family of super-even characters become equidistributed in the symplectic group
USp(2κ − 2) if 2κ − 2 ≥ 4, and that the same holds for 2κ − 2 = 2 for q coprime to 10. Hence,
our family of interest is found to have symplectic monodromy as q → ∞, agreeing with the Katz-
Sarnak conjecture in this regime. We instead consider the K → ∞ limit for a fixed constant field
Fq, where the modulus of the character goes to infinity. A similar limit g → ∞ has been studied
for L-functions attached to genus g curves over Fq [20].

Another important ingredient in our calculation is the L-function Ratios Conjecture. In [12]
Conrey, Farmer and Zirnbauer outline a recipe for calculating averages of ratios of products of
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shifted L-functions over families (in the number field setting), which is improved by Conrey, Farmer,
Keating, Rubinstein and Snaith in [11]. The resulting L-functions Ratios Conjecture gives precise
predictions for statistics for various families of L-functions, including applications to computing
one-level density, pair correlations and moments of L-functions, among others [13]. Remarkably,
in addition to yielding the Katz-Sarnak prediction for the one-level density in the large conductor
limit, these conjectures also predict terms of lower order in the conductor which are undetected
by random matrix models. The predictions of the Ratios Conjecture have been verified in every
family where its predictions and the number theory answer have been computed; see for example
[13, 21, 27, 30, 45, 46, 48].

Analogues for the Ratios Conjectures have also been written in the function field setting by
Andrade and Keating [2] for quadratic Dirichlet L-functions associated with hyperelliptic curves
over finite fields in the large genus limit. For the hyperelliptic ensemble, Bui, Florea and Keating [7,
8] apply the Ratios Conjecture to compute one-level and two-level densities with lower order terms,
showing the expected match with rigorously computed results when f̂ has sufficiently restricted
support. However, the work of Bui and Florea in [6] on the same family also remarkably predicts
several lower order terms undetected by the Ratios Conjecture for suitably restricted test functions.

We synthesize these works on Hecke L-functions in the number field setting and Ratios Con-
jectures in the function field setting by applying the function field Ratios Conjecture to compute a
prediction for the one-level density for our family of L-functions attached to super-even characters,
including lower order terms. In addition, we show that this conjecture holds to low order for a
restricted class of test functions with f̂ supported in (−1, 1). The following subsection describes
our results in greater detail.

1.2 Results

Based on a Ratios Conjecture model, we suggest the following expression for the one-level density,
written here to first order.

Conjecture 1.1. Denoting by πd,inert (resp. πd,split) the number of irreducible monic polynomials
in Fq[T ] of degree d which remain irreducible (resp. split into distinct irreducible factors) in the
ring extension Fq[

√
−T ], and denoting κ :=

⌊
K
2

⌋
, the one-level density is

D1(F(K), f) = f̂(0)− 1

2

∫ 1

−1
f̂(x)dx+

1

K

(
c′ · f̂(0)− d · f̂(1)

)
+O

(
1

K2

)
, (1.9)

where

c′ = 2κ−K − 1− 2
√
q − 1

− 2
∑
d,n≥1

q−dnd(πd,inert − πd,split) (1.10)

and

d := 4
∑

inert P

deg(P )

|P |2 − 1
+

2
√
q

√
q − 1

− 1. (1.11)

By Plancherel’s identity, ∫
R
f(t)

sin(2πt)

2πt
dt =

1

2

∫ 1

−1
f̂(x)dx. (1.12)

Hence, our conjecture agrees with the prediction of the Katz-Sarnak Conjecture in the K →∞
limit, fixing a finite field Fq for odd q, specifically showing that for the family F(K) of L-functions
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attached to super-even characters, D1(F(K), f) is modeled by the one-level scaling density of eigen-
values near 1 of matrices in the symplectic group USp. When supp(f̂) exceeds the interval (−1, 1),
note the transition in the main term and lower order terms of the conjecture; a similar phenomenon
has also been observed for Hecke L-functions in the number field case [61], Dirichlet L-functions
in the number field case [22] and in function field case [56]. Also, note that we have computed
the one-level density and lower order terms for L-functions attached to super-even characters as
K → ∞ with fixed q, whereas previous work on super-even characters by Katz has instead con-
sidered the q → ∞ case with fixed K [34]. Note that as q → ∞ with K fixed, the dimension of
the matrix group remains constant and in particular bounded, whereas in the K → ∞ limit, the
dimension of the matrix group tends to infinity.

To deduce this conjecture, we use Cauchy’s residue theorem to write D1(F(K), f) in terms of
contour integrals, which we compute using the ratios recipe. This yields terms

(i) Wf emerging from the infinite place of the L-function, which integrates the logarithmic
derivative of Xχ(s) defined by the functional equation Lχ(s) = Xχ(s)Lχ(1− s),

(ii) terms Sζ , SL, SA′ , SR emerging from the first sum in the approximate functional equation
for the L-function, and

(iii) a term SΓ emerging from the second sum in the approximate functional equation.
If supp(f̂) ⊂ (−1, 1), the main term comes from Wf and Sζ , while lower-order terms come from

Wf , Sζ , SL, SA′ and SR. Lastly, SΓ only contributes when supp(f̂) exceeds (−1, 1), which reflects
the transition mentioned above.

Moreover, we prove the following theorem for the one-level density, also written here to first
order.

Theorem 1.2. Suppose that supp(f̂) ⊂ (−1, 1). Then

D1(F(K), f) = f̂(0)− f(0)

2
+ c′ · f̂(0)

K
+O

(
1

K2

)
, (1.13)

where c′ is as above.

Note first that the theorem agrees with the conjecture when supp(f̂) ⊂ (−1, 1). One may also
show that if supp(f̂) ⊂ (−1, 1), then D1(F(K), f) agrees with the Ratios Conjecture to an accuracy
of O(K−a) for all a > 1 (Remark 5.7).

To show this theorem, we again use Cauchy’s theorem to convert the one-level density into
contour integrals, and then we deduce an explicit formula describing it as a sum over primes. This
yields terms, which are, in some regime, of order greater than O(q−κ),

(i) the same Wf as above,
(ii) Sinert summing over inert primes in Fq[T ], i.e., even primes in Fq[S],
(iii) Ssplit emerging from split primes in Fq[T ] (primes in Fq[S] which are not even), and
(iv) S0 contributed by the trivial character, in particular coming from the exceptional pole along

Re(s) = 1 for its associated L-function.
We show (Lemma 5.5) that

Sinert = SR + Sζ + SL + SA′ +O(q−κ), (1.14)

and apply formulae computed in Section 4. We show that the contributions of Ssplit and S0 are

negligible when restricting to supp(f̂) ⊂ (−1, 1). We are yet unable to compute Ssplit + S0 uncon-
ditionally for α ≥ 1. However, if we assume the Ratios Conjecture, we can equate unconditional
formulae with conjectural formulae to deduce (see Conjecture 5.14)
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(i) that Ssplit + S0 = SΓ +O
(
qK(−1/2 + ε)

)
, and

(ii) that the average trace of powers of Frobenii Θχ associated with the family of super-even
characters vanishes as K →∞.

1.3 Future Work

The main obstruction to unconditionally computing the one-level density for super-even L-functions
is, as described in the previous section, to extend the support of f̂ beyond the critical transition at
(−1, 1). This requires bounding the trace sum written in Conjecture 5.14, which is an exponential
sum. One way to approach this question may be to apply an idea of Sawin developed in [58]. In
that work, Sawin proposes another heuristic approach to computing moments of L-functions over
function fields, representing moments as sums of traces of Frobenii on cohomology groups associated
to irreducible representations. Agreement with the prediction of the Ratios Conjecture is shown
for a family of Dirichlet L-functions, conditional on the vanishing of some cohomology groups. A
similar hypothesis (see [58, Remark 1.10, (1)]) may allow one to extend these results on trace sums
in the large degree limit to a symplectic family like the super-even characters.

Natural extensions of our work include constructing and analyzing similar families of Hecke L-
functions for other quadratic function field extensions or extensions of higher degree. In addition,
one could investigate other statistical aspects of these families, such as the n-level density for
n > 1, moments, pair correlation, and non-vanishing. The geometric interpretation of the super-
even family outlined in Section 2.1 may also conceivably be enriched by Sawin’s work mentioned
above or generalized to higher extensions and dimensions.
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2 Introduction to super-even characters

Hecke characters were introduced by Hecke in order to construct L-functions which extend the
notion of Dirichlet L-functions to number fields beyond the rationals, where the failure of unique
factorization of elements in the ring (yet preserving unique factorization of ideals) motivates an
ideal-theoretic or idelic viewpoint. This leads to the following.

Definition 2.1 (Definition 6.1, p. 470 [50]). Given a number field K, m ⊂ O an integral ideal and
Jm the group of integral ideals sharing no common factors with m, a Hecke character mod m is a
character χ : Jm → S1 for which there exists a pair of characters

χf : (O/m)× → S1, χ∞ : (K ⊗Q R)× → S1 (2.1)

such that
χ((a)) = χf (a)χ∞(a) (2.2)

for every algebraic integer a ∈ O relatively prime to m.

Above, another name for K⊗QR is the Minkowski space of the number field K, which is defined
as the product Rr1 × Cr2 of completions of K at its infinite places, where [K : Q] = r1 + 2r2, with
r1 (resp. r2) denoting the number of real (resp. complex) embeddings of K.
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We consider Hecke characters for m = 1, which are characters on J1, the group of all integral
ideals of O, whose restriction to principal ideals (a) are induced by characters on the Minkowski
space of K. The Minkowski space of the Gaussian field K = Q(i) is C, so its Hecke characters of
conductor 1 are continuous homomorphisms C× → S1 which are well-defined on ideals of Z[i], which
are all principal ideals (α) for α ∈ Z[i]; so, the character must act trivially on units ±1,±i ∈ Z[i]×.
These are exactly the characters defined by χk((α)) := (α/ᾱ)2k|α|t for k ∈ Z and t ∈ C pure
imaginary. The function field characters we study will correspond to those characters with t = 0,
as in [61].

In order to construct a function field analogue for these Hecke characters at the infinite place,
we consider the function field Fq(T ) and an analogue of an imaginary quadratic extension Fq(T ) ⊂
Fq(S) where S =

√
−T . Then, the Minkowski space of K = Fq(S) is its completion at the “infinite”

place, which in the function field setting is the valuation (now non-Archimedean, since all places are
so for global function fields) defined by the ring Fq[S−1] with prime (S−1). Note that we don’t have
a clear analogue of K ⊗Q R in the function field case, which makes the idelic viewpoint (directly
considering places) easier to work with. Note that in the number field case, both the classical and
idelic formulations for Hecke characters are equivalent (for instance, see [59]), so it is appropriate
to work in the idelic setting when considering the function field analogue. Now, our function field
extension,

K×∞ = Fq((S−1))×, (2.3)

is endowed with the (S−1) discrete valuation topology, so that it is isomorphic as a topological
group to a direct product

K×∞ = Z× Fq[[S−1]]×. (2.4)

In the above,
Fq[[S−1]]× = lim

←−
Fq[S−1]/(S−K)× (2.5)

is endowed with the profinite topology. Hence, the continuous characters of K×∞ are exactly charac-
ters of Z×Fq[[S−1]]× which factor through some finite quotient, i.e., they are induced by characters
of Z× (Fq[S−1]/(S−K))× for some K. So,

Homcont

(
K×∞, S

1
) ∼= Homcont

(
Z× Fq[[S−1]]×, S1

)
∼= Hom

(
Z, S1

)
×Homcont

(
Fq[[S−1]]×, S1

)
∼= S1 ×Homcont

((
lim
←−

Fq[S−1]/(S−K)
)×

, S1

)
∼= S1 × lim

−→
Hom

((
Fq[S−1]/(S−K)

)×
, S1

)
∼= S1 × lim

−→
Hom

((
Fq[S]/(SK)

)×
, S1

)
. (2.6)

Moreover, since these characters should be well-defined on ideals of Fq[S], which again are all
principal ideals (g) for g ∈ Fq[S], they should act trivially on units F×q , which makes them “even”
characters.

By adapting the definition of Hecke characters as continuous unitary characters of the idéle
class group [29, p. 204] to the function field setting with the exceptional set of places being a
singleton set consisting of the place at infinity, we get that Hecke characters at infinity on A×K/K

×

are homomorphisms χ from the idéle group to the unit circle which satisfy the following properties,
denoting an idéle by x = (xν) indexed by places ν. We have

(1) χ(x) = 1 for x ∈ k∗ (xν = x for all ν),
(2) χ is continuous with respect to the idéle topology, and
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(3) χ(x) = 1 if x∞ = 1 and xν ∈ (Oν)×.
Since our extension Fq[S] is a principal ideal domain, consider ν associated to a prime (g) ⊂ Fq[S]

generated by irreducible monic g. Then, by properties (1) and (3) above for a Hecke character χ,

1 = χ(g, g, g, . . . ) = χ(g∞, 1, 1, 1, . . . )χ(1, 1, . . . , gν , 1, 1, . . . )χ(
∏

ν′ 6=∞,ν
gν′) = χ(g∞)χ(gν). (2.7)

By the identification of idéle class group characters with characters acting on prime ideals (g)
themselves described on [29, p. 205], we get that χ acts on the ideal (g) via

χ((g)) := χ(gν) = χ(g∞)−1 = χ(g−1
∞ ). (2.8)

Now, g ∈ Fq[S] is a polynomial in S, and can be represented by g(S) = Sdeg(g)h(1/S) for its
reciprocal polynomial h ∈ Fq[1/S] (when g 6= S). Then, the Hecke L-series defined in [54, p. 140]
for the function field setting is

L(s, χ) =
∏

P⊂Fq [S]

(
1− χ(P )|P |−s

)−1
=

∏
monic irreducible g∈Fq [S]

(
1− χ((g))q− deg(g)s

)−1
. (2.9)

Above, note that

χ((g(S))) = χ∞ (g(S))−1 = χ−1
∞

(
Sdeg(g)h(S−1)

)
= χ−1

∞
(
h(S−1)

)
χ−1
∞ (S)deg(g) (2.10)

for the associated irreducible (reciprocal) polynomial h ∈ Fq[S−1] (without loss of generality can be
assumed to be monic up to F×q scaling, and note that it is dependent on g). Then, the L-function
is ∏
monic irreducible g∈Fq [S]

(
1− χ−1

∞ (h)χ−1
∞ (S)deg(g)q− deg(g)s

)−1
=
∏
g

(
1− χ−1

∞ (h)(χ−1
∞ (S)q−s)deg(g)

)−1
.

(2.11)
This splits into parts g = S and g 6= S, which are(

1− χ(S)q−s
)−1

∏
g 6=S

(
1− χ−1

∞ (h)(χ−1
∞ (S)q−s)deg(g)

)−1
. (2.12)

Since we are interested in computing the one-level density, which sums over zeroes of L-functions
on Re(s) = 1/2, and |χ| = 1 = |χ∞| so that the local factor at the prime (S) above contributes
only poles on Re(s) = 0, we can ignore this factor, and consider the L-function without this factor,
which is ∏

g 6=S

(
1− χ−1

∞ (h)(χ−1
∞ (S)q−s)deg(g)

)−1
. (2.13)

Now, when restricted to g 6= S (or h 6= S−1) which are units in Fq[[S]] (resp. in Fq[[S−1]]),
χ−1
∞ restricted to units factors through some finite quotient (Fq[S−1]/(S−K))×, so it restricts to a

Dirichlet character modulo S−K . Hence, the above can be viewed as a Dirichlet L-function in the
function field setting. Precisely, χ−1

∞ ∈ Hom((Fq[S−1]/(S−K))×, S1) acting on h ∈ Fq[S−1] is equal
to the corresponding character χ′ ∈ Hom((Fq[S]/SK)×, S1) (defined by pre-composition of χ∞
with the change of variable S → S−1) acting on the same polynomial h ∈ Fq[S], which bijectively
corresponds with g 6= S. So, the Dirichlet L-function is∏

h6=S

(
1− χ′(h)(χ−1

∞ (S)q−s)deg(h)
)−1

. (2.14)
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By the Riemann hypothesis for function fields, this is a polynomial in the variable χ−1
∞ (S)q−s

where we freely choose χ−1
∞ (S) ∈ S1. This set is too large to be counted or ordered by conductor,

so we restrict to the subfamily of L-functions satisfying χ−1
∞ (S) = 1, which are Hecke characters

acting trivially at the place (S). This yields the more familiar Dirichlet L-function∏
S 6=h∈Fq [S] monic irreducible

(
1− χ′(h)|h|−s

)−1
= det

(
1− q−s+1/2Θχ′

)
(2.15)

for a character χ′ on (Fq[S]/SK)× and a unitary matrix Θχ′ , indexed by monic irreducible h. In the
number field setting, the Hecke characters of interest act trivially on R× in C×, where R ⊆ C is the
completion at the Archimedean place of the extension Q ⊆ Q(i). Analogously in the function field
setting, we only consider characters acting trivially on Fq((T ))× = Fq((S2))× in Fq((S))×, where
Fq((S2)) ⊆ Fq((S)) is the completion at (S2) of the extension Fq(S2) ⊆ Fq(S). As characters of finite
quotients as described previously, our characters of interest are exactly characters of (Fq[S]/(SK))×

acting trivially on HK := (Fq[S2]/(SK))× the subgroup of even polynomials. These are denoted
as B× and B×even respectively in Katz [34]. A geometric motivation for defining these characters,
termed super-even characters, is provided in the following subsection. Note that we have also
ensured that the analytic theory of the distribution of zeroes of L-functions that we are interested
in is unaffected by whether we work at the infinite place (S−1) or the finite prime (S), so we will
use the latter from here on.

2.1 Geometric interpretation

As noted by Katz, the question of the distribution of conjugacy classes Θχ attached to super-even
characters arises in the work of Rudnick and Waxman [57] on the function field analogue of Hecke’s
theorem stating that Gaussian primes are equidistributed in angular sectors, and this question is
addressed by Katz in [34] as q →∞. We make the geometric analogy explicit in the following.
In the Gaussian number field setting for K = Q(i), recall that the Hecke characters of interest are
χk((α)) = (α/ᾱ)2k. Viewing the Gaussian prime α ∈ Z[i] as a point in the complex plane with
argument θα, α/ᾱ = e2iθα , so the Hecke character is χk((α)) = e4kiθα . Hence, the geometric utility
of the Hecke character derives from the fact that it acts trivially on α whose angle is contained in
the trivial sector of the unit circle (for each k), i.e., when α = ᾱ = σ(α) with σ denoting the Galois
involution generating Gal(Q(i)/Q). Viewed as a function of α/ᾱ, χ is induced by a character on
the subgroup of S1 consisting of points with rational slope.

Analogously, we want our super-even characters to detect when a polynomial, viewed appro-
priately as endowed with an angle on an analogue of the unit circle, lies on a “trivial sector”
corresponding to the “real line.” This for us will mean that g = σ(g) for g ∈ Fq[S] (where
S =

√
−T ) and σ generating Gal(Fq(S)/Fq(T )) defined by σ : g(S) → g(−S). These are exactly

the polynomials in Fq[S2], which justifies our definition of super-even characters as corresponding
to a subfamily of Hecke characters which fix even polynomials.

Formally, let K = Fq(S)/Fq(T ) with Galois involution σ : g(S) → g(−S). Then, we define an
angle on Fq[[S]]× as a map

θ : g → g(S)

g(−S)
, (2.16)

whose kernel is exactly Fq[[S2]]× = lim
←−

HK . Hence, we will define our unit circle by the image of

this map, which is a quotient of the whole space modulo trivial angles:

Fq[[S]]×/Fq[[S2]]× = lim
←−

(
Fq[S]/(SK)

)×
/
(
Fq[S2]/(SK)

)×
. (2.17)
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Now, recall the usual field norm

Norm : Fq[[S]]× → Fq[[T ]]×, Norm(g(S)) := g(S)g(−S). (2.18)

With these definitions, we can define an analogue of the unit circle as

S1 := {g ∈ Fq[[S]]× : g(0) = 1,Norm(g) = 1}, (2.19)

the space of formal power series with constant term 1 and unit norm. For g ∈ Fq[[S]], consider the
absolute value |g|S := q−νS(g), where νS(g) := max{j ∈ Z : Sj | g}. We can then divide the
circle into “sectors” centered at u ∈ S1:

Sect(u;K) := {v ∈ S1 : |v − u|S ≤ q−K}. (2.20)

An element of this sector is determined by its residue modulo SK , as for instance v ∈ Sect(u;K)
if and only if v ≡ u mod SK by [57, Proposition 6.3]. Hence, we can parameterize the different
sectors of our unit circle modulo SK by defining the group

S1
K =

{
g ∈ Fq[S]/(SK) : g(0) = 1, g(−S)g(S) = 1 mod SK

}
. (2.21)

Lemma 2.2. [34, Lemma 2.1]
(i) There is a direct product decomposition(

Fq[S]/(SK)
)× ∼= HK × S1

K . (2.22)

(ii) The order of S1
K is

#S1
K = qκ (2.23)

where κ :=
⌊
K
2

⌋
.

As a result of this lemma, S1
K
∼=
(
Fq[S]/SK

)×
/HK , whose limit is S1 := lim

←−
S1
K . Hence, we

recover our definition of the unit circle as the space of formal power series modulo trivial angles.
Our super-even characters are hence unitary characters of S1 which are continuous with respect
to the profinite topology, i.e., which factor through some finite quotient S1

K . In other words, by a
computation similar to Equation (2.6), the group of super-even characters is the direct limit of the
finite character groups of each S1

K , each of which may also be referred to as the group of super-even
characters mod SK .

We now fix K and study one group in the limit. First note that the character group of S1
K is

isomorphic to S1
K itself by [9, Theorem 3.13]; it is a finite abelian group.

The following lemma helps us better explicitly understand the structure of S1
K and its character

group, and will be useful in estimating sums below which are dependent on the orders of elements
in the group.

Lemma 2.3. Given f ∈ S1
K and writing f(S) =

∑
anS

n for an ∈ Fq, the map D : S1
K \ {1} → Z

defined by f 7→ min{d | ad 6= 0, d is odd} is well-defined. For each odd 1 ≤ d ≤ 2κ−1, D−1(d) ⊂ S1
K

satisfies
∣∣D−1(d)

∣∣ = (q − 1)qκ−(1+d)/2. Each element of D−1(d) has multiplicative order pdlogpK/de
where p = char(Fq).

In particular, the group of super-even characters mod SK , which is isomorphic to S1
K , parti-

tions into subsets which bijectively map to D−1(d) ⊂ S1
K under isomorphism for each odd 1 ≤ d ≤

2κ− 1, with orders preserved.
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Proof. To show that D is well-defined, write f(S) = h(S)+SD(f) ·g(S) modulo SK for h(S) an even
polynomial and g(S) ∈ F×q +SFq[S] and D(f) < K odd, so if we multiply by an element r(S) ∈ HK

with nonzero constant term, the product modulo SK is f(S)r(S) = h(S)r(S) + SD(f)(g(S)r(S)),
where g(S)r(S) has nonzero constant term and h(S)r(S) is even modulo SK , so the least odd degree
term with nonzero coefficient is still SD(f), so D(rf) = D(f) and D is a well-defined function on
S1
K \ {1}.

To compute the size of D−1(d), it is sufficient to count the elements of (Fq[S]/(SK))× which

are mapped to d by D, and then to divide by |HK | = (q − 1)qb
K−1

2 c. For the former, its q − 1
nonzero options for the constant term and the Sd coefficient, 1 option (zero) for the odd coefficients
a1, a3, . . . , ad−2, of which there are

⌊
d
2

⌋
, and the usual q options for all other coefficients, so the

number of such polynomials in (Fq[S]/(SK))× is∣∣(Fq[S]/(SK))×
∣∣ · 1

qbd/2c
· q − 1

q
, (2.24)

which when divided by |HK | yields∣∣S1
K

∣∣ · 1

qbd/2c
· q − 1

q
= (q − 1)qκ−(1+d)/2, (2.25)

as required.
To compute the order of any element of D−1(d), again write f(S) = h(S) + Sdg(S) where

h(S) ∈ HK and g(0) 6= 0. Note that as an element of S1
K , the order of f divides |S1

K | = qκ, and
hence the order is a p-power, where p divides q. If we raise f to the power pr, since we are in
characteristic p, we get

f(S)p
r

= h(S)p
r

+ Sd·p
r
g(S)p

r
, (2.26)

where the first part h(S)p
r

is even and the second part satisfies g(0)p
r 6= 0, so it contributes a

nonzero coefficient of odd degree if and only dpr < K, because exactly then is the term of least odd
degree nonzero modulo SK . So, the order is the least r such that dpr ≥ K, which is r =

⌈
logpK/d

⌉
as required.

The part about the structure of super-even characters follows from the group isomorphism with
S1
K . Specifically, this allows us to count that there are (q − 1)qκ−(1+d)/2 super-even characters of

order pdlogpK/de for each odd 1 ≤ d ≤ 2κ− 1.

3 One-level density as a sum over primes

3.1 L–functions associated to super-even characters

First, we define concepts in the function field setting. Denote the monic polynomials in Fq[S]
by M. Denote the degree of a polynomial f by deg(f), and define the norm of a polynomial as
|f | := qdeg(f). A useful fact about function fields is the following.

Lemma 3.1. (Prime Polynomial Theorem [54, Theorem 2.2]) Let πd denote the number of monic
irreducible polynomials in Fq[S] of degree d. Then, πd ≤ qd/d, and

πd =
qd

d
+O

(
qd/2

d

)
. (3.1)
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A Dirichlet character modulo f ∈M is defined as a homomorphism

χ : (Fq[S]/(f))× → C×. (3.2)

Recall that a character χ is called even if it acts trivially on the scalars F×q .

From the exposition in Section 2, a super-even character mod SK is defined as a Dirichlet
character

χ :
(
Fq[S]/(SK)

)× → C× (3.3)

which acts trivially on the group of even polynomials modulo SK , which explicitly is

HK := {f ∈ (Fq[S]/(SK))× : f(−S) = f(S) mod SK} =
(
Fq[S2]/(SK)

)×
. (3.4)

Definition 3.2. (see [57]) The Swan conductor of an even nontrivial character χ mod SK is the
maximal integer d < K such that χ acts nontrivially on the subgroup

Γd : = (1 + (Sd))/(SK) ⊂
(
Fq[S]/(SK)

)×
, (3.5)

and it is denoted by d(χ). Then χ is a primitive character modulo Sd(χ)+1. Note that d(χ) is
necessarily odd if χ is super-even.

The L-function associated to a nontrivial super-even character χ is defined as

Lχ(u) :=
∑
f∈M

χ(f)udeg(f), (3.6)

with Euler product

Lχ(u) =
∏
P

(
1− χ(P )udeg(P )

)−1
, (3.7)

where P are monic irreducible polynomials in Fq[S]. By the analogue of the Riemann hypothesis
for function fields (see [16]), the L-function for nontrivial χ is a polynomial

Lχ(u) = (1− u)

d(χ)−1∏
j=1

(1−√qeiθju), (3.8)

where the roots of the polynomial correspond to a unitary matrix

Θχ : = diag(eiθ1 , . . . , eiθd(χ)−1) ∈ U (d(χ)− 1) , (3.9)

so that the L-function can also be written as

Lχ(u) = (1− u) det(I −√quΘχ). (3.10)

We can then make the substitution u = q−s to define the L-function as a function of s:

Lχ(s) :=
∑
f∈M

χ(f)|f |−s =
∏
P

(
1− χ(P )|P |−s

)−1
= (1− q−s)

d(χ)−1∏
j = 1

(
1−√qeiθjq−s

)
. (3.11)

The L-function associated to the trivial character χ0 : Fq[[S]]× → {1} is defined as the function
field zeta function

ζq(s) =
∑
f∈M

|f |−s =
1

1− q1−s =
1

1− qu
. (3.12)

We include details about the functional equations for these L-functions in Appendix A.
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3.2 One-level density and the normalization factor

Denote by F(K) the family of L-functions associated to super-even characters mod SK , which is
the character group of S1

K . Given an even Schwartz test function f , recall from Section 1 that the
average one-level density over the family F(K) is defined as

D1(F(K), f) :=
1

|F(K)|
∑

χ∈F(K)

∑
ρχ

f (Nχγχ) , (3.13)

where ρχ = 1
2 + iγχ are the roots of Lχ(s) on Re(s) = 1/2 and Nχ is a normalization constant

dependent on K, which we compute shortly.
We observe that since the trivial zeta function ζq(s) has no roots on Re(s) = 1/2, the above

sum over χ ∈ F(K) can be considered as over either
(1) all the characters χ ∈ F(K), or
(2) only nontrivial characters χ 6= χ0.
To compute the one-level density, we must first understand and calculate the factor Nχ which

ensures that the average spacing between zeroes in the summation defining the one-level density is
normalized to be 1.

For each nontrivial character χ, note that the roots s of Lχ(s) which satisfy qs =
√
qeiθj are

s =
1

2
+

i

log q
(θj + 2πn), for n ∈ Z. (3.14)

Since there are d(χ)−1 values of θj , for which θj < 2π, we expect to have on the order d(χ)−1
roots on every vertical line segment of Re(s) = 1/2 of length 2π/ log q.

To compute the number of zeroes precisely, we combine Lemma A.3 with the fact that the
average density of zeroes for the L-function Lχ near the critical point is 2πc(Lχ)−1, where c(Lχ) is
the log conductor of the L-function; the log conductor is defined in Section 3 of [11] and the fact
about the density of zeroes is noted there as following from the argument principle. Hence, the
growth of the number of nontrivial zeroes of Lχ in a fixed rectangle of length T0 is

#{ρχ = 1/2 + iγχ : 0 ≤ γχ ≤ T0} ∼
T0|c(Lχ)|

2π
=
T0 log q

2π

(
2

1−√q
+ d(χ)− 1

)
∼ T0 log q

2π
d(χ).

(3.15)
We must choose the normalization Nχ in the one-level density so that the mean value spacing

between zeroes is 1, so it suffices to average d(χ) over the family of characters. Explicitly, the
desired normalization is then

log q

2π

1

|F(K)|
∑

χ∈F(K)

d(χ), as K →∞. (3.16)

We will show that the average Swan conductor d(χ) is asymptotically K as K → ∞, so our
normalization will be K log q

2π .
In order to compute the average of the d(χ), we first count the number of characters with a

given Swan conductor. Denote the group of super-even characters mod SK by GK . Then, the
subgroup of characters which have bounded Swan conductor d(χ) ≤ d is the subgroup of characters
which act trivially on Γd+1, i.e., the kernel of the restriction map χ → χ|Γd+1

. This allows us to
formulate the following.
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Lemma 3.3. For all K and odd d < K, there is a canonical isomorphism

Gd+1
∼= ker

(
GK → GK |Γd+1

)
⊂ GK . (3.17)

In other words, the group of super-even characters mod Sd+1 is isomorphic to the subgroup of
super-even characters mod SK with bounded Swan conductor d(χ) ≤ d.

Proof. First, define a map

Ψ : Gd+1 → ker(GK → GK |Γd+1
) (3.18)

by its action on a coset represented by f /∈ (S) by

Ψ(χ)(f + (SK)) := χ(f + (Sd+1)). (3.19)

This is well-defined as a function into GK because if f + (SK) = g + (SK), then f − g ∈
(SK) ⊂ (Sd+1), so f + (Sd+1) = g + (Sd+1). Moreover, if f ∈ 1 + (Sd+1), then Ψ(χ)(f + (SK)) =
χ(1 + (Sd+1)) = 1, so Ψ(χ) acts trivially on Γd+1, and the map to the kernel ker(GK → GK |Γd+1

)
is also well-defined.

Now, define a map in the other direction

Φ : ker(GK → GK |Γd+1
)→ Gd+1 (3.20)

by its action on a coset represented by f /∈ (S) by

Φ(χ)(f + (Sd+1)) := χ(f + (SK)). (3.21)

To see that this is well-defined, note that since f /∈ (S), it is invertible modulo Sd+1. So,
pick a polynomial g such that fg ∈ 1 + (Sd+1). Then, if we have arbitrary f + Sd+1h equivalent
to f mod Sd+1 for any polynomial h, it is still true that (f + Sd+1h)g ∈ 1 + (Sd+1). Since
χ ∈ ker(GK → GK |Γd+1

), χ(1 + (Sd+1) = 1, we have

χ(f)χ(g) = χ(fg) = 1 = χ((f + Sd+1h)g) = χ(f + Sd+1h)χ(g), (3.22)

implying that χ(f) = χ(f + Sd+1h) for all polynomials f /∈ (S), h ∈ M. Hence, Φ(χ) is a well-
defined Dirichlet character modulo Sd+1. Now, to show that we’ve constructed isomorphisms, we
claim that Ψ,Φ are inverse maps. First, given χ ∈ Gd+1 and a polynomial f ,

Φ(Ψ(χ))(f + (Sd+1)) = Ψ(χ)(f + (SK)) = χ(f + (Sd+1)), (3.23)

and conversely, if χ ∈ ker(GK → GK |Γd+1
), then

Ψ(Φ(χ))(f + (SK)) = Φ(χ)(f + (Sd+1)) = χ(f + (SK)). (3.24)

Hence, Φ ◦Ψ = idGd+1
and Ψ ◦ Φ = idker(GK→GK |Γd+1

), so Φ and Ψ are well-defined inverses of

each other and thus they are isomorphisms.

Corollary 3.4. For any K and odd d < K, the number of super-even characters with a given Swan
conductor is

#{super− even χ mod SK : d(χ) = d} = qb
d+1

2 c(1− 1/q). (3.25)
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Proof. Since Swan conductors can only be odd for super-even characters, it is true that

#{super− even χ mod SK : d(χ) = d}
= #{super− even χ mod SK : d(χ) ≤ d} −#{super− even χ mod SK : d(χ) ≤ d− 2}.

(3.26)

This is also equivalent to

#ker(GK → GK |Γd+1
)−#ker(GK → GK |Γd−1

), (3.27)

which by the previous isomorphism in Lemma 3.3 is

#Gd+1 −#Gd−1 = qb
d+1

2 c − qb
d−1

2 c = qb
d+1

2 c(1− 1/q). (3.28)

Lemma 3.5. As K →∞,
1

|F(K)|
∑

χ∈F(K)

d(χ) = K +O(1). (3.29)

Proof. By Corollary 3.4, there are qd(1−1/q) characters with Swan conductor 2d−1 for 1 ≤ d ≤ κ,
so the average is

1

|F(K)|
∑
χ

d(χ) =
1

qκ
(1− 1/q)

κ∑
d=1

(2d− 1)qd

=
1− 1/q

qκ

(
2
∑
d

dqd −
∑
d

qd

)
. (3.30)

Here, h(q) =
∑

d q
d = qκ+1−1

q−1 differentiates to q · h′(q) =
∑

d dq
d = q (κ+1)qκ(q−1)−(qκ+1−1)

(q−1)2 , so the

sum becomes

1− 1/q

qκ

(
2q

(κ+ 1)qκ(q − 1)− (qκ+1 − 1)

(q − 1)2
− qκ+1 − 1

q − 1

)
=

1

q − 1

(
(2κ− 1)(q − 1)− 2 + 3/qκ − 1/qκ+1

)
= 2κ− 1− 2

q − 1
+O

(
1

qκ+1

)
= K +O(1).

(3.31)

Recalling that κ =
⌊
K
2

⌋
, this expression is asymptotic to K as K →∞.

3.3 Writing the one-level density using contour integration

Since we are only investigating the one-level density, instead of normalzing each curve’s zeros by
the correct local factor we can use the average of these; such an approach is not possible for the
2-level (or higher) densities as there will be cross terms leading to a more complicated analysis.
For details on this see issue see [47].

Including the resulting normalization factor, the averaged (and scaled) one-level density is

D1(F(K), f) :=
1

|F(K)|
∑
χ∈GK

∑
ρχ

f (Nχγχ) , (3.32)
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where Nχ := K log q
2π . We continue to denote the normalization as Nχ in order to work in generality,

and we specialize to Nχ = K log q
2π when necessary.

By Cauchy’s residue theorem and the analogue of the Riemann hypothesis for function fields,
the one-level density is

1

2πi

1

|F(K)|
∑
χ

(∫
(c)
−
∫

(1−c)

)
L′χ
Lχ

(s) · f (−iNχ(s− 1/2)) ds, (3.33)

where 1/2 < c < 1, and (c) denotes the vertical line from c − i∞ to c + i∞. By the substitution
s→ 1− s, the integral over (1− c) (without the minus sign) becomes

1

2πi

1

|F(K)|
∑
χ

∫
(c)

L′χ
Lχ

(1− s) · f (iNχ(s− 1/2)) ds. (3.34)

Now, note that

L′χ(s)

Lχ(s)
=

d

ds

∑
P

log
(
1− χ(P )|P |−s

)−1

= −
∑
P

χ(P )|P |−s log |P |
(
1− χ(P )|P |−s

)−1

= −
∑
P

log q · deg(P ) ·
(
χ(P )|P |−s + (χ(P )|P |−s)2 + · · ·

)
= − log q ·

∑
g∈M

χ(g)Λ(g)

|g|s
, (3.35)

which converges for Re(s) > 1.
For the L-function associated to the trivial character (the zeta function), the analogue, analyt-

ically continued, is

ζ ′q
ζq

(s) =
d

ds
log

(
1

1− q1−s

)
= − log q

q1−s

1− q1−s = log q

(
1− 1

1− q1−s

)
. (3.36)

If we write the functional equation Lχ(s) = Xχ(s)Lχ(1 − s), then the logarithmic derivatives
satisfy

L′χ
Lχ

(s) +
L′χ
Lχ

(1− s) =
X ′χ
Xχ

(s), (3.37)

so
L′χ
Lχ

(1− s) =
X ′χ
Xχ

(s)−
L′χ
Lχ

(s). (3.38)

As in [61], define

Wf :=
1

2πi

1

|F(K)|
∑
χ

∫
(c)

X ′χ
Xχ

(s) · f(iNχ(s− 1/2)) ds, (3.39)

so

D1(F(K), f) =
1

2πi

1

|F(K)|
∑
χ

∫
(c)

2
L′χ
Lχ

(s) · f(iNχ(s− 1/2)) ds−Wf . (3.40)
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We focus on the first part for now, which is

1

2πi

1

|F(K)|
∑
χ

∫
(c)

2
L′χ
Lχ

(s) · f(iNχ(s− 1/2)) ds. (3.41)

By substituting s = 1/2 + r, (3.41) is equivalent to

1

πi

1

|F(K)|
∑
χ

∫
(c′)

L′χ
Lχ

(1/2 + r)f(iNχr) dr, (3.42)

where c′ = c − 1/2, so 0 < c′ < 1/2. Here, we need to be careful, because we want to apply the

infinite sum for
L′χ
Lχ

(s) above to get to an explicit formula with sums over prime powers, but this

expression only converges for Re(s) > 1. Hence, we need to shift c′ from the interval 0 < c′ < 1/2

to c′ > 1/2. This is done without trouble for nontrivial χ, since
L′χ
Lχ

(s) is analytic for Re(s) > 1/2

i.e., Lχ(s) has no zeroes for Re(s) > 1/2. However, the trivial character corresponding to the
L-function ζq(s) presents an issue because the logarithmic derivative log q(1− 1

1−q1−s ) has infinitely

many poles periodically spaced along Re(s) = 1.
Recall that earlier we mentioned that one can exclude the trivial character χ0 if desired from

the one-level density since it doesn’t contribute zeroes on Re(s) = 1/2 anyway, so this is what we
do with this piece. We can do this even though the other piece Wf is defined over all χ, because
it is shown in Section 3.5, where Wf is computed, that the contribution of the trivial character to
Wf is negligible of order O(q−κ). Substituting the infinite sum yields that (3.42) equals

1

πi

1

|F(K)|
∑
χ 6=χ0

∫
(c′)
− log q

∑
g∈M

χ(g)Λ(g)

|g|1/2+r
f(iNχr) dr

=
1

πi

− log q

|F(K)|
∑
χ 6=χ0

∑
g∈M

χ(g)Λ(g)

|g|1/2

∫
(c′)

e− log |g|rf(iNχr) dr. (3.43)

Since the integrand is entire, we can shift the contour to c′ = 0, the line Re(r) = 0. Then, by
substituting a real variable τ = −iNχr, the inner integral, given an even test function, simplifies to

i

Nχ

∫ ∞
−∞

e
−2πiτ

log |g|
2πNχ f(−τ)dτ =

i

Nχ
f̂

(
log |g|
2πNχ

)
. (3.44)

Then, (3.43) equals
− log q

|F(K)|
∑
χ 6=χ0

1

πNχ

∑
g∈M

χ(g)Λ(g)

|g|1/2
f̂

(
log |g|
2πNχ

)
. (3.45)

We can now substitute the average normalization Nχ = K log q
2π to get that the sum is

− 2

K|F(K)|
∑
χ 6=χ0

∑
g∈M

χ(g)Λ(g)

|g|1/2
f̂

(
deg(g)

K

)
= − 2

K

∑
g∈M

Λ(g)

qdeg(g)/2
f̂

(
deg(g)

K

)
1

|F(K)|
∑
χ 6=χ0

χ(g).

(3.46)
By the general orthogonality relations for characters of a finite Abelian group and [57, Proof of

Lemma 6.4] and [57, Proposition 6.3], the average over all characters is

1

|F(K)|
∑
χ∈GK

χ(g) =
1

|F(K)|
∑
χ

χ(g)χ̄(1) =

{
1, if g ∈ HK

0, otherwise.
(3.47)
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Since Λ(g) is nonzero only for prime powers, we need only sum over prime powers in HK . Recall
also that since we have averaged over all characters, we must now subtract the contribution of the
trivial character to get that the desired sum is

− 2

K

∑
P r∈HK

deg(P )

qdeg(P )r/2
f̂

(
deg(P )r

K

)
+

2

K|F(K)|
∑
g∈M

Λ(g)

qdeg(g)/2
f̂

(
deg(g)

K

)
. (3.48)

Denote by ord(P ) the order of P in S1
K i.e., the least positive integer such that P ord(P ) ∈ HK .

Then, given a prime P , the positive integers r such that P r ∈ HK are exactly the positive integer
multiples of ord(P ). Hence, the above is equivalent to

− 2

K

∑
P

∑
n≥1

deg(P )

qord(P ) deg(P )n/2
f̂

(
ord(P ) deg(P )n

K

)
+

2

K|F(K)|
∑
g∈M

Λ(g)

qdeg(g)/2
f̂

(
deg(g)

K

)
. (3.49)

We compute the second piece here in special cases. First, we write it as a sum over primes and
denote it by

S0 :=
2

Kqκ

∑
P

∑
n≥1

deg(P )

qndeg(P )/2
f̂

(
n deg(P )

K

)
. (3.50)

3.4 Computing S0

The following lemma isolates the n ≥ 2 part of the sum in Equation (3.50).

Lemma 3.6. Unconditionally,

2

Kqκ

∑
P

∑
n≥2

deg(P )

qn deg(P )/2
f̂

(
n deg(P )

K

)
= O(q−κ). (3.51)

Proof. By the prime polynomial theorem, the number of primes of degree d is bounded by qd/d, so
we can sum over d = deg(P ) instead, and the sum is bounded by

2

Kqκ

∑
d≥1

∑
n≥2

1

q
d
2

(n−2)

∣∣∣∣f̂ (ndK
)∣∣∣∣ , (3.52)

where q−
d
2

(n−2) < q−
n−2

2 . Then, the above is bounded by

q−κ
∑
n≥2

1

q
n−2

2

∑
d≥1

2

K

∣∣∣∣f̂ (dnK
)∣∣∣∣ . (3.53)

Now, since f̂ is compactly supported, fix σ > 0 such that supp(f̂) ⊂ [−σ, σ]. Note that if f̂
(
dn
K

)
6= 0,

then d ≤ Kσ
n , so the above is bounded by

q−κ
∑
n≥2

1

q
n−2

2

∑
1≤d≤Kσ

n

2

K

∣∣∣∣f̂ (dnK
)∣∣∣∣� q−κ

∑
n≥2

1

q
n−2

2

∑
1≤d≤Kσ

n

1

K

� q−κ
∑
n≥2

1

nq
n−2

2

� q−κ, (3.54)

where we’ve used the fact that |f̂ | is uniformly bounded above.
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The above shows that when computing S0, we need only consider the n = 1 part of (3.50) if
our main terms of interest are larger than O(q−κ).

Lemma 3.7. If supp(f̂) ⊂ (−α, α) for α < 1, then

S0 = O
(
q
K
2

(α−1)
)
. (3.55)

Proof. The n = 1 part of (3.50) defining S0 is

2

Kqκ

∑
P

deg(P )

qdeg(P )/2
f̂

(
deg(P )

K

)
. (3.56)

Again, by the prime polynomial theorem and the restricted support of f̂ , this is bounded by

2

Kqκ

∑
d≤αK<K

qd/2
∣∣∣∣f̂ ( d

K

)∣∣∣∣ ≤ qαK/2−κ
2

K

∑
d/K≤α

∣∣∣∣f̂ ( d

K

)∣∣∣∣ . (3.57)

Since |f̂ | is uniformly bounded above,

2

K

∑
d≤αK

∣∣∣∣f̂ ( d

K

)∣∣∣∣� ∑
d≤αK

1

K
� 1. (3.58)

By Lemma 3.6, the n > 1 part of S0 is O(q−κ), which is smaller than the n = 1 part, so n = 1
dominates for this restricted support, proving the lemma.

Lemma 3.7 implies that when supp(f̂) ⊂ (−α, α) for α < 1, we can ignore S0 in the one-level
density as long as the errors we are interested in calculating look like O(K−a) for a > 1 or an

error term O
(
q−

Kε
2

)
for ε sufficiently small. It will also be useful when the support is extended to

examine how the deg(P ) ≤ K part is affected, hence the following.

Lemma 3.8. Unconditionally,

2

Kqκ

∑
deg(P )<K

deg(P )

qdeg(P )/2
f̂

(
deg(P )

K

)
=

2
√
qK−2κ+1f̂(1)

K(
√
q − 1)

+O
(
K−2

)
. (3.59)

Proof. Let N ∈ N and cutoff the sum at deg(P ) = K − N logqK. So, the lower sum is bounded,
using the prime polynomial theorem, by

2

Kqκ

∑
d<K−N logqK

qd/2
∣∣∣∣f̂ ( d

K

)∣∣∣∣ , (3.60)

where d/2 < K/2− N
2 logqK, so d/2− κ < −N

2 logqK. Hence, qd/2−κ < K−
N
2 .

Since |f̂ | is uniformly bounded above,

2

K

∑
d<K

∣∣∣∣f̂ ( d

K

)∣∣∣∣�∑
d<K

1

K
� 1. (3.61)
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Thus, (3.60) is O(K−N/2). The upper part of the sum, by the prime polynomial theorem, is

2

Kqκ

∑
K−N logqK≤d<K

(
qd/2 +O(1)

)
f̂

(
d

K

)
= O(q−κ) +

2

Kqκ

∑
K−N logqK≤d<K

qd/2f̂

(
d

K

)
.

(3.62)

To write the Taylor series expansion for d/K ≈ 1, we use the fact that |d−K|K < N logK
K to get

f̂

(
1 +

(d−K)

K

)
= f̂(1)+ f̂ ′(1)

d−K
K

+O

(
d−K
K

)2

< f̂(1)+ f̂ ′(1)
d−K
K

+O

(
N logK

K

)2

.

(3.63)
Then, the sum is

2

Kqκ

∑
K−N logqK≤d<K

qd/2

(
f̂(1) + f̂ ′(1)

d−K
K

+O

(
N logK

K

)2
)

=
2f̂(1)

K
q
K−2κ

2

(
1 + q−1/2 + q−1 + · · ·+O

(
K−N/2

))
− 2f̂ ′(1)

K2

∑
K−N logqK≤d<K

K − d
q(K−d)/2

+O

(
logK

K

)3

=
2f̂(1)

√
q

K(
√
q − 1)

q
K−2κ

2 − 2f̂ ′(1)

K2

(
1
√
q

+
2

q
+

3

q3/2
+ · · ·

)
+O

(
1

K2

)
=

2
√
qK−2κ+1f̂(1)

K(
√
q − 1)

+O

(
1

K2

)
. (3.64)

Choosing N > 4 above gives the result. Again the n > 1 part is O(q−κ), which is negligible.

When supp(f̂) 6⊂ [−1, 1], we get contributions to the main term which are exponentially growing
in the n = 1 piece. By applying the prime polynomial theorem again, we have the expression

2

Kqκ

∑
d≥K

∑
P

deg(P )=d

d

qd/2
f̂

(
d

K

)
=

2

K

∑
d>K

q
d
2
−κf̂

(
d

K

)
+O(q−κ). (3.65)

This should therefore be cancelled by other terms in the one-level density, as we will compute
in Section 5. Observe that deg(P ) = K is exactly where this transition to an exponential term
occurs, which corresponds to the transition at supp(f̂) 6⊂ (−1, 1).

Corollary 3.9. Unconditionally, and to first order,

S0 =
2

K

∑
d>K

q
d
2
−κf̂

(
d

K

)
+

2
√
qK−2κ+1f̂(1)

K(
√
q − 1)

+O
(
K−2

)
. (3.66)

Proof. To compute the n = 1 part of (3.50) defining S0, split the sum into parts with deg(P ) < K
and deg(P ) ≥ K, and add the expressions from Lemma 3.8 and (3.65).

We have therefore studied the part of D1(F(K), f) arising from S0, which isolates a contribution
from the trivial character; we’ll next compute the term Wf emerging from the place at infinity in
the functional equation for L-functions associated to super-even characters.
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3.5 Computing Wf

Recall the definition of Wf in Equation (3.39) as

Wf :=
1

2πi

1

|F(K)|
∑
χ

∫
(c)

X ′χ
Xχ

(s) · f(iNχ(s− 1/2)) ds. (3.67)

By Lemma A.3, the contribution of the trivial character χ0 to Wf is negligible with error term
O(q−κ) when averaged over the family, because χ0 acts as if it has Swan conductor d(χ0) = −1.
This is why we could keep Wf defined with either a sum over all super-even characters or just over
nontrivial super-even characters in Equation (3.42). We now compute Wf .

Lemma 3.10. We have

Wf = −f̂(0)− f̂(0)

K

(
2κ−K − 2− 2

q − 1

)
+

2

K

∑
n≥1

q−n/2f̂
( n
K

)
+O(q−κ). (3.68)

Only including the first lower order term,

Wf = −f̂(0)−
ˆf(0)

K

(
2κ−K − 2− 2

q − 1
− 2
√
q − 1

)
+O

(
1

K2

)
. (3.69)

Proof. We can substitute our expression for the logarithmic derivative of Xχ(s), computed in
Lemma A.3, to obtain

Wf :=
1

2πi

1

|F(K)|
∑
χ

∫
(c)

X ′χ
Xχ

(s) · f(iNχ(s− 1/2))ds

= − log q

2πi

1

|F(K)|
∑
χ

∫
(c)

(
1

1− qs
+

1

1− q1−s + d(χ)− 1

)
· f(iNχ(s− 1/2))ds (3.70)

First, consider

− log q

2πi

1

|F(K)|
∑
χ

(d(χ)− 1)

∫
(c)
f(iNχ(s− 1/2)) ds (3.71)

Recalling that the average normalization Nχ is independent of χ, the d(χ) − 1 term can be
averaged over the family alone as 〈d(χ) − 1〉χ = K + O(1). The error of order O(1) is precisely
2κ−K − 2− 2

q−1 +O(q−κ) from the proof of Lemma 3.5. Then, the desired expression becomes

− log q

2πi
(K +O(1))

∫
(c)
f(iNχ(s− 1/2)) ds (3.72)

Substituting r = s− 1/2 makes the integral
∫

(c′) f(iNχr) dr, and then substituting τ = −iNχr

makes the integral i
Nχ

∫
R f(τ) dτ = i

Nχ
f̂(0). Then, setting Nχ = K log q

2π , the piece above becomes

− log q
2πi (K+O(1)) 2πi

K log q f̂(0) = −f̂(0) +O(1/K). Again, the error term of order O(1/K) is precisely

− f̂(0)
K (2κ−K − 2− 2

q−1) +O(q−κ).

The remaining piece is the integral of 1
1−qs + 1

1−q1−s . By substituting s→ 1− s and using the

fact that f is even, the second part becomes
∫

(1−c)
1

1−qs f(iNχ(s− 1/2))ds. Since there are no poles

of 1
1−qs between the lines (c) and (1 − c) for 1/2 < c < 1, the integral over the counter-clockwise
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contour going up (c) and then down (1− c) is zero, i.e., the integral going up along (c) is the same
as the integral going up along (1− c). We then get the following:

− log q

πi

1

|F(K)|
∑
χ

∫
(c)

f(iNχ(s− 1/2))

1− qs
ds. (3.73)

Setting Nχ = K log q
2π ensures that the integrand is not dependent on the character χ, so the

average over characters does nothing to the integral, and the above expression is

− log q

πi

∫
(c)

f(iNχ(s− 1/2))

1− qs
ds. (3.74)

Again, the substitutions s = 1/2 + r and τ = −iNχr lead to an integral

− log q

πi

∫
(c′)

f(iNχr)

1− q1/2+r
dr. (3.75)

Now, because the integrand is holomorphic for Re(r) > −1/2 and 0 < c′ < 1/2, we shift the
contour to c′ = 0 and substitute τ = −iNχr, yielding the expression

− log q

πNχ

∫
R

f(τ)

1− q1/2+iτ/Nχ
dτ. (3.76)

Setting Nχ = K log q
2π , this becomes

− 2

K

∫
R

f(τ)

1−√qe
2πiτ
K

dτ. (3.77)

Since |√qe
2πiτ
K |−1 < 1, we can expand the integrand in an infinite series to get

2

K

∫
R
f(τ)

∑
n≥1

q−n/2e−
2πiτn
K dτ =

2

K

∑
n≥1

q−n/2f̂
( n
K

)
(3.78)

by rewriting 1

1−√qe
2πiτ
K

= q−1/2e−2πiτ/K

−(1−q−1/2e−2πiτ/K)
.

This gives the desired formula with an error term of order O(q−κ). In order to expand to first
order, we write the first term of the Taylor series for compactly supported f̂ around zero, which is
f̂
(
n
K

)
= f̂(0) +O

(
n
K

)
. Substituting this into the above expression gives

2

K

∑
n≥1

q−n/2f̂(0) +
2

K2

∑
n≥1

q−n/2O(n) =
2f̂(0)

K(
√
q − 1)

+O

(
1

K2

)
, (3.79)

which is the second desired expression in the lemma.

By Lemma 3.10, the contribution of Wf to the one-level density is

−Wf = f̂(0) +
f̂(0)

K

(
2κ−K − 2− 2

q − 1

)
− 2

K

∑
n≥1

q−n/2f̂
( n
K

)
+O(q−κ), (3.80)

or to first order,

−Wf = f̂(0) +
ˆf(0)

K

(
2κ−K − 2− 2

q − 1
− 2
√
q − 1

)
+O

(
1

K2

)
. (3.81)
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4 Ratios Conjecture

Following [61], we outline the Ratios Conjecture procedure for computing the ratio of a product
of shifted L-functions averaged over a family. If F is a family of characters χ with corresponding
L-functions Lχ with log conductors c(Lχ), Lχ has an approximate functional equation (which is
exact in the analogous function field setting).

Lemma 4.1. (Function field analogue of approximate functional equation) We have

Lχ(s) =
∑

f∈M,deg(f)<x

χ(f)

|f |s
+ Xχ(s)

∑
f∈M,deg(f)<y

χ(f)

|f |1−s
, (4.1)

where x =
⌊
d(χ)

2

⌋
, y = x− 1, M is the space of monic polynomials in Fq[S], and Xχ(s) is defined

in Appendix A.

We can also write

1

Lχ(s)
=

∑
g∈M

µ(g)χ(g)

|g|s
. (4.2)

The Ratios Conjecture predicts an asymptotic formula for

1

|F|
∑
χ∈F

Lχ(1/2 + α)

Lχ(1/2 + γ)
, (4.3)

using the following steps. Interestingly many of the steps below involve adding or dropping terms
that are the same order as the main term; miraculously all these individual errors cancel out to
date in every family studied, with the final prediction agreeing with number theory in the regimes
calculated (see in particular [48]).

1. Replace the L-function in the numerator with the main two sums in the approximate func-
tional equation, and extend the sums to infinity. Replace the L-function in the denominator
by its Dirichlet series.

2. Replace Xχ(s) by its average over the family.

3. Write each summand as an Euler product and replace each term in the product by its average
over the family.

4. Call the total RF (α, γ) and let F := |F|. Then, for −1/4 < Re(α) < 1/4, 1
logF � Re(γ) and

Im(α), Im(γ)�ε F
1−ε, the conjecture is that∑

χ∈F

Lχ(1/2 + α)

Lχ(1/2 + γ)
=
∑
χ∈F

RF (α, γ)
(

1 +O
(
e(−1/2+ε)c(Lχ)

))
, (4.4)

for all ε > 0.

Now, still following [61], write the approximate functional equation instead as a sum over
polynomials in Fq[T ] = Fq[S2], using the Fq[T ] norm. This is

Lχ(s) =
∑

f∈Fq [T ],deg(f)<x

Aχ(f)

|f |s
+ Xχ(s)

∑
f∈Fq [T ],deg(f)<y

Aχ(f)

|f |1−s
, (4.5)
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where
Aχ(f) :=

∑
g∈Fq [S],N(g)=f

χ(g). (4.6)

Here, N(g) := gσ(g) (where σ : S → −S denotes the Galois automorphism), and Aχ above is a
multiplicative function defined on prime powers as

Aχ(P `) :=



∑l/2
j=−l/2 χ

2j(π) if P = ππ̄ is split, ` even∑(l−1)/2
j=−(l+1)/2 χ

2j+1(π) if P = ππ̄ is split, ` odd

0 if P is inert, ` odd

1 if P is inert, ` even

0 if P is ramified and ` > 0, i.e., P = T .

(4.7)

Note that Aχ(π) = Aχ(π̄) and Aχ = Aχ. The inverse Dirichlet series analogously becomes

Lχ(s)−1 =

∑
h∈Fq [T ]

µχ(h)

|h|s
, (4.8)

where on prime powers,

µχ(P h) :=



1 if h = 0

−Aχ(P ) if h = 1

−1 if h = 2, P inert

1 if h = 2, P split

0 otherwise.

(4.9)

Multiplying out the expressions (4.5) and (4.8) yields

Lχ(1/2 + α)

Lχ(1/2 + γ)
=
∏
P

∑
n,h

µχ(P h)Aχ(Pn)

|P |h(1/2+γ)+n(1/2+α)
+ Xχ(s)

∏
P

∑
m,h

µχ(P h)Aχ(Pm)

|P |h(1/2+γ)+m(1/2−α)
. (4.10)

.
First, we consider the average of the Xχ(s).

Lemma 4.2. For all ε > 0 and Re(s) < 1− ε, we have

〈Xχ(s)〉χ =
1− qs

1− q1−s
q − 1

q2(1−s) − 1
q2(κ+1)(1/2−s) +Oε(q

−κ). (4.11)

Proof. The average of Xχ(s) over the family is the average of (where the below holds for nontrivial
characters by Lemma A.2)

Xχ =
1− qs

1− q1−s (q1/2−s)d(χ)+1. (4.12)

Recall by Corollary 3.4 that there are qd(1− 1/q) characters with d(χ) = 2d− 1 for 1 ≤ d ≤ κ,
so the average is

1− qs

1− q1−s
1− 1/q

qκ

κ∑
d=1

qdqd(1−2s) =
1− qs

1− q1−s
1− 1/q

qκ

κ∑
d=1

q2d(1−s)

=
1− qs

1− q1−s
q − 1

qκ+1
q2(1−s) q

2(1−s)κ − 1

q2(1−s) − 1

=
1− qs

1− q1−s
q − 1

q2(1−s) − 1
q2(κ+1)(1/2−s) +Oε(q

−κ). (4.13)
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The last equality follows since when Re(s) < 1 − ε < 1, |1 − qs| ≤ 1 + qRe(s) < 1 + q, and
Re(1−s) > ε, so |1−q1−s| ≥ qε−1 > 0 and |1−q2(s−1)| ≥ 1−|q2(s−1)| = 1−(q2)Re(s)−1 ≥ 1−q−2ε > 0.
Hence, ∣∣∣∣ 1− qs

1− q1−s
1

1− q2(s−1)

∣∣∣∣ ≤ 1 + q

qε − 1

1

1− q−2ε
, (4.14)

yielding the desired ε-dependent error term.

Next we need to average the coefficients in the sums/products. Define

δP (h, n) := lim
K→∞

〈µχ(P h)Aχ(Pn)〉χ. (4.15)

We compute these averages by casework.

Lemma 4.3. We have

δP (h, n) =



1 if h = n = 0

1 if P is split, n is even, and h = 0 or 2

−2 if P is split, n is odd, and h = 1

1 if P is inert, n is even, and h = 0

−1 if P is inert, n is even, and h = 2

0 otherwise.

(4.16)

Proof. Suppose P = T is ramified. If n > 0, then Aχ(Tn) = 0, so let n = 0. If h = 0, the average
is 1. If h = 1, it is the average of the −Aχ(T ), each of which is zero so the average is zero again.

Suppose P is split and P = ππ̄. If n is even and h = 0 or 2, then, denoting by 1π2j∈HK
the indicator function which is 1 when π2j ∈ HK is satisfied and zero otherwise (and likewise for
1ord(π)|2j), we write

δP (h, n) = lim
K→∞

1

qκ

∑
χ

n/2∑
j=−n/2

χ2j(π) =

n/2∑
j=−n/2

lim
K→∞

1

qκ

∑
χ

χ2j(π)

=
∑
j

lim
K→∞

1π2j∈HK =
∑
j

lim
K→∞

1ord(π)|2j

= lim
K→∞

(
1 + 2

⌊
n

ord(π)

⌋)
= 1. (4.17)

The 1 in the equation above comes from the j = 0 summand, and since π is fixed, the least odd
degree with nonzero coefficient d occurring in π is fixed; also recall that ord(π) was computed as

pdlogpK/de ≥ K/d in Lemma 2.3, so n/ord(π) ≤ nd/K → 0.
If n is odd and h = 0 or 2, then similarly,

δP (h, n) =

(n−1)/2∑
j=−(n+1)/2

lim
K→∞

1

qκ

∑
χ

χ2j+1(π) =
∑
j

1ord(π)|2j+1 = lim
K→∞

2

⌊
n

ord(π)

⌋
= 0.

(4.18)
If h = 1 and n is even, then
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δP (h, n) = lim
K→∞

1

qκ

∑
χ

n/2∑
j=−n/2

−Aχ(P )χ2j(π)

= − lim
K→∞

1

qκ

∑
χ

n/2∑
j=−n/2

(
χ(π) + χ−1(π)

)
χ2j(π)

= −
n/2∑

j=−n/2

lim
K→∞

1

qκ

∑
χ

(
χ2j+1(π) + χ2j−1(π)

)
= 0. (4.19)

If h = 1 and n is odd, then

δP (h, n) = lim
K→∞

1

qκ

∑
χ

(n−1)/2∑
j=−(n+1)/2

−
(
χ(π) + χ−1(π)

)
χ2j+1(π)

= −
(n−1)/2∑

j=−(n+1)/2

lim
K→∞

1

qκ

∑
χ

(
χ2j+2(π) + χ2j(π)

)
= −2. (4.20)

In other cases, h > 2, so µ(P h) = 0 and the average is automatically zero. Now, suppose P
is inert. Then if n is odd, automatically Aχ(Pn) = 0 so the average is zero, and so assume n is
even, in which case Aχ(Pn) = 1. Then, if h = 0, it’s the average of µ(P h) = 1, which is 1, and
if h = 2, µ(P h) = −1, so the average is −1. Else, h = 1 in which case µ(P h) = −Aχ(P ) = 0 or
h > 2 =⇒ µ(P h) = 0, so other cases have average zero.

Continuing to follow [61], define

GP (α, γ) :=
∑
h,n

δP (h, n)

|P |h(1/2+γ)+n(1/2+α)
. (4.21)

For inert P , this is

GP (α, γ) =
∑

n even

1

|P |n(1/2+α)
−
∑

n even

1

|P |1+2γ+n(1/2+α)

=

∞∑
n=0

1

|P |n(1+2α)

(
1− 1

|P |1+2γ

)

=

(
1− 1

|P |1+2γ

) (
1− 1

|P |1+2α

)−1

. (4.22)

If P is split, then similarly

GP (α, γ) =

∞∑
n=0

(
1

|P |n(1+2α)
+

1

|P |1+2γ+n(1+2α)
− 2

|P |1/2+γ+(2n+1)(1/2+α)

)

=

(
1 +

1

|P |1+2γ
− 2

|P |1+α+γ

) (
1− 1

|P |1+2α

)−1

. (4.23)
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For the ramified prime P = T , GP (α, γ) = 1. The product is

G(α, γ) :=
∏
P

GP (α, γ)

=
∏
P 6=T

(
1− 1

|P |1+2α

)−1 ∏
P inert

(
1− 1

|P |1+2γ

) ∏
P split

(
1− 2

|P |1+α+γ
+

1

|P |1+2γ

)
.

(4.24)

Conjecture 4.4. With −1/4 < Re(α) < 1/4, 1
κ log q � Re(γ) and Im(α), Im(γ) �ε q

κ(1−ε), for
every ε > 0, we have

RF (α, γ) = G(α, γ) + 〈Xχ(1/2 + α)〉χ G(−α, γ) + O(qκ(−1/2+ε)). (4.25)

Now, write
G(α, γ) = Y (α, γ) A(α, γ), (4.26)

where
A(α, γ) := Ainert ×Asplit, (4.27)

and

Ainert :=
∏

inert P

(
1− 1

|P |1+2γ

)(
1 + 1

|P |1+2γ

)
(

1− 1
|P |1+α+γ

)(
1 + 1

|P |1+α+γ

) , (4.28)

and

Asplit :=
∏

split P

(
1− 2

|P |1+α+γ + 1
|P |1+2γ

)(
1− 1

|P |1+2γ

)
(

1− 1
|P |1+α+γ

)2 . (4.29)

So,

Y (α, γ) =
G(α, γ)

A(α, γ)

=
∏
P 6=T

(
1− 1

|P |1+2α

)−1 ∏
inert P

(
1− 1

|P |1+α+γ

)(
1 + 1

|P |1+α+γ

)
(

1 + 1
|P |1+2γ

) ∏
split P

(
1− 1

|P |1+α+γ

)2(
1− 1

|P |1+2γ

)
=

1− q−(1+2α)

1− q−(1+α+γ)

ζq(1 + 2α)

ζq(1 + α+ γ)

L(1 + 2γ, χ1)

L(1 + α+ γ, χ1)
. (4.30)

Here, χ1 : Fq[T ]→ C is multiplicative, sending T → 0, inert primes to −1 and split primes to 1.
For the A(α, γ) piece, we recall lemmas from [61], which still hold by similar proofs, substituting
inert primes for p ≡ 3 mod 4 and split primes for p ≡ 1 mod 4.

Lemma 4.5. [61, Lemma 3.4] For r > −1
4 , we have

∂

∂α
A(α, γ)|α=γ=r = −2

∑
inert P

log |P |
|P |2+4r − 1

. (4.31)

Lemma 4.6. [61, Lemma 3.5] We have

d

dα
A(−α, α)|α=0 = 4

∑
inert P

log |P |
|P |2 − 1

. (4.32)
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Since A(r, r) = 1 and Y (r, r) = 1, we can take the logarithmic derivative to get

∂αG(α, γ)|α=γ=r = ∂αY + ∂αA

= log q
q−(1+2r)

1− q−(1+2r)
+
ζ ′q
ζq

(1 + 2r)− L′

L
(1 + 2r, χ1) +A′(r, r). (4.33)

Recall the approximation 〈Xχ(1/2 +α)〉 ≈ 1−q1/2+α

1−q1/2−α
(q−1)q−2α

q1−2α−1
q−2κα. So, to compute ∂αRF (α, γ)

we also differentiate the second term, and find

∂α
1− q1/2+α

1− q1/2−α
(q − 1)q−2α

q1−2α − 1
q−2καG(−α, γ)|α=γ=r

= ∂α
1− q1/2+α

1− q1/2−α
(q − 1)q−2α

q1−2α − 1
q−2κα 1− q−(1−2α)

1− q−(1−α+γ)

ζq(1− 2α)

ζq(1− α+ γ)

L(1 + 2γ, χ1)

L(1− α+ γ, χ1)
A(−α, γ)|α=γ=r.

(4.34)

Note that the term 1
ζq(1−α+γ) = 1−qα−γ vanishes at α = γ, so differentiating the above amounts

to only considering the part where this term is differentiated, which yields

− (log q)qα−γ
1− q1/2+α

1− q1/2−α
(q − 1)q−2α

q1−2α − 1
q−2κα 1− q−(1−2α)

1− q−(1−α+γ)
ζq(1− 2α)

L(1 + 2γ, χ1)

L(1− α+ γ, χ1)
A(−α, γ)|α=γ=r

= −(log q)
1− q1/2+r

1− q1/2−r
(q − 1)q−2r

q1−2r − 1
q−2κr 1− q−(1−2r)

1− q−1
ζq(1− 2r)

L(1 + 2r, χ1)

L(1, χ1)
A(−r, r)

= −(log q)
1− q1/2+r

1− q1/2−r q
−2κrζq(1− 2r)

L(1 + 2r, χ1)

L(1, χ1)
A(−r, r). (4.35)

The Ratios Conjecture hence predicts the following.

Conjecture 4.7. With 1
κ log q � Re(r) and Im(r)�ε q

κ(1−ε), for every ε > 0, we have

1

|F(K)|
∑
χ

L′χ
Lχ

(1/2 + r) = log q
q−(1+2r)

1− q−(1+2r)
+
ζ ′q
ζq

(1 + 2r)− L′

L
(1 + 2r, χ1) +A′(r, r)

− (log q)
1− q1/2+r

1− q1/2−r q
−2κrζq(1− 2r)

L(1 + 2r, χ1)

L(1, χ1)
A(−r, r) +O

(
q−K(1/2+ε)

)
. (4.36)

Recall that the one-level density is

1

πi

1

|F|
∑
χ

∫
(c′)

L′χ
Lχ

(1/2 + r) · f(iNχr) dr −Wf , (4.37)

where the first part,
1

πi

1

|F|
∑
χ

∫
(c′)

L′χ
Lχ

(1/2 + r) · f(iNχr) dr, (4.38)

is equal to

1

πi

∫
(c′)

(
log q

q−(1+2r)

1− q−(1+2r)
+
ζ ′q
ζq

(1 + 2r)− L′

L
(1 + 2r, χ1) +A′(r, r)

− (log q)
1− q1/2+r

1− q1/2−r q
−2κrζq(1− 2r)

L(1 + 2r, χ1)

L(1, χ1)
A(−r, r) +O

(
q−K(1/2+ε)

))
· f(iNχr) dr. (4.39)

This leads to the following conjecture.
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Conjecture 4.8. For every ε > 0, we have

D1(F(K), f) = −Wf + SR + Sζ + SL + SA′ + SΓ +O
(
qK(−1/2+ε)

)
, (4.40)

where

SR =
2

K

∫
q
−(1+2 2πiτ

K log q
)

1− q−(1+2 2πiτ
K log q

)
f(τ) dτ,

Sζ =
2

K log q

∫
ζ ′

ζ

(
1 +

4πiτ

K log q

)
f(τ) dτ,

SL = − 2

K log q

∫
L′

L

(
1 + 2

2πiτ

K log q
, χ1

)
f(τ) dτ,

SA′ =
2

K log q

∫
A′
(

2πiτ

K log q
,

2πiτ

K log q
)fτ

)
dτ,

SΓ = − 2

K

∫
1− q1/2+ 2πiτ

K log q

1− q1/2− 2πiτ
K log q

q
−2κ 2πiτ

K log q ζq

(
1− 2

2πiτ

K log q

)
L(1 + 2 2πiτ

K log q , χ1)

L(1, χ1)
A

(
− 2πiτ

K log q
,

2πiτ

K log q

)
f(τ)dτ.

(4.41)

Lemma 4.9. We have

SR =
2

K

∑
n≥1

q−nf̂

(
2n

K

)
, (4.42)

which to first order is

SR =
2f̂(0)

K(q − 1)
+O

(
1

K2

)
. (4.43)

Proof. Rewrite the integrand as an infinite sum

2

K

∫
f(τ)

∑
n≥1

q
−n−2n 2πiτ

K log q dτ =
2

K

∑
n≥1

q−n
∫
f(τ)e−2n 2πiτ

K dτ

=
2

K

∑
n≥1

q−nf̂

(
2n

K

)
. (4.44)

Write the Taylor series expansion f̂
(

2n
K

)
= f̂(0)+O

(
n
K

)
. Then, to first order, the above integral

is
2f̂(0)

K

∑
n≥1

q−n +
2

K2

∑
n≥1

q−nO(n) =
2f̂(0)

K(q − 1)
+O

(
1

K2

)
. (4.45)

Lemma 4.10. We have

Sζ =
−2

K

∑
n≥1

f̂

(
2n

K

)
= −f(0)

2
+
f̂(0)

K
+OM (K−M ), (4.46)

for all M > 1.
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Proof. We have

Sζ =
−2

K

∫
f(τ)

∑
n≥1

e−
4πinτ
K dτ =

−2

K

∑
n≥1

f̂

(
2n

K

)
, (4.47)

and we can compute this by Poisson summation. Specifically, to evaluate the sum, let g(t) :=
f(Kt/2), which is also an even function of sufficient decay, so ĝ(s) = 2

K f̂
(

2s
K

)
, and the sum

becomes

2

K

∑
n≥1

f̂

(
2n

K

)
=
∑
n≥1

ĝ(n) =
1

2

((∑
n∈Z

ĝ(n)

)
− ĝ(0)

)
=

1

2

((∑
n∈Z

g(n)

)
− 2

K
f̂(0)

)

=
1

2

∑
n∈Z

f

(
Kn

2

)
− f̂(0)

K
. (4.48)

Above, we can split the first sum into zero/nonzero integers to get

f(0)

2
+
∑
n≥1

f

(
Kn

2

)
− f̂(0)

K
. (4.49)

Since f is rapidly decaying, we can bound the terms f(Kn2 ) by A
(Kn)M

= O
(

1
KM

)
O
(

1
nM

)
for

arbitrarily large M � 1, and when summed over integer n ≥ 1, this is bounded by 1
KM ζ(M) =

O
(

1
KM

)
. This gives the result for the original sum.

To compute SL, recall that

L′

L
(s, χ1) = − log q

∑
f∈Fq [T ]

χ1(f)Λ(f)

|f |s
, (4.50)

where the character χ1 was defined right after (4.30).

Lemma 4.11. We have

L′

L
(1 + 2r, χ1) = − log q

∑
P 6=T

deg(P )

|P |2(1+2r) − 1
+
∑
d≥1

|P |1+2rd(πd,split − πd,inert)

(|P |2(1+2r) − 1)

 , (4.51)

and at r = 0, this is

L′

L
(1, χ1) = − log q

∑
P 6=T

deg(P )

|P |2 − 1
+
∑
d≥1

|P |d(πd,split − πd,inert)

(|P |2 − 1)

 . (4.52)

In fact, L(s, χ1) = 1 for all s, so the above expressions are also zero.

Proof. We can restrict the sum to prime powers to get∑ χ1(f)Λ(f)

|f |1+2r
=

∑
inert P

∑
n≥1

(
−1

|P |1+2r

)n
deg(P ) +

∑
split P

∑
n≥1

(
1

|P |1+2r

)n
deg(P ). (4.53)

The even n part is (changing variables n→ 2n)∑
P 6=T

∑
n≥1

deg(P )

|P |(1+2r)2n
=
∑
P 6=T

deg(P )

|P |2(1+2r) − 1
, (4.54)
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which converges. The odd n part is, denoting d = deg(P ),

∑
d≥1

∑
odd n

d(πd,split − πd,inert)

|P |n(1+2r)
=
∑
d≥1

|P |1+2rd(πd,split − πd,inert)

(|P |2(1+2r) − 1)
. (4.55)

Above, the difference between the degree d split and inert primes above is O(qd/2), by the
prime polynomial theorem in arithmetic progressions and Corollary 5.2, leaving the summands on
the order of O(|P |−1/2). Then, this part of the sum converges too, from which the first part of the
lemma follows. The second part follows by letting r = 0.

For the other part, first note that the way χ1 is defined, sending inert primes to −1 and split
primes to 1 and the ramified prime to 0, is equivalent to sending a prime to the Legendre symbol of
its constant term modulo T , since inert/split is equivalent to the constant term being a quadratic
non-residue/residue by Corollary 5.2. So, by the multiplicativity of χ1, the character extends to all
monic f ∈ Fq[T ] by

χ1(f) :=

(
f

T

)
, (4.56)

the Legendre symbol. This is also the quadratic Dirichlet character χg for g = T ∈ Fq[T ]. So, the
L-function can be rewritten as

L(s, χ1) =
∑

f∈Fq [T ]

(
f

T

)
|f |−s . (4.57)

For deg(f) > 1, there are an equal number of f of a given degree which have nonzero quadratic
residue/non-residue constant term, so the coefficients of q−ds for d ≥ 1 are∑

deg(f)=d

(
f

T

)
= 0. (4.58)

For d = 0, the coefficient is 1, so L(s, χ1) = 1 and the result follows.

Lemma 4.12. We have that SL = 0 and that

SA′ = − 4

K
f̂(0)

∑
inert P

deg(P )

|P |2 − 1
+O

(
1

K2

)
. (4.59)

Another way to write SL is

SL =
2

K

∑
a≥1

q−af̂

(
2a

K

)∑
d|a

d (πd,split − πd,inert)− SA′ , (4.60)

while another way to write SA′ exactly is

SA′ = − 4

K

∑
a≥1

f̂

(
4a

K

)
q−2a

∑
d|a

dπd,inert. (4.61)

Proof. Following [61, Lemma 5.4], write

SL = − 2

K log q

∫
L′

L

(
1 + 2

2πiτ

K log q
, χ1

)
f(τ) dτ, (4.62)
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which is zero by substituting L′

L (s, χ1) = 0 from Lemma 4.11.
Similarly, write

SA′ =
2

K log q

∫
A′
(

2πiτ

K log q
,

2πiτ

K log q

)
f(τ) dτ (4.63)

and shift the contour to C0 ∪ C1, where C0 = {Im(τ) = 0, |Re(τ)| ≥ Kε} and C1 = {Im(τ) =
0, |Re(τ)| ≤ Kε} for fixed ε > 0. By the rapid decay of f , the integral over C0 can be bounded by
O(1/K100), say. For the remaining part over C1, Taylor expand the integrand at τ = 0 and use the
rapid decay of f to get∫

C1
A′(0, 0)f(τ)dτ +O(1/K) = A′(0, 0)

∫
R
f(τ)dτ +O(1/K)

= A′(0, 0)f̂(0) +O

(
1

K

)
. (4.64)

The main term above is, by [61, Lemma 3.4],

∂

∂α
A(α, γ)|α=γ=0 = −2

∑
inert P

log |P |
|P |2 − 1

. (4.65)

So, the expression above to first order is

−4

K
f̂(0)

∑
inert P

deg(P )

|P |2 − 1
+O

(
1

K2

)
, (4.66)

as required.
For an exact expression for SA′ , we can expand the infinite series from Lemma 4.5, which implies

A′
(

2πiτ

K log q
,

2πiτ

K log q

)
= −2

∑
inert P

log |P |

|P |2+4 2πiτ
K log q − 1

, (4.67)

as
− 2 log q

∑
inert P

deg(P )
∑
n≥1

|P |−2ne−2πiτ
4n deg(P )

K . (4.68)

Then, the integral defining SA′ is

SA′ = − 4

K

∑
inert P

∑
n≥1

deg(P )|P |−2nf̂

(
4n deg(P )

K

)
= − 4

K

∑
d,n≥1

dπd,inert

q2dn
f̂

(
4nd

K

)

= − 4

K

∑
a≥1

f̂

(
4a

K

)
q−2a

∑
d|a

dπd,inert. (4.69)

For an exact expression for SL written as a sum over primes, substitute (4.51) to write the
integrand as

L′

L

(
1 + 2

2πiτ

K log q
, χ1

)
= − log q

∑
P 6=T

deg(P )

|P |2(1+2 2πiτ
K log q

) − 1
+
∑
d≥1

|P |1+2 2πiτ
K log q d(πd,split − πd,inert)

(|P |2(1+2 2πiτ
K log q

) − 1)

 ,

(4.70)
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so

SL =
2

K

∫
f(τ)

∑
P 6=T

deg(P )

|P |2(1+2 2πiτ
K log q

) − 1
+
∑
d≥1

|P |1+2 2πiτ
K log q d(πd,split − πd,inert)

(|P |2(1+2 2πiτ
K log q

) − 1)

 dτ (4.71)

Applying infinite series again yields that the first sum is

2

K

∑
P 6=T

∑
n≥1

deg(P )|P |−2nf̂

(
4n deg(P )

K

)
=

2

K

∑
n,d≥1

q−2dnf̂

(
4dn

K

)
d(πd,inert + πd,split) (4.72)

and that the second is

2

K

∑
d,n≥1

|P |1−2nf̂

(
2(1− 2n)d

K

)
d(πd,split − πd,inert)

=
2

K

∑
d,n≥1

q−dnf̂

(
2nd

K

)
d(πd,split − πd,inert)−

2

K

∑
d,n≥1

q−2dnf̂

(
4dn

K

)
d(πd,split − πd,inert). (4.73)

Above, we’ve added and subtracted the latter expression which only sums terms with even
exponents of |P |. Adding the first and second sums yields

2

K

∑
d,n≥1

q−dnf̂

(
2nd

K

)
d(πd,split − πd,inert) +

4

K

∑
d,n≥1

q−2dnf̂

(
4dn

K

)
dπd,inert, (4.74)

which is the desired expression.

It remains to compute SΓ.

Lemma 4.13. We have

SΓ =
f(0)

2
− 1

2

∫ 1

−1
f̂(x) dx− d

K
f̂(1) +O

(
1

K2

)
, (4.75)

where

d := 4
∑

inert P

deg(P )

|P |2 − 1
+ 2

L′(1, χ1)

L(1, χ1)
+

2
√
q

√
q − 1

− 1. (4.76)

Proof. Set

h(τ) :=
1− q1/2+ 2πiτ

K log q

1− q1/2− 2πiτ
K log q

q
−2κ 2πiτ

K log q ζq

(
1− 2

2πiτ

K log q

)
L(1 + 2 2πiτ

K log q , χ1)

L(1, χ1)
A

(
− 2πiτ

K log q
,

2πiτ

K log q

)
,

(4.77)
so one can write

SΓ = − 2

K

∫
f(τ)h(τ) dτ. (4.78)

As in the proof of [61, Lemma 5.5], shift the contour of integration to C0 ∪ C1 ∪ Cη, where

C0 := {Im(τ) = 0,Re(τ) ≥ Kε}, C1 := {Im(τ) = 0, η ≤ Re(τ) ≤ Kε}, (4.79)

and
Cη := {τ = ηeiθ, θ ∈ [−π, 0]}. (4.80)
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Rapid decay of f and upper bounds on the integrand bound the part of the integral over C0

by K−100, say. Since the integrand is uniformly continuous on the remaining compact set C1 ∪ Cη,
Taylor expand each component of the integrand to first order as (assuming here that K = 2κ for
simplicity)

1− q1/2+ 2πiτ
K log q

1− q1/2− 2πiτ
K log q

q
−4κπiτ
K log q = e−2πiτ 1−√q(1 + 2πiτ/K +O(τ2/K2))

1−√q(1− 2πiτ/K +O(τ2/K2))

= e−2πiτ
1−

√
q

1−√q (2πiτ/K +O(τ2/K2))

1 +
√
q

1−√q (2πiτ/K +O(τ2/K2))

= e−2πiτ

(
1−

2
√
q

1−√q
2πiτ

K
+O(τ2/K2)

)
= e−2πiτ + e−2πiτ 2

√
q

√
q − 1

2πiτ

K
+O

(
τ2

K2

)
. (4.81)

Also,

ζq

(
1− 4πiτ

K log q

)
=

1

1− e
4πiτ
K

=
−1

4πiτ/K + 1
2(4πiτ/K)2 + · · ·

= − K

4πiτ

1

1 + 2πiτ/K +O(τ2/K2)

= − K

4πiτ
(1− 2πiτ/K +O((τ/K)2)) =

Ki

4πτ
+

1

2
+O

( τ
K

)
. (4.82)

Moreover,
L(1 + 4πiτ

K log q , χ1)

L(1, χ1)
= 1 +

L′(1, χ1)

L(1, χ1)
· 4πiτ

K
+O

(
τ2

K2

)
, (4.83)

and

A

(
− 2πiτ

K log q
,

2πiτ

K log q

)
= A(0, 0) +A′(0, 0)

2πiτ

K log q
+ · · ·

= 1 + 4
∑

inert P

log |P |
|P |2 − 1

· 2πiτ

K log q
+O

(
τ2

K2

)
. (4.84)

Substituting all of this in the integral yields, to first order,

SΓ =
−2

K

∫
C1∪Cη

f(τ)h(τ) dτ +O(1/K100)

=
−2

K

∫
C1∪Cη

f(τ)e−2πiτ

(
1 +

2
√
q

√
q − 1

2πiτ

K

)(
1 +

L′(1, χ1)

L(1, χ1)
· 4πiτ

K

)
×
(
Ki

4πτ
+

1

2

)(
1 + 4

∑
inert P

log |P |
|P |2 − 1

· 2πiτ

K log q

)
dτ

=

∫
C1∪Cη

f(τ)
e−2πiτ

2πiτ
dτ − d

K

∫
C1∪C0

f(τ)e−2πiτ dτ +O(1/K2)

=

∫
C1∪Cη

f(τ)
e−2πiτ

2πiτ
dτ − d

K
f̂(1) +O

(
1

K2

)
. (4.85)
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Above, the coefficient d can be computed by multiplying the expression above and identifying
the constant term, which explicitly is

d =
4

log q

∑
inert P

log |P |
|P |2 − 1

+ 2
L′(1, χ1)

L(1, χ1)
+

2
√
q

√
q − 1

− 1. (4.86)

Above, we’ve also recognized that by rapid decay and holomorphy of f :∫
C1∪Cη

f(τ)e−2πiτdτ = f̂(1) +O(1/K100). (4.87)

Since C = C0 ∪ C1 ∪ Cη,∫
C1∪Cη

f(τ)
e−2πiτ

2πiτ
dτ =

1

2πi

∫
C

f(τ)

τ
e−2πiτdτ +O(1/K100) = J1 + J2 +O(1/K100), (4.88)

where

J1 :=
1

2πi

∫
C

cos(2πτ)
f(τ)

τ
dτ, (4.89)

and

J2 := −
∫
C

sin(2πτ)

2πτ
f(τ)dτ. (4.90)

By [61, Equation 5.15], in the limit η → 0, J1 = f(0)
2 and by [61, Equation 5.16],

J2 = −1

2

∫ 1

−1
f̂(τ)dτ, (4.91)

which matches a term in the Katz-Sarnak prediction. Adding these terms yields the result.

Remark 4.14. As in [61, Remark 5.6], we can also note that if supp(f̂) ⊂ (−1, 1), then by the
convolution theorem, ∫

R
f(τ)τne−2πiτ dτ = 0 (4.92)

for n ∈ N. So, if we included lower-order terms in the Taylor expansion, these integrals would
vanish and the error in this case is O(K−a) for any a > 1. Since f(0)

2 and 1
2

∫ 1
−1 f̂(x) dx are also

equal for f̂ supported in (−1, 1), the main terms cancel and SΓ = O(K−a) when supp(f̂) ⊂ (−1, 1),
for all a > 1.

We’ve therefore shown that the Ratios Conjecture unconditionally yields that the one-level
density for zeroes of L-functions in our family agrees with the symplectic distribution from the
Katz-Sarnak Conjecture as K →∞.

Conjecture 4.15. Assuming the Ratios Conjecture, to first order, if q is odd, then

D1(F(K), f) = −1

2

∫ 1

−1
f̂(x)dx+

1

K

(
c · f̂(0)− d · f̂(1)

)
−Wf +O

(
1

K2

)
, (4.93)

where

c := 1 +
2

q − 1
− 2

∑
d,n≥1

q−dn(πd,inert − πd,split). (4.94)
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Proof. To first order, by Lemmas 4.9, 4.10, 4.12, and 4.13:

SR + Sζ + SL + SA′ + SΓ

=
2f̂(0)

K(q − 1)
− f(0)

2
+
f̂(0)

K
− 2

K log q

L′

L
(1, χ1)f̂(0)− 4

K
f̂(0)

∑
inert P

deg(P )

|P |2 − 1

+
f(0)

2
− 1

2

∫ 1

−1
f̂(x) dx− d

K
f̂(1) +O

(
1

K2

)
=

2f̂(0)

K(q − 1)
− 1

2

∫ 1

−1
f̂(x) dx

+
f̂(0)

K

(
1− 2

log q

L′

L
(1, χ1)− 4

∑
inert P

deg(P )

|P |2 − 1

)
− d

K
f̂(1) +O

(
1

K2

)
. (4.95)

Expand the coefficient in the middle as

1 + 2

∑
P 6=T

deg(P )

|P |2 − 1
+
∑
d≥1

|P |d(πd,split − πd,inert)

(|P |2 − 1)

− 4
∑
d

dπd,inert

|P |2 − 1

= 1 + 2
∑
d

d
πd,split + πd,inert

|P |2 − 1
+ 2

∑
d

|P |d(πd,split − πd,inert)

|P |2 − 1
− 4

∑
d

dπd,inert

|P |2 − 1

= 1 + 2
∑
d

d
πd,split

|P | − 1
− 2

∑
d

d
πd,inert

|P | − 1
= 1− 2

∑
d,n≥1

q−dnd(πd,inert − πd,split), (4.96)

giving the result.

5 Unconditional results from explicit formulae

Combining (3.40), (3.49) and (3.50) yields that the one-level density may be written as

D1(F(K), f) = − 2

K

∑
P

∑
n≥1

deg(P )

qord(P ) deg(P )n/2
f̂

(
ord(P ) deg(P )n

K

)
+ S0 −Wf . (5.1)

We’ve already computed S0 and Wf in Sections 3.4 and 3.5, so it remains to compute the first
term of the above expression, which we denote by

Sm := − 2

K

∑
P

∑
n≥1

deg(P )

qord(P ) deg(P )n/2
f̂

(
ord(P ) deg(P )n

K

)
. (5.2)

In this case we can write
D1(F(K), f) = Sm + S0 −Wf . (5.3)

The sum over irreducible polynomials in the explicit formula for Sm can be split into distinct
sums over irreducible polynomials with different splitting behaviors. The following result charac-
terizes the splitting behavior of irreducible polynomials over Fq, and will be used to split the sums
accordingly.

Lemma 5.1. [5, Proposition 2.4] Let h(S) ∈ Fq[S]. Then, exactly one of the following hold.
(1) N(h) = ±P , where P is a prime of Fq[T ] with (PT ) = 1.

(2) h = ±Q ∈ Fq[T ], where Q is a prime in Fq[T ] with (QT ) = −1. In particular N(h) = ±Q2.
(3) N(h) = −T 2.
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We immediately obtain the following.

Corollary 5.2. The splitting behavior of an irreducible polynomial P ∈ Fq[T ] as an element of
Fq[S] is determined by its Legendre symbol (PT ). In particular,
(1) P splits in Fq[S] if and only if (PT ) = 1,
(2) P is inert in Fq[S] if and only if (PT ) = −1, and
(3) P is ramified if and only if P = ±T i.e., (PT ) = 0.

When restricting the support, we can also get a more precise result.

Lemma 5.3. If supp(f̂) ⊂ [−1, 1], then

− 2

K

∑
P /∈HK

∑
n≥1

deg(P )

qord(P ) deg(P )n/2
f̂

(
ord(P ) deg(P )n

K

)
= 0. (5.4)

Proof. Since f̂ vanishes outside (−1, 1), we need only consider primes P with deg(P ) < K. Recall
Lemma 2.3, which implies that if deg(P ) < K and P /∈ HK i.e., P ∈ S1

K \ {1}, then the order of P
is determined the map D, which sends P to an integer D(P ) ≤ deg(P ). Given this, the order of the

polynomial is ord(P ) = pdlogpK/D(P )e ≥ K/D(P ). Hence, ord(P ) deg(P ) ≥ K · deg(P )
D(P ) ≥ K. Then,

for all primes P /∈ HK with deg(P ) < K and for all n ≥ 1, ord(P ) deg(P )n
K ≥ 1. Since f̂ vanishes

outside (−1, 1), f̂
(

ord(P ) deg(P )n
K

)
= 0 for all of these primes, yielding the result.

Corollary 5.4. If supp(f̂) ⊂ [−1, 1], then

Sm = − 2

K

∑
P∈HK

∑
n≥1

deg(P )

qord(P ) deg(P )n/2
f̂

(
ord(P ) deg(P )n

K

)
. (5.5)

In order to equate the above with expressions already computed in Section 4, we now draw
the first useful distinction between the primes being summed over in (5.2) by splitting type. In
particular, define

Sinert := − 2

K

∑
P even

∑
n≥1

deg(P )

qdeg(P )n/2
f̂

(
deg(P )n

K

)
. (5.6)

The terminology “inert” makes sense because the even primes in Fq[S2] exactly correspond to
inert primes in Fq[T ], and working in the latter (base) ring was the viewpoint espoused in Section
4 where the Ratios Conjecture was computed. This motivates the following lemma.

Lemma 5.5. Unconditionally,

Sinert = SR + Sζ + SL + SA′ . (5.7)

Proof. First, we convert to a setting where the sum is over primes in Fq[T ]. In order to this, we
change the variable deg(P )→ 2 deg(P ) to get that the defining expression for Sinert in (5.6) is

−2

K

∑
even P∈Fq[S]

∑
n≥1

deg(P )

qdeg(P )n/2
f̂

(
deg(P )n

K

)
= − 2

K

∑
inert P∈Fq[T]

∑
n≥1

2 deg(P )

qdeg(P )n
f̂

(
2 deg(P )n

K

)
.

(5.8)
Then, substitute a := deg(P )n and d := deg(P ) to write

− 2

K

∑
a≥1

f̂

(
2a

K

)
q−a

∑
d|a

2d · πd,inert, (5.9)
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where πd,inert is the number of monic inert primes of degree d. Next, re-write the above as

− 2

K

∑
a≥1

f̂

(
2a

K

)
q−a

∑
d|a

2d
(πd

2
+
(
πd,inert −

πd
2

))

= − 2

K

∑
a≥1

f̂

(
2a

K

)
q−a

∑
d|a

dπd +
∑
d|a

2d
(
πd,inert −

πd
2

) . (5.10)

Now, use the fact that qa =
∑

d|a dπd ([54, Proposition 2.1]) to write this as

− 2

K

∑
a≥1

f̂

(
2a

K

)
− 2

K

∑
a≥1

∑
d|a

q−af̂

(
2a

K

)
2d
(
πd,inert −

πd
2

)
= Sζ −

2

K

∑
a≥1

∑
d|a

q−af̂

(
2a

K

)
2d
(
πd,inert −

πd
2

)
, (5.11)

where we recognize the expression for Sζ from Lemma 4.10.
Now, note that πd = πd,inert + πd,split for all d > 1, since there are no ramified primes of

degree greater than one. When d = 1, the one ramified prime P = T changes the expression to
π1 = q = π1, inert + π1, split + 1. Hence,

2
(
πd,inert −

πd
2

)
= πd,inert − πd,split for d > 1, (5.12)

and at d = 1,

2(π1, inert − π1/2) = 2(π1, inert/2− π1, split/2− 1/2) = π1, inert − π1, split − 1. (5.13)

We substitute (5.12) and (5.13) into (5.11) to get

Sζ −
2

K

∑
a≥1

∑
d|a

q−af̂

(
2a

K

)
d(πd,inert − πd,split) +

2

K

∑
a≥1

q−af̂

(
2a

K

)

= Sζ + SR +
2

K

∑
a≥1

∑
d|a

q−af̂

(
2a

K

)
d(πd,split − πd,inert). (5.14)

We’ve recognized the expression for SR above from Lemma 4.9. Also, Lemma 4.12 states that

SL =
2

K

∑
a≥1

∑
d|a

q−af̂

(
2a

K

)
d(πd,split − πd,inert)− SA′ . (5.15)

Hence, the original expression is equivalent to

Sζ + SR + SL + SA′ , (5.16)

as required.

We now deduce the main theorem.
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Theorem 5.6. If supp(f̂) ⊂ (−α, α) for α < 1 and q is odd, then

D1(F(K), f) = Sζ + SR + SL + SA′ −Wf +O
(
q
K
2

(α−1)
)
. (5.17)

To first order, this is

D1(F(K), f) = −f(0)

2
+ c · f̂(0)

K
−Wf +O

(
1

K2

)
, (5.18)

where

c = 1 +
2

q − 1
+ 2

∑
d,n≥1

q−dnd(πd,split − πd,inert). (5.19)

Proof. Since S0 contributes only on the order of the error term O
(
q
K
2

(α−1)
)

by Lemma 3.7, the

main terms contributing to the one-level as written in (5.3) are −Wf and the sum

Sm = − 2

K

∑
P∈HK

∑
n≥1

deg(P )

qord(P ) deg(P )n/2
f̂

(
ord(P ) deg(P )n

K

)
(5.20)

from Corollary 5.4.
However, all non-even primes in HK have degree at least K (otherwise, they are not even

polynomials modulo SK); then, for these primes P and for all n ≥ 1, deg(P )n
K ≥ 1, and since f̂

vanishes outside (−1, 1), f̂
(

deg(P )n
K

)
= 0 for all non-even primes P ∈ HK and n ≥ 1. Hence, we

need only consider even primes. This leaves the sum

Sm = − 2

K

∑
even P∈Fq[S]

∑
n≥1

deg(P )

qdeg(P )n/2
f̂

(
deg(P )n

K

)
, (5.21)

which is exactly Sinert as defined in (5.6). Recall that Sinert was computed in Lemma 5.5 as
SR + Sζ + SL + SA′ , yielding the first statement of the theorem. In Lemmas 4.9, 4.10, 4.12, we’ve
written the first lower order term for each of these summands. Summing these gives the desired
first lower order term written in the theorem.

Remark 5.7. We’ve shown that if supp(f̂) ⊂ (−α, α) for α < 1, then D1(F(K), f) agrees with the

prediction of the Ratios Conjecture down to an accuracy of size SΓ +O
(
qK(− 1

2
+ε)
)

+O
(
q
K
2

(α−1)
)

.

In this restricted support regime, this accuracy is of size O(K−a) for all a > 1, by Remark 4.14.

5.1 Extending the support

In this section we give rough estimates for Sm and the one-level density (in terms of trace sums)
for f̂ having any compact support, in particular beyond (−1, 1).

Recall from Equation (5.2) that

Sm := − 2

K

∑
P

∑
n≥1

deg(P )

qord(P ) deg(P )n/2
f̂

(
ord(P ) deg(P )n

K

)
. (5.22)

Then, the following lemma bounds pieces of Sm which vanish as K →∞.

39



Lemma 5.8. Unconditionally,

− 2

K

∑
P /∈HK

∑
n≥1

deg(P )

qord(P ) deg(P )n/2
f̂

(
ord(P ) deg(P )n

K

)
= O(1/K), (5.23)

and

− 2

K

∑
P∈HK

∑
n≥3

deg(P )

qdeg(P )n/2
f̂

(
deg(P )n

K

)
= O(1/K). (5.24)

Proof. By the prime polynomial theorem, the number of prime polynomials of degree d is bounded
above by qd/d. For the first sum, if P /∈ HK , then ord(P ) > 1. By Lagrange’s theorem,
ord(P ) | |S1

K | = qκ, so ord(P ) ≥ p = char(Fq). Hence, denoting d := deg(P ), the sum is bounded
by

2 sup |f̂ |
K

∑
d,n≥1

1

qd(pn/2−1)
. (5.25)

Given that p > 2 (since q is odd), for all n ≥ 1, pn/2− 1 ≥ 1
2 , so the above can be simplified as

an infinite series:

2 sup |f̂ |
K

∑
n≥1

1

qpn/2−1 − 1
≤ 6 sup |f̂ |

K

∑
n≥1

q

qpn/2
=

6q sup |f̂ |
K

1

qp/2 − 1
= O(1/K). (5.26)

The second sum is similarly bounded by

2 sup |f̂ |
K

∑
n≥3,d≥1

1

qd(n/2−1)
=

2 sup |f̂ |
K

∑
n≥3

1

qn/2−1 − 1
= O(1/K). (5.27)

In the first part of (3.49) for D1(F(K), f), which is

− 2

K

∑
P

∑
n≥1

deg(P )

qord(P ) deg(P )n/2
f̂

(
ord(P ) deg(P )n

K

)
, (5.28)

this leaves the term which doesn’t vanish as K →∞ as

− 2

K

∑
P∈HK

[
deg(P )

qdeg(P )/2
f̂

(
deg(P )

K

)
+

deg(P )

qdeg(P )
f̂

(
2 deg(P )

K

)]
. (5.29)

The next lemma estimates a remaining piece of Sm which is a sum over primes in HK with
degree less than K (so these primes are a priori even polynomials).

Lemma 5.9. Unconditionally,

− 2

K

∑
P∈HK , deg(P )<K

[
deg(P )

qdeg(P )/2
f̂

(
deg(P )

K

)
+

deg(P )

qdeg(P )
f̂

(
2 deg(P )

K

)]
= −1

2

∫ 1

−1
f̂(x) dx + O

(
1

K

)
.

(5.30)

Proof. If deg(P ) ≤ K and P ∈ HK , then P is even with deg(P ) ≤ K. By the prime polynomial
theorem for arithmetic progressions and Corollary 5.2, the number of even primes of degree 2d is
qd/2d+O

(
qd/2/d

)
. Substituting yields a main term of

− 2

K

∑
d≤κ

(
1 +O(q−d/2)f̂

(
2d

K

)
+O(q−d)f̂

(
4d

K

))
= − 2

K

∑
d≤κ

f̂

(
2d

K

)
+O(1/K). (5.31)
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To get the error term above, we’ve used the facts that f̂ can be bounded by sup |f̂ |, and
expressions like

∑
dO(q−d/2) and

∑
dO(q−d) converge.

Since f̂ is continuously differentiable, we apply the Euler-Maclaurin summation formula to
approximate the sum

− 2

K

∑
d≤κ

f̂

(
2d

K

)
(5.32)

by the integral

−
∫ 1

0
f̂(x) dx, (5.33)

with error term bounded by

1

K

(
f̂(0) + f̂(1)

)
+

∫ 1

0

2

K

∣∣∣f̂ ′(s)∣∣∣ ds = O(1/K). (5.34)

Next, we compute the remaining piece of Sm which sums over primes in HK of degree at least
K. To do so, we refer to results on super-even characters from [57]. In [57], the authors define
functions Ψk,ν(u) and Nk,ν(u) as

Nk,ν(u) := {prime p = (P ) | P (0) 6= 0, deg(P ) = ν, U(P ) ∈ Sect(u, k)}, (5.35)

and
Ψk,ν(u) :=

∑
U(f) ∈ Sect(u,k)

Λ(f). (5.36)

Here,

Sect(u, k) := {z ∈ C : Norm2(z) ≤ k, arg(z) ∈ [u− π

4K
,u+

π

4K
]}, (5.37)

where K is fixed in advance. Then Ψk,ν(u) is a sum over monic f ∈ Fq[S] with deg(f) = ν and
f(0) 6= 0. For our purposes we will require the u = 1 case, where U(f) ∈ Sect(u,K) if and only if
f ∈ HK .

Lemma 5.10. [57, Lemma 6.4] We have

Ψk,ν(u) =
qν − 1

qκ
− qν/2

qκ

∑
χ 6=χ0

χ(u) tr
(
Θν
χ

)
− δ(u, 1) +

1

qκ
, (5.38)

where χ 6= χ0 are nontrivial super-even characters and Θχ is the matrix with eigenvalues eiθj

(defined in (3.9) and dependent on χ).

Lemma 5.11. Unconditionally,

− 2

K

∑
P∈HK , deg(P )≥K

[
deg(P )

qdeg(P )/2
f̂

(
deg(P )

K

)
+

deg(P )

qdeg(P )
f̂

(
2 deg(P )

K

)]
= − 2

K

∑
ν≥K

qν/2−κf̂
( ν
K

)
+

2

Kqκ

∑
χ 6=χ0

∑
ν≥K

tr
(
Θν
χ

)
f̂
( ν
K

)
+O

(
q−κ/3

)
. (5.39)
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Proof. First, we compute Nk,ν(1). With Ψk,ν(u) defined in [57], we can substitute u = 1 and
rewrite

Ψk,ν(1) =
∑

f∈HK deg(f)=ν

Λ(f) =
∑

P∈HK ,deg(P )=ν

deg(P ) +
∑

d|ν,d 6=ν

d ·
∣∣∣P : P ν/d ∈ HK ,deg(P ) = d

∣∣∣ .
(5.40)

Above, if d|ν and d 6= ν, then d ≤ ν/2. The prime polynomial theorem also implies that the
size of the set in the sum is bounded above by qd/d, so the part of the sum with d ≤ ν/3 (i.e.,
d < ν/2) is of order

∑
d|ν,d<ν/2O(qd) = O(qν/3). The remaining part is (when ν is even) d = ν/2,

for which the contribution is ν/2 ·
∣∣P : P 2 ∈ HK , deg(P ) = ν/2

∣∣. Since |S1
K | = qκ is odd, ord(P ) is

odd, so P 2 ∈ HK =⇒ P ∈ HK , making the contribution equal to |P : P ∈ HK ,deg(P ) = ν/2| =
NK,ν/2(1). So,

ΨK,ν(1) = ν · NK,ν(1) +
ν

2
· NK,ν/2(1) +O

(
qν/3

)
, (5.41)

and analogously,

ΨK,ν/2(1) =
ν

2
· NK,ν/2(1) +O

(
qν/4

)
. (5.42)

We can subtract these to get

ν · NK,ν(1) = ΨK,ν(1)−ΨK,ν/2(1) +O
(
qν/3

)
. (5.43)

By Lemma 5.10, the above is

ν · NK,ν(1) =
qν

qκ
− qν/2

qκ

∑
χ 6=χ0

tr
(
Θν
χ

)
− 1− qν/2

qκ
+
qν/4

qκ

∑
χ 6=χ0

tr
(

Θν/2
χ

)
+ 1 +O

(
qν/3

)
=

qν

qκ
− qν/2

qκ

∑
χ 6=χ0

tr
(
Θν
χ

)
− qν/2

qκ
+O

(
qν/3

)
, for ν ≥ K. (5.44)

Above, we’ve used the fact that the second trace sum over all χ 6= χ0 is bounded by Kqκ,
so that term is of order O

(
Kqν/4

)
. However, since ν ≥ K, K = O

(
qK/24

)
= O

(
qν/24

)
, so

O
(
Kqν/4

)
= O

(
qν/4+ν/24

)
= O

(
qν/3

)
. Since Nk,ν(1) is the number of primes P ∈ HK with

deg(P ) = ν, the first sum (obtained by expanding the first term in the LHS of (5.39)) is

− 2

K

∑
ν≥K

1

qν/2
f̂
( ν
K

)
νNk,ν(1)

= − 2

K

∑
ν≥K

q−ν/2f̂
( ν
K

)qν
qκ
− qν/2

qκ

∑
χ 6=χ0

tr
(
Θν
χ

)
− qν/2

qκ
+O

(
qν/3

)
= − 2

Kqκ

∑
ν≥K

qν/2f̂
( ν
K

)
+

2

Kqκ

∑
χ 6=χ0

∑
ν≥K

tr
(
Θν
χ

)
f̂
( ν
K

)
+

2

Kqκ

∑
ν

f̂
( ν
K

)
+

2

K

∑
ν≥K

O
(
q−ν/6

)
f̂
( ν
K

)
= − 2

Kqκ

∑
ν≥K

qν/2f̂
( ν
K

)
+

2

Kqκ

∑
χ 6=χ0

∑
ν≥K

tr
(
Θν
χ

)
f̂
( ν
K

)
+O(q−κ) +

2

K

∑
ν≥K

O
(
q−ν/6

)
= − 2

Kqκ

∑
ν≥K

qν/2f̂
( ν
K

)
+

2

Kqκ

∑
χ 6=χ0

∑
ν≥K

tr
(
Θν
χ

)
f̂
( ν
K

)
+O

(
q−κ/3

)
. (5.45)
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Similarly, the second sum (obtained by expanding the second term in the LHS of (5.39)) does
not contribute significantly, and is

− 2

K

∑
ν≥K

1

qν
f̂

(
2ν

K

)
νNK,ν(1) (5.46)

= − 2

K

∑
ν≥K

q−ν f̂

(
2ν

K

)qν
qκ
− qν/2

qκ

∑
χ 6=χ0

tr
(
Θν
χ

)
− qν/2

qκ
+O(qν/3)


= − 2

Kqκ

∑
ν≥K

f̂

(
2ν

K

)
+

2

Kqκ

∑
ν≥K

q−ν/2
∑
χ 6=χ0

tr
(
Θν
χ

)
+

2

Kqκ

∑
ν≥K

q−ν/2f̂

(
2ν

K

)
− 2

K

∑
ν≥K

O
(
q−2ν/3

)
f̂

(
2ν

K

)
= O(q−κ) +O(q−κ) +O

(
q−κ
)

+O
(
q−4κ/3

)
= O(q−κ). (5.47)

Hence, the main terms are as required.

Lemma 5.12. Unconditionally,

Sm = −1

2

∫ 1

−1
f̂(x) dx− 2

K

∑
ν≥K

qν/2−κf̂
( ν
K

)
+

2

Kqκ

∑
χ 6=χ0

∑
ν≥K

tr
(
Θν
χ

)
f̂
( ν
K

)
+O

(
1

K

)
. (5.48)

Proof. Sm as defined in (5.2) is the sum of the expressions computed in Lemmas 5.8, 5.9, and 5.11.
Adding these yields the lemma.

As a corollary, we get the following.

Lemma 5.13. Unconditionally, the one-level density has main term

D1(F(K), f) = f̂(0)− 1

2

∫ 1

−1
f̂(x) dx+

2

Kqκ

∑
χ 6=χ0

∑
ν≥K

tr
(
Θν
χ

)
f̂
( ν
K

)
+O(1/K). (5.49)

Proof. Recall (5.3), which states that D1(F(K), f) = Sm + S0 − Wf . Accordingly add/subtract
the expressions for Sm, S0, and Wf computed in (5.45), Corollary 3.9 and Lemma 3.10 to get the
result. Note that the expression

2

K

∑
ν≥K

qν/2−κf̂
( ν
K

)
(5.50)

is exponentially growing for supp(f̂) 6⊂ (−1, 1) and that it cancels with itself (using (5.45) and
Corollary 3.9) during the computation.

Having unconditionally computed Sinert in Lemma 5.5, S0 in Lemma 3.9 and Wf in Lemma
3.10, since D1(F(K), f) = Sm + S0 − Wf by (5.3), the remaining piece is exactly Sm − Sinert.

This contributes exactly when supp(f̂) 6⊂ (−1, 1), and the primes being summed over are the split
primes. This is analogous to the split contribution in the number field case [61]. Define

Ssplit := − 2

K

∑
P not even

∑
n≥1

deg(P )

qord(P ) deg(P )n/2
f̂

(
ord(P ) deg(P )n

K

)
, (5.51)
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where we write ord(P ) now because for split primes ord(P ) is not necessarily equal to one. There
is also a negligible contribution from the ramified prime, which is

2

Kqκ

∑
n≥1

q−n/2f̂
( n
K

)
= O(q−κ). (5.52)

Using the Ratios’ prediction, we get the following.

Conjecture 5.14. Assume the Ratios Conjecture. Then,

2

Kqκ

∑
χ 6=χ0

∑
ν≥K

tr
(
Θν
χ

)
f̂
( ν
K

)
= O(1/K). (5.53)

Moreover,

Ssplit + S0 = SΓ +O
(
qK(−1/2+ε)

)
=
f(0)

2
− 1

2

∫ 1

−1
f̂(x) dx− d

K
f̂(1) +O

(
K−2

)
. (5.54)

Proof. Recall from Lemma 5.13 that the one-level density unconditionally has main term

D1(F(K), f) = f̂(0)− 1

2

∫ 1

−1
f̂(x) dx+

2

Kqκ

∑
χ 6=χ0

∑
ν≥K

tr
(
Θν
χ

)
f̂
( ν
K

)
+O(1/K). (5.55)

The Ratios Conjecture (Conjecture 4.15) predicts that the main term is

D1(F(K), f) = −1

2

∫ 1

−1
f̂(x) dx−Wf +O(1/K) = f̂(0)− 1

2

∫ 1

−1
f̂(x) dx+O(1/K). (5.56)

Then, equating the unconditional expression with the conjectural expression yields the desired trace
sum.

To get the equation for Ssplit + S0, subtract (5.7) for Sinert from and add Wf to the uncondi-
tional expression (5.3) and the conjectural expression (4.40). Equate both expressions to get the
conjectured equation for Ssplit + S0, and apply Lemma 4.13 to expand to first order.

Appendix A Functional Equation

Here we compute the functional equation and logarithmic conductor for L-functions associated to
super-even characters, which is used to compute the one-level density in Section 3.2.

For a super-even character χ, define Xχ(s) by the functional equation

Lχ(s) = Xχ(s)Lχ̄(1− s). (A.1)

Lemma A.1. For nontrivial super-even characters χ, the set of roots of

Lχ(s) = (1− q−s)
d(χ)−1∏
j=1

(
1−√qeiθjq−s

)
(A.2)

are invariant under complex conjugation; i.e., θj → −θj permutes the θj.
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Proof. Let σ : Fq[S]→ Fq[S] be the nontrivial order two Galois automorphism defined by S 7→ −S,
whose fixed set modulo SK is exactly HK . This also permutes irreducible polynomials (up to
multiplication by a unit), because if a polynomial factors into PQ, its image factors into σ(P )σ(Q).
Then, for all prime P ∈ Fq[S], the norm P · σ(P ) is fixed by σ, so P · σ(P ) is even. So, for all
super-even characters χ, χ(P · σ(P )) = 1. Then, χ(P )−1 = χ(σ(P )). Also, note that σ(P ) has the
same degree as P . Then, we can rewrite the L-function as

Lχ(s) =
∏
P

(
1− χ(P )q−sdeg(P )

)−1
=

∏
σ(P )

(
1− χ(σ(P ))q−s deg(σ(P ))

)−1

=
∏
σ(P )

(
1− χ−1(P )q−s deg(σ(P ))

)−1
=
∏
P

(
1− χ−1(P )q−sdeg(σ(P ))

)−1

=
∏
P

(
1− χ−1(P )q−sdeg(P )

)−1
= Lχ−1(s). (A.3)

Since χ acts on a finite group (Fq[S]/(SK))×, its image is on the unit circle in C×, so χ̄ = χ−1

and hence Lχ(s) =
∏
P

(
1− χ̄(P )q−s̄ deg(P )

)−1
=
∏
P

(
1− χ−1(P )q−s̄ deg(P )

)−1
= Lχ−1(s̄) = Lχ(s̄).

So, if Lχ(s) = 0, then Lχ(s̄) = Lχ(s) = 0̄ = 0, proving the lemma.

Lemma A.2. For nontrivial super-even characters χ, Lχ(s) satisfies the functional equation

Lχ(s) = Xχ(s)Lχ(1− s), (A.4)

where

Xχ(s) =
1− q−s

1− qs−1
(q1/2−s)d(χ)−1 =

1− qs

1− q1−s (q1/2−s)d(χ)+1. (A.5)

For the trivial character, writing ζq(s) = Xq(s)ζq(1− s), the corresponding expression is

Xq(s) =
1− qs

1− q1−s . (A.6)

Proof. Applying Lemma A.1,

Lχ(s) = (1− q−s)
d(χ)−1∏
j=1

(
1− eiθjq1/2−s

)
= (1− q−s)

d(χ)−1∏
j=1

(
1− e−iθjq1/2−s

)
, (A.7)

and

Lχ̄(1− s) = Lχ(1− s) = (1− q−1+s)

d(χ)−1∏
j=1

(
1− eiθjqs−1/2

)
. (A.8)

Then

(q1/2−s)d(χ)−1e−i
∑
θjLχ(1− s) = (1− q−1+s)

∏
j

(
e−iθjq1/2−s − 1

)
= (1− q−1+s)(−1)d(χ)−1

∏
j

(
1− e−iθjq1/2−s

)
= (1− q−1+s)(−1)d(χ)−1

∏
j

(
1− eiθjq1/2−s

)
= (−1)d(χ)−1 1− qs−1

1− q−s
Lχ(s), (A.9)
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where we’ve used the permutation θj → −θj . Also observe that the same permutation shows that

e−i
∑
j θj = ±1 depending on d(χ) and the parity of the number of θj = π. So,

Xχ(s) =
Lχ(s)

Lχ(1− s)
= ε(χ)

1− q−s

1− qs−1
(q1/2−s)d(χ)−1 = ε(χ)

1− qs

1− q1−s

(
q1/2−s

)d(χ)+1
, (A.10)

where ε(χ) = ±1. Setting s = 1/2, we see that in fact ε(χ) = 1 for all nontrivial χ, giving the
desired result for nontrivial χ. For the trivial character, the corresponding expression is

Xq(s) =
ζq(s)

ζq(1− s)
=

1− qs

1− q1−s . (A.11)

Lemma A.3. For nontrivial super-even χ, the logarithmic derivative of Xχ is

X ′χ
Xχ

(s) = log q

(
q−s

1− q−s
− −qs−1

1− qs−1
− d(χ) + 1

)
= − log q

(
1

1− qs
+

1

1− q1−s + d(χ)− 1

)
.

(A.12)
The corresponding expression for the trivial character is

X ′q(s)

Xq(s)
= − log q

(
1

1− qs
+

1

1− q1−s − 2

)
. (A.13)

The logarithmic conductor of Lχ near the central point is then − log q
(

2
1−√q + d(χ)− 1

)
.

Proof. The logarithmic derivatives are explicitly computed from the expressions in Lemma A.2.
Then, the log conductor c(Lχ) defined in [10, Equation 1] is

c(Lχ) :=
X ′χ
Xχ

(
1

2

)
, (A.14)

which is computed by substituting s = 1/2 into the expression for the logarithmic derivative.
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