
GREEN CHICKEN PROBLEMS - NOVEMBER 1ST, 2008

Do any six of the eight problems, though not all are worth the same amount of points! If you write up
solutions for more than six problems, if you don’t tell us which six to grade we will grade ONLY the first six.
Maximum score is 150. NO CALCULATORS!

Question 1: 10 points. Find all positive integers x, y and z such that x!+y! = z! (recall n! = n(n−1) · · · 3·2·1,
so 3! = 6).

Question 2: 10 points. One of the five common log laws states that the logarithm of a quotient is the difference
of the logarithms (or, in base e, ln(A/B) = ln(A)− ln(B)). When you teach or tutor an intro calculus course,
you will almost surely have a student who misuses this rule, saying the log of a difference is the quotient of the
logs, or ln(A− B) = ln(A)

ln(B)
. For which B ≥ 2008 does there exist an A such that they are right (i.e., determine

for which B ≥ 2008 you can find an A such that ln(A−B) = ln(A)
ln(B)

)?

Question 3: 25 points. Let f : (0,∞) → R be such that f(x + y) = f(xy) whenever x, y > 0. If f(π) = e,
determine f(x) for all positive x. Prove your answer.

Question 4: 25 points. Consider the following game: we randomly place the numbers 1, 2, . . . , 2008 down on
a line. Players A and B take turns; on a turn, a player may choose either the number on the extreme left or the
extreme right. The game is won by whomever has the larger sum (if each person has the same sum, the game is
a draw). Prove that, no matter how the numbers are listed, the player who goes first has a strategy that ensures
at least a tie; note this is not the case if we played this game next year with the numbers 1, 2, . . . , 2009! Hint: it
might help to look at all possible orderings of 1, 2, 3, 4 and see if a strategy emerges.

Question 5: 25 points. Prove for d, k ≥ 2 that

kd =
d−1∑
m=0

k−1∑

`=0

(
d

m

)
`m;

note that one defines
(

n
r

)
= n!

r!(n−r)!
, n! = n(n− 1) · · · 2 · 1, 0! = 1 and 00 = 1.

Question 6: 25 points. (a: 20 points) Show that there are only finitely many positive integers n such that, if
d1d2 . . . dr is the decimal expansion of n, then n also equals d1

1 + d2
2 + d3

3 + · · ·+ dr
r. (In other words,

n = d110r−1 + d210r−2 + · · ·+ dr = d1
1 + · · ·+ dr

r,

with d1 ≥ 1; so if n = 135 then d1 = 1, d2 = 3, d3 = 5 and 1 + 32 + 53 = 135.) Show that any n with this
property has at most 2008 digits. (b: 5 points) Find such an n with two digits.

Question 7: 25 points. Let p7(x) denote the percentage of positive integers at most x which can be written as
the sum of seven positive seventh powers; in other words,

p7(x) =
#{n ≤ x : n = n7

1 + · · ·+ n7
7, n, ni ≥ 1}

x
.

Prove that for all x ≥ 102008 we have p7(x) ≤ 1/2008. Note: you can replace ‘for all x ≥ 102008’ with ‘for all
x sufficiently large’.

Question 8: 25 points. (a: 5 points) Show that we can choose 6 distinct points in the plane such that whenever
we color any three of these points green, there are at least two green points exactly 1cm apart. (b: 20 points)
Show this is still true if now we choose 7 distinct points in the plane (i.e., there is a choice of seven points such
that, no matter which three of the points we color green, there are at least two green points exactly 1cm apart).
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Problems, Solutions and Comments to Green Chicken 2008
Steven.J.Miller@williams.edu

Question 1: Find all positive integers x, y and z such that x!+y! = z! (recall n! = n(n−1) · · · 3·2·1, so 3! = 6).

Solution 1: One soln is 1! + 1! = 2!; there are no others. WLOG, we may assume x ≤ y < z. Assume x < y.
Then x! + y! < 2 · y! ≤ (y + 1)! ≤ z!, and thus no solution. If now x = y then 2 · y! = z!; the only solution is
y = 1 and z = 2.

Question 2: 10 points. One of the five common log laws states that the logarithm of a quotient is the difference
of the logarithms (or, in base e, ln(A/B) = ln(A)− ln(B)). When you teach or tutor an intro calculus course,
you will almost surely have a student who misuses this rule, saying the log of a difference is the quotient of the
logs, or ln(A− B) = ln(A)

ln(B)
. For which B ≥ 2008 does there exist an A such that they are right (i.e., determine

for which B ≥ 2008 you can find an A such that ln(A−B) = ln(A)
ln(B)

)?

Solution 2: Fast solution: just apply the Intermediate Value Theorem. Consider f(A) = ln(A − B) − ln(A)
ln(B)

.
If A = B + 1 then f(A) < 0, while if A is much larger than B then f(A) > 0 (for enormous A we have
ln(A−B) ≈ ln(A), while B ≥ 2008 ≥ e4 means ln(A)

ln(B)
≤ ln(A)

4
. Thus by the intermediate value theorem, there

is an A such that f(A) = 0.

Generalization: We consider the more general problem of when is there a solution for arbitrary B. Clearly we
need A > B as otherwise we have the logarithm of a non-positive number. If A < 1 then the LHS is a negative
number, and the RHS is the ratio of two negative numbers and thus positive. Thus there is no solution. Let
A = xB with x > 1. Then ln(B) + ln(x− 1) = ln(x)+ln(B)

ln(B)
, or

(ln B)2 + ln(B) ln(x− 1)− ln(x)− ln(B) = 0

with x > 1. Consider
f(x) = (ln B)2 + ln(B) ln(x− 1)− ln(x)− ln(B).

If B > 2008, we have f(e + 1) > 0. If x = 1 + B−N , then f(x) < 0 for N sufficiently large. Thus by the
Intermediate Value Theorem there is a solution.

If B < 1/e then write B = 1/C with C > e. We then have

g(x) = f(1/C) = (ln C)2 − ln(C) ln(x− 1)− ln(x) + ln(C)

with x > 1. If x is large then g(x) < 0, while if x = 1 + C−N then g(x) > 0 (if N is sufficiently large). Thus
by the Intermediate Value Theorem there is a solution.

Comment 2: One could consider whether or not there is a solution for ALL B, and not just B < 1/e and
B ≥ 2008. When B = 2008, A is approximately 2010.72; when B = 1/e then A is approximately 1.20.

Question 3: 25 points. Let f : (0,∞) → R be such that f(x + y) = f(xy) whenever x, y > 0. If f(π) = e,
determine f(x) for all positive x. Prove your answer.

Solution 3: Take y = 1/x and, noting x + 1/x = a has a solution for all a ≥ 2 (use the quadratic formula on
x2−ax+1 = 0 and note there is a positive real root provided a ≥ 2), we get f is constant for all values at least
2. Thus f is constant for x ≥ 2. For x ∈ (0, 2) we can take y = 1 a few times to show that f is constant for all x.

Alternate solution: We could also look at f(x+y+z), which equals all of f(x ·xyz), f(y ·xyz) and f(z ·xyz).
Taking x, y arbitrary and z = 1/xy gives f(x) = f(y) for all x, y 6= 0.
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Question 4: 25 points. Consider the following game: we randomly place the numbers 1, 2, . . . , 2008 down on
a line. Players A and B take turns; on a turn, a player may choose either the number on the extreme left or the
extreme right. The game is won by whomever has the larger sum (if each person has the same sum, the game is
a draw). Prove that, no matter how the numbers are listed, the player who goes first has a strategy that ensures
at least a tie; note this is not the case if we played this game next year with the numbers 1, 2, . . . , 2009! Hint: it
might help to look at all possible orderings of 1, 2, 3, 4 and see if a strategy emerges.

Solution 4: Consider the sum of all the numbers in even and all the numbers in odd positions; the first player
sees which sum is larger and can ensure that on each move, they always choose one of those terms and force
the other person to choose one of the other. This fails if we have an odd number: consider the ordering 1, 4, 2,
5, 3.

Comment 4: The same solution works for any even number of values, and the values can be any real numbers
(with or without repeats). This was a riddle someone asked me several years earlier.

Question 5: Prove for d, k ≥ 2 that

kd =
d−1∑
m=0

k−1∑

`=0

(
d

m

)
`m;

note that one defines
(

n
r

)
= n!

r!(n−r)!
, n! = n(n− 1) · · · 2 · 1, 0! = 1 and 00 = 1.

Solution 5: This problem uses many common techniques: interchange the orders of summation, recognize that
we are one term shy of being able to use the binomial theorem and getting (` + 1)d (and this can be remedied
by cleverly adding zero), and then note that we have a telescoping series. Specifically, if we do the m-sum first
we have

d−1∑
m=0

`m =

(
d∑

m=0

`m · 1d−m

)
− `d = (` + 1)d − `d.

We now execute the sum over `, and note we have a telescoping series (and thus get kd). This is a problem a
prospective student to Brown asked me years ago.

Question 6: 25 points. (a: 20 points) Show that there are only finitely many positive integers n such that, if
d1d2 . . . dr is the decimal expansion of n, then n also equals d1

1 + d2
2 + d3

3 + · · ·+ dr
r. (In other words,

n = d110r−1 + d210r−2 + · · ·+ dr = d1
1 + · · ·+ dr

r,

with d1 ≥ 1; so if n = 135 then d1 = 1, d2 = 3, d3 = 5 and 1 + 32 + 53 = 135.) Show that any n with this
property has at most 2008 digits. (b: 5 points) Find such an n with two digits. This problem was taken from
Jean-Marie De Koninck and Armel Mercier, 1001 Problems in Classical Number Theory.

Solution 6: (a) Clearly 10r−1 ≤ n. The largest n can be is 9 + 92 + · · ·+ 9r = 9(9r − 1)(9− 1) < 9r+1/8 (by
the geometric series formula). Thus 10r−1 < 9r−1 · 81/8, or (10/9)r−1 < 81/8 < 11 < e4. Thus r is bounded.
As log(10/9) = log

(
1 + 1

9

)
< 1/9, we find (r− 1)/9 < 4 or r < 37 (the actual value is that r must not exceed

23). (b) To find an example, let 10d1 + d2 = d1 + d2
2, so 9d1 = d2(d2 − 1). A little inspection gives d1 = 8 and

d2 = 9.

Question 7: 25 points. Let p7(x) denote the percentage of positive integers at most x which can be written as
the sum of seven positive seventh powers; in other words,

p7(x) =
#{n ≤ x : n = n7

1 + · · ·+ n7
7, n, ni ≥ 1}

x
.
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Prove that for all x ≥ 102008 we have p7(x) ≤ 1/2008. Note: you can replace ‘for all x ≥ 102008’ with ‘for all
x sufficiently large’.

Solution 7: Say x = n7
1 + · · · + n7

7. Then each ni ≤ x1/7. Let us assume the ni are distinct (if two or more
are equal, it is easy to modify the argument and see they contribute a lower order). There are

(
bx1/7c

7

)
ways

to choose 7 distinct numbers from all integers at most x1/7 (here byc means the largest integer at most y). As
this is less than x/7! = x/5040, we see p7(x) can be at most a little more than 1/5040 for large x. (It is
straightforward to handle the number of such n when at least two ni are equal. There are at most 7! · x6/7 such
numbers that can be represented when at least two of the ni’s are equal, and thus this term will be dwarfed by
the x/7! factor for large x. We easily see that we’re fine once x1/7 > 7!2. As 7! < 104, we see we’re fine for
x > 1056, which is much smaller than 102008.)

Question 8: 25 points. (a: 5 points) Show that we can choose 6 distinct points in the plane such that whenever
we color any three of these points green, there are at least two green points exactly 1cm apart. (b: 20 points)
Show this is still true if now we choose 7 distinct points in the plane (i.e., there is a choice of seven points such
that, no matter which three of the points we color green, there are at least two green points exactly 1cm apart).

Solution 8: (a) Many solutions: easiest is any two equilateral triangles. (b) Start with two equilateral triangles
sharing a side, with A as north, B as west, C as east and D as south (I don’t know WHY I chose this notation!).

A

B C

D

Take another equilateral triangle, say with vertices E, F, G. If we choose two vertices from {E, F, G},
we win. If we choose three vertices from {A, B, C, D}, we win. Thus we must choose two vertices from
{A,B, C,D} and one from {E, F, G}. If we choose B or C, then it doesn’t matter what the second vertex
is from {A,B,C, D} as we win. Thus we are reduced to the case when we choose A and D and ONE of
{E, F,G}. We now decide where to put E, F,G; see Figure 1 on the next page for a picture of the resulting
construction.

Start with E on top of A, F on top of B and G on top of C. Note E is 0 units from A and F and G are each
one unit from D. ROTATE the triangle EFG about D by keeping the vertices F and G on the circle of radius
1 about D. The distance from A to F varies continuously. It starts at 0, and is much greater than 1 when F
and G are below D. Thus, by the intermediate value theorem, at some point the distance from A to E is 1, and
by construction the distance from D to E or F is 1. Thus we win PROVIDED that this does not occur when
F is rotated onto C (as then we only have 6 points). But if F is rotated onto C, an easy calculation shows the
distance from A to E is

√
3 > 1 (vertices A, C=F and E are in the same configuration as vertices A, B and D

in the picture above).

Comment 8: One could ask whether or not this is possible with 8 points (and if yes, then what is the smallest
number of points where this cannot be done). Someone emailed me this riddle years ago.
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FIGURE 1. One possible solution for seven points such that at least two of any three are exactly
1 unit apart.


