UP-DOWN GENERATION A Connection between Self-similar and Combinatorial Tilings Holly Anderson Vassar College #### BACKGROUND • Up-down generation has been used primarily as a way to generate Penrose tilings. • This process relies heavily on substitution rules. - Basic idea: At each step, we need to choose where the tile that we have will "live" in the next level. - Substitution rules: - Basic idea: At each step, we need to choose where the tile that we have will "live" in the next level. - Substitution rules: - Basic idea: At each step, we need to choose where the tile that we have will "live" in the next level. - Substitution rules: - Need to keep track of tile type and level. - In general: | 1 . | ı | | | | | | | |------------------|---|---|---|---|---|---|-------| | n | 1 | 2 | 3 | 4 | 5 | 6 | • • • | | \overline{F}_n | 1 | 1 | 2 | 3 | 5 | 8 | ••• | #### • Explicitly: $$b_1$$ a_0 c_0 $$\begin{bmatrix} b_0 \\ a_0 \end{bmatrix}$$ $$d_1$$ a_0 $$a_2$$ b_1 d_1 c_1 $$b_2$$ a_1 c_1 $$c_2$$ b_1 a_1 $$d_2$$ a_1 b_3 \mathbf{c}_3 d_3 #### • Explicitly: \circ Up: Level 0 Tile (a_0) • Up: Level 1 Tile $(a_0 \longrightarrow a_1)$ • Up: Level 1 Tile (a₁) • Up: Level 2 Tile $(a_1 \longrightarrow b_2)$ • Up: Level 2 Tile (b₂) • Up: Level 3 Tile $(b_2 \longrightarrow c_3)$ \circ Up: Level 3 Tile (c₃) \circ Up: Level 4 Tile ($c_3 \longrightarrow a_4$) o Down: Level 3 Tiles o Down: Level 2 Tiles o Down: Level 1 Tiles o Down: Level 0 Tiles - Rescaled tiles make the combinatorial tilings self-similar. - Expansion constant: golden ratio (1.61803...) - Substitution rules: ### • Explicitly: $$b_1 = a_0 c_0$$ $$\mathbf{c}_1$$ \mathbf{a}_0 $$d_1$$ a_0 $$a_2 \quad \begin{array}{|c|c|} b_1 & d_1 \\ \hline a_1 & c_1 \end{array}$$ $$b_2$$ a_1 c_1 $$c_2$$ $$\begin{vmatrix} b_1 \\ a_1 \end{vmatrix}$$ $$d_2$$ a_1 $$\mathbf{a}_3$$ \mathbf{b}_2 \mathbf{d}_2 \mathbf{c}_2 $$\mathbf{b}_3$$ \mathbf{c}_2 \mathbf{c}_2 $$egin{array}{ccc} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\$$ $$d_3$$ a_2 \circ Up: Level 0 Tile (a_0) • Up: Level 1 Tile $(a_0 \longrightarrow a_1)$ • Up: Level 1 Tile (a₁) • Up: Level 2 Tile $(a_1 \longrightarrow b_2)$ • Up: Level 2 Tile (b₂) • Up: Level 3 Tile $(b_2 \longrightarrow c_3)$ \circ Up: Level 3 Tile (c₃) \circ Up: Level 4 Tile ($c_3 \longrightarrow a_4$) o Down: Level 3 Tiles o Down: Level 2 Tiles o Down: Level 1 Tiles o Down: Level 0 Tiles # FIBONACCI: COMPARISON #### Uncountably Many Tilings - Fibonacci DP - a tiles can be placed in 4 locations in the next level - b and c tiles can be placed in 2 locations each - d tiles can be placed in 1 location