Counting number of edges, thickness, and chromatic number of *k*-visibility graphs

Matthew Babbitt

Albany Area Math Circle

April 6, 2013

Bar Visibility Graphs

Bar Visibility Graph

Bar Visibility Representation

Bar Visibility Graphs

Bar Visibility Graph

Bar Visibility Representation

Bar 1-Visibility Graph

Bar 1-Visibility Representation

Thickness and Chromatic Number

Definition

The thickness $\Theta(G)$ of a graph G is the least number of colors needed to color the edges of G so that no two edges with the same color intersect.

Definition

The chromatic number $\chi(G)$ of a graph G is the least number of colors needed to color the vertices of G so that no two vertices with the same color are adjacent.

Upper Bound on Thickness of Bar k-Visibility Graphs

$\mathsf{Theorem}$

 $\Theta(G_k) \leq 6k$ for all bar k-visibility graphs G_k .

- Great improvement over old quadratic bound of $18k^2 2k$ found by Dean *et al.* (2005).
- Found with method used to bound thickness of semi bar 1-visibility graphs, found by Felsner and Massow (2008).
- Not tight: $\Theta(G_1) \le 4$ proven by Dean *et al.* (2005).
- There exist G_k with $\Theta(G_k) \ge k + 1$.
- Maximal thickness grows at O(k).

Proof of Upper Bound

- Based on bound of $\chi(G_k) = 6k + 6$ by Dean *et al.* (2005).
- Method: construct graph based on representation. Thicken bars to rectangles. Assume no two vertices have same x-coordinate.
- Use one-bend edges.

Proof of Upper Bound

- No two horizontal or two vertical segments intersect.
- Color edges based on vertex-coloring of G_{k-1} .
- Intersecting edges intersect in rectangle of horizontal segment, thus left endpoints of the edges must have different colors when considering (k-1)-visibility.

Semi Bar Visibility Graphs

Semi Bar Visibility Graph

Semi Bar Visibility Representation

Semi Bar Visibility Graphs

Semi Bar Visibility Graph

Semi Bar Visibility Representation

Semi Bar 1-Visibility Graph

Semi Bar 1-Visibility Representation

Upper Bound on Thickness of Semi Bar k-Visibility Graphs

Theorem

 $\Theta(G_k) \leq 2k$ for all semi bar k-visibility graphs G_k .

- Better than bound found using $\chi(G_k) \leq 2k + 3$, found by Felsner and Massow (2008)
- Proof based on how many one-edges cross any given bar.
- There exist G_k with $\Theta(G_k) \ge \left\lceil \frac{2}{3}(k+1) \right\rceil$
- Maximal thickness grows at O(k).

Arc Visibility Graphs

Arc Visibility Graph

Arc Visibility Representation

Arc Visibility Graphs

Arc Visibility Graph

Arc Visibility Representation

Arc 1-Visibility Graph

Arc 1-Visibility Representation

Number of Edges, Chromatic Number

Theorem

Arc k-visibility graphs with n vertices have at most (k+1)(3n-k-2) edges.

Found by considering endpoints of arcs

Number of Edges, Chromatic Number

Theorem

Arc k-visibility graphs with n vertices have at most (k+1)(3n-k-2) edges.

Found by considering endpoints of arcs

Theorem

 $\chi(G_k) \leq 6k + 6$ for all arc k-visibility graphs G_k .

Bounded by maximum number of edges

Upper Bound on Thickness of Rectangle k-Visibility Graphs

Theorem

 $\Theta(G_k) \leq 12k$ for all rectangle k-visibility graphs G_k .

■ Double the upper bound for bar *k*-visibility graphs.

Conclusion

What Did We Do?

- Improved bounds on thickness of bar k-visibility graphs, created bound on thickness of semi bar k-visibility graphs
- Placed bounds on number of edges and chromatic number of arc k-visibility graphs
- Found bound on thickness of rectangle *k*-visibility graphs

Conclusion

Future work:

■ Tighten bounds for bar, semi bar, arc, rectangle *k*-visibility graphs

Acknowledgements

- Jesse Geneson
- Dr. Tanya Khovanova, MIT Math Dept.
- Dr. John Rickert
- CEE, RSI, MIT
- Mr. Regan, Mr. Beebee, Mr. Cheng, Department of Defense
- Williams College

Bar 1-Visibility Representation of K_8

