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Abstract

Exterior Calculus expresses the familiar vector calculus operators
gradient, divergence and curl in a coordinate free notation in terms
of the exterior derivative, the wedge product and the Hodge star
operator. Discrete versions of these operators are important for
numerical solutions of partial differential equations. While the
Stokes theorem provides a clear guideline for constructing the
discrete exterior derivative, the problem of the discrete Hodge star
operator is more subtle.
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Motivation: Solve PDEs

Heat equation: u,t = α∆u

Wave: u,tt = ∆u

Laplace: ∆u = 0 and Poisson : ∆u = f

Fluid flow:

Darcy: v + k
µ∇p = 0, ∇ · v = 0

Euler: ∂v
∂t + v · ∇v = −∇p

ρ + g

Navier-Stokes: ρ(∂v∂t + v · ∇v) = −∇p +∇ · T + f

Elasticity:

Euler-Bernoulli Beam: ρAu,tt + [EIuxx ]xx = p(x , t)
Normal Kirchhoff Plate: ρhu,tt + D∇4u = q(x , y , t)

Electromagnetism - Maxwell:

∇ · ~B = 0, ∇ · ~E = ρ, ∇× ~E = −~̇B, ∇× ~B =~j + ~̇E

Quantum mechanics - Schroedinger: − ~2
2m∆Ψ + VΨ = i~Ψt
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Gradient: steepest ascent, heat seeking bug

If f (x , y) is the height of the hill at x , y , then ∇f is the
steepest ascent direction (locally)

Let f (t, x , y , z) be temperature at time t and position x , y , z
Gradient ∇f

points in the direction of the fastest temperature increase
‖∇f ‖ tells how fast is the fastest increase
in Cartesian coordinates ∇f = ∂f

∂x
∂
∂x + ∂f

∂y
∂
∂y + ∂f

∂z
∂
∂z

∇f =

 f,x
f,y
f,z

 , f,x = ∂f
∂x ,

∂
∂x =

 1
0
0

 = ∂x

Heat seeking bug travels in the ∇f direction
Differential of f - the best linear approximation to f

df : Rn → R is a linear functional
df (v) = ∇f · v - directional derivative, if ‖v‖ = 1
df = f,xdx + f,ydy + f,zdz = [f,x , f,y , f,z ], dx = [1, 0, 0]
df = [∇f ]T

{dx , dy , dz} is the dual basis to {∂x , ∂y , ∂z}
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Duality between ∇f and df

Two dual points of view: ∇f and df

More precisely:

At a fixed point p ∈ M = R3: ∇f |p ∈ V = TpM = R3

Dual point of view: df |p ∈ V ′ = T ∗pM = (R3)′

As the point p ∈ M varies: ∇f ∈ TM, the tangent bundle
Dual point of view: df ∈ T ∗M, the cotangent bundle

The vector space V and its dual V ′ are isomorphic:

natural isomorphism between V and V ′

flat: [ : V → V ′, ∂[x = dx , etc.
sharp: ] : V ′ → V , dx[ = ∂x , etc.
extend by linearity
more generally, flat: [ : V → V ′, ~u[(~v) = ~u · ~v
sharp: ] : V ′ → V , ] = [−1
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∇f and df compete on a manifold M : df wins

In Cartesian coordinates in Euclidean space, it’s a tie

∇f and df equally convenient
because the length element is ds =

√
dx2 + dy2

Consider polar coordinates: x = r cos θ, y = r sin θ.

df is coordinate independent df = f,rdr + f,θdθ
∇f is not coordinate independent ∇f 6= f,r∂r + f,θ∂θ
length element is not ds2 = dr2 + dθ2

dx = x,rdr + x,θdθ = cos θdr − r sin θdθ
dy = y,rdr + y,θdθ = sin θdr + r cos θdθ
ds2 = dx2 + dy2 = dr2 + r2dθ2

Introduce metric tensor g to measure distances

ds2 =
∑

ij gijdx
idx j .

Einstein summation convention ds2 = gijdx
idx j .

gij =

[
1 0
0 r2

]
,
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Grad is Dead

Metric tensor g and its inverse g−1

gij =

[
1 0
0 r2

]
, g ij =

[
1 0
0 1

r2

]
,

Generalize flat: [ : TM → T ∗M
from ~u[(~v) = ~u · ~v to ~u[(~v) = g(~u, ~v)
In components:

Vector ~u = uk∂k
Metric tensor g = gijdx

idx j , dx i (∂j) = δij
Co-vector or 1-form ~u[ = g(u, ·)
~u[ = gijdx

i (u)dx j = gijdx
i (uk∂k)dx j = giju

kδikdx
j = giju

idx j

Standard practice to write ~u[ = ujdx
j

By comparison uj = giju
i

] = [−1, so ui = g ijuj
∇f = (df )]

(∇f )i = g ij f,j
(∇f )r = g rj f,j = g rr f,r + 0 = f,r
(∇f )θ = gθj f,j = 0 + gθθf,θ = 1

r f,θ
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Div and Curl are Dead

Grad ∇f = (df )] = (∇f )r∂r + (∇)θ∂θ = f,r∂r + 1
r ∂θ

Curl ∇× F = [∗(dF [)]]

This defines the exterior derivative d

Exterior, because takes 1-form into a 2-form
Anti-symmetric, because cross product anti-symmetric
Need a symbol to denote 2-forms: ∧ wedge product
Extend by linearity and associativity: exterior algebra

This introduces the Hodge ∗
Div ∇ · F = ∗d(∗F [)
Laplace ∇2f = ∗d(∗df )



Introduction From Vector Calculus to Exterior Calculus Hodge ∗ Discretization Summary

My Cup of Tea

Consider a cup of hot tea, which is cooling down

u(x , y , x , t) - temperature at x , y , z at time t

Heat flows from the tea into the surrounding volume

from hot to cold, so in the −∇u direction
Fourier’s Law of thermal conduction: ~q = −k∇u
~q the heat flux density
k thermal conductivity

Divergence tells how fast heat is flowing out: ∇ · ~q
Energy (Heat) Conservation: tea cools down because heat
flows out

(ρcpu)t = −∇ · ~q = −∇ · (−k∇u)
ρ density
cp thermal capacity at constant pressure

Heat Equation: ut = α∇2u, α = k
ρcp
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Stokes Theorem

Consider a body B of tea, not necessarily all the tea

If B is warmer than the surroundings, heat flows through the
boundary ∂B from B into the surroundings BC :
Φ =

∮
∂B ~q · ~dS

The rate of change of thermal energy (heat) inside a body B
equals the heat flux into B minus the heat flux out of B
through the boundary ∂B

Let B be infinitesimal, with volume dV

Heat inside B: E = ρcpudV



Introduction From Vector Calculus to Exterior Calculus Hodge ∗ Discretization Summary

Hodge ∗ Example

V = R2:
∗1 = e1 ∧ e2
∗e1 = e2
∗e2 = −e1

∗(e1 ∧ e2) = 1

V = R3:
∗1 = e1 ∧ e2 ∧ e3
∗e1 = e2 ∧ e3
. . . = . . .

∗(e1 ∧ e2) = e3
. . . = . . .

∗(e1 ∧ e2 ∧ e3) = 1



Introduction From Vector Calculus to Exterior Calculus Hodge ∗ Discretization Summary

Hodge ∗

V oriented inner product space: ∗ :
∧p V →

∧(n−p) V

natural isomorphism

Let {e1, e2, . . . , en} be a basis for V

Let σ = e1 ∧ e2 ∧ · · · ∧ en be a chosen orientation

Hodge ∗: u ∧ v = (∗u, v)σ

Intuition: complementary n − p vector to the given p vector

orthogonal
consistent with the orientation
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∗ on a Manifold

∗αp = α∗Jdx
J

α∗J =
√
|g |αK εKJ

In full: α∗j1,...,jn−p
=
√
|g |
∑

k1<···<kp
αk1,...,kpεk1,...,kp ,j1,...,jn−p
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Finite Differences

Finite Differences: time permitting, work on board
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Finite Elements

Finite Elements: time permitting, work on board
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Discrete d

d is uniquely determined by the Stokes theorem: the
transpose of the discrete boundary operator
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MDEC : DEC Hodge *

Marsden, Hirani, Desbrun, et al.: 1
|∗σ|
∫
∗σ ∗α = 1

|σ|
∫
σ α

[MDEC ]ij =
|∗σk

i |
|σk

i |
δij

Advantage: MDEC diagonal

Disadvantage: MDEC not positive definite, because
circumcenter may be outside the simplex

Example: standard 2-simplex; vertices: (0, 0), (1, 0), (0, 1)

MDEC
1 =

 1
2 0 0
0 1

2 0
0 0 0


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MWhit : FEEC Hodge *

Whitney 0-forms are barycentric coordinates:

Whitney 1-forms: ηk = λidλj − λjdλi
[MWhit ]ij =

∫
ηiηjdA

Advantage: MWhit is positive definite, because barycenter is
always inside the simplex

Disadvantage: MWhit not diagonal, (MWhit)−1 not sparse

Example: standard 2-simplex; vertices: (0, 0), (1, 0), (0, 1)

MWhit
1 =

 1
3

1
6 0

1
6

1
3 0

0 0 1
6


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Summary

Exterior Calculus is a coordinate independent language and
consequently superior in curvilinear coordinates and on curved
surfaces.

Discrete Exterior calculus has the potential to revolutionize
the numerical PDE field.

The discrete exterior derivative d is unique and determined by
the discrete Stokes theorem.

The discrete Hodge * operator is an open question and a
topic of current research.
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Thank You!

THANK YOU!!!
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