Leonhard Euler and The Basel Problem

By Amber Emmell
April 6, 2013
Saint Michael's College

Outline

- Historical Context
- Euler's Education/Mathematical Influences
-What is the Basel Problem?
- Approximations \& Estimations
- Euler's Proof (One of Many!)
- Wrap-up/Questions

Historical Context

- Born on April 15, 1707 in Basel, Switzerland.
- Lived during the "Age of Reason"
- Euler dedicated his life to the study of mathematics, language, philosophy, and theology.
- Described as "a precocious youth, blessed with a gift for languages and an extraordinary memory," and "he was also a fabulous mental calculator, able to perform intricate arithmetical computations without benefit of paper and pencil." (Dunham vix.)
- After living 76 years, he eventually passed away on September 18, 1783.

Euler's Education \& Influences

- First educated by his father, then attended the University of Basel
- By 1723, he had received his Bachelor of Arts degree and a Master's degree in philosophy
- Decided he was interested in studying math instead of theology
- Received private math lessons from Johann Bernoulli
- Published several articles on different mathematical topics, including isochronous curves and reciprocal trajectories
- When Euler was writing about his career later in life he said, "I was given permission to visit [Johann Bernoulli] freely every Saturday afternoon and he kindly explained to me everything I could not understand." (Dunham xx)
- Bernoulli and Euler were able to work collaboratively on many projects.
- Based on Johann Bernoulli's advice, he studied the work of "Varignon, Descartes, Newton, Galileo, van Schooten, Herman, Taylor, and Willis"
- Taught his two sons Johann Albrecht Euler and Christopher Euler

What is the Basel Problem?

- One of the most famous problems he solved in the early 1700 s was the Basel Problem.
- Named after the city of Basel in Switzerland, where Euler lived as a child, and where he went to university.
- The Basel Problem deals with summing the infinite series of reciprocals of integers squared.
- This problem looks at summing the following series to infinity:

$$
\begin{gathered}
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\cdots \quad \text { or } \quad 1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\cdots \\
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=?
\end{gathered}
$$

In 1735, Euler proved that this series sums to an exact number:

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

Pietro Mengoli

- First considered by the Italian mathematician Pietro Mengoli in 1644.
- In 1650, Mengoli "included the problem in Novae quadraturae arithmetica, a book on the summation of series." (Benko 244)
- Jacob Bernoulli, Johann Bernoulli, Daniel Bernoulli, Leibniz, Stirling, and de Moivre all attempted to solve the problem.
- Hard to calculate an exact solution because the series converges very slowly.

Bernoulli's Approximation

- He started by looking at the inequality $2 k^{2} \geq k(k+1)$
- From this equation he recognized that $\frac{1}{k^{2}} \leq \frac{1}{\frac{k(k+1)}{2}}$
- So $1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\cdots+\frac{1}{k^{2}}+\cdots \leq 1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\cdots+\frac{1}{\frac{k(k+1)}{2}}+\cdots$
- Bernoulli knew $\sum_{k=1}^{\infty} \frac{1}{\frac{k(k+1)}{2}}$ converged to 2 and that it was greater than $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$
- He proved $\sum_{k=1}^{\infty} \frac{1}{k^{2}} \leq 2$
- Today we would call this process the "comparison test" for series.
- He gave up and wrote, "If anyone finds and communicates to us that which thus far has eluded our efforts, great will be our gratitude." (Dunham 42)

Euler's Estimation

- Euler first approached this problem in 1731 by looking at approximations of the series:
- 10th partial sum of the series: $1+\frac{1}{4}+\frac{1}{9}+\cdots+\frac{1}{100}=1.54977$
- 100th partial sum of the series: $1+\frac{1}{4}+\frac{1}{9}+\cdots+\frac{1}{10000}=$ 1.63498
- 1000th partial sum of the series: $1+\frac{1}{4}+\frac{1}{9}+\cdots+\frac{1}{1000000}=$ 1.64393
- When you take Euler's exact solution of $\frac{\pi^{2}}{6}$ and look at the decimal, it is equivalent to $1.644934066842 \ldots$, only accurate to 2 decimal places
- This confirms Bernoulli's approximation

Euler's Proof

- Euler is proving that the Basel problem sums to an exact number:

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

- Starts with an nth degree "infinite polynomial" $P(x)$ with nonzero roots $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ where $\mathrm{P}(\mathrm{x})=0$.

$$
P(x)=\left(1-\frac{x}{a_{1}}\right)\left(1-\frac{x}{a_{2}}\right)\left(1-\frac{x}{a_{3}}\right) \ldots\left(1-\frac{x}{a_{n}}\right)
$$

- When you substitute $x=0$ into the factored form of the polynomial above you get $\mathrm{P}(0)=1$.
- "Euler's next claim is "what holds for a finite polynomial holds for an infinite polynomial."

$$
P(x)=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\cdots
$$

- Second, Euler needed to use the series expansion of $\sin x$ which looks like:

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\cdots
$$

Euler's Proof

- Euler used the information from above to start the proof by saying:
- $P(x)=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\frac{x^{8}}{9!}-\cdots$
- By looking at this formula it is clear that $P(0)=1$, just like the factored form of the polynomial from before. Next Euler multiplied $\mathrm{P}(\mathrm{x})$ by $\frac{x}{x}$.
- $P(x)=x\left[\frac{1-\frac{x^{2}}{3!} \frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\frac{x^{8}}{9!}-\cdots}{x}\right]$
- $P(x)=\frac{x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\cdots}{x}=\frac{\sin x}{x}$

Euler's Proof

- We recognize that the numerator of this series is the expansion of $\sin x$
- He multiplied by $\frac{x}{x}$ to get this series equivalent to $\frac{\sin x}{x}$. The equation above "has zeroes at $x= \pm k \pi$ for $k=1,2 \ldots$ since these are the zeroes of the function $\sin x$, we can now use the claim above and write $P(x)$ as an infinite product" and factor it, and set $P(x)$ equal to the equations below:
- $P(x)=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\cdots$
- $\mathrm{P}(\mathrm{x})=\left(1-\frac{x}{\pi}\right)\left(1-\frac{x}{-\pi}\right)\left(1-\frac{x}{2 \pi}\right)\left(1-\frac{x}{-2 \pi}\right)\left(1-\frac{x}{3 \pi}\right)\left(1-\frac{x}{-3 \pi}\right) \ldots$
- $\mathrm{P}(\mathrm{x})=\left[1-\frac{x^{2}}{\pi^{2}}\right]\left[1-\frac{x^{2}}{4 \pi^{2}}\right]\left[1-\frac{x^{2}}{9 \pi^{2}}\right]\left[1-\frac{x^{2}}{16 \pi^{2}}\right] \ldots$
- Next Euler expanded the infinite product equation above to get:
- $P(x)=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\frac{x^{8}}{9!}-\cdots$
- $P(x)=1-\left(\frac{1}{\pi^{2}}+\frac{1}{4 \pi^{2}}+\frac{1}{9 \pi^{2}}+\frac{1}{16 \pi^{2}}+\cdots\right) x^{2}+\cdots$

Euler's Proof

- Next he took the coefficients from $1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\frac{x^{8}}{9!}-\cdots$ and set them equal to the equation above to get:

$$
-\frac{1}{3!}=-\left(\frac{1}{\pi^{2}}+\frac{1}{4 \pi^{2}}+\frac{1}{9 \pi^{2}}+\frac{1}{16 \pi^{2}}+\cdots\right)
$$

- Since we know $-\frac{1}{3!}=-\frac{1}{3 \times 2 \times 1}=-\frac{1}{6}$ we can simplify $-\frac{1}{3!}$ to $-\frac{1}{6}$.
- Thus, $-\frac{1}{6}=-\frac{1}{\pi^{2}}\left(1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\cdots\right)$
- Next he divided both sides of the equation by $-\frac{1}{\pi^{2}}$ to get $1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+$... alone.
- $\frac{-\frac{1}{6}}{-\frac{1}{\pi^{2}}}=-\frac{1}{6} \times-\frac{\pi^{2}}{1}=\frac{\pi^{2}}{6}$
- So, $1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}=\frac{\pi^{2}}{6}$ Q.E.D
- From the start we know, $1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\cdots=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+$ $\frac{1}{25}+\cdots$
- So Euler has proved,

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

Where does this lead us?

- Euler proved other even powered series including:
$\sum_{k=1}^{\infty} \frac{1}{k^{4}}=\frac{\pi^{4}}{90}, \sum_{k=1}^{\infty} \frac{1}{k^{6}}=\frac{\pi^{6}}{945} \sum_{k=1}^{\infty} \frac{1}{k^{8}}=\frac{\pi^{8}}{9450}$,
$\sum_{k=1}^{\infty} \frac{1}{k^{10}}=\frac{\pi^{10}}{93555}$
- He then looked at series of the form $\sum_{k=1}^{\infty} \frac{1}{k^{3}}$ but was unable to sum series with odd exponents
- It was not until 1978 that Roger Apéry proved that this series sums to an irrational number (Dunham 60)
- To this day the question of summing p-series with odd exponents is still unknown

Works Cited

- Benko, David. "The Basel Problem as a Telescoping Series", The College Mathematics Journal. http://www.jstor.org/stable/10.4169/college.math.j.43.3.244, Vol. 43, No. 3 (May 2012) Web. 15 Oct. 2012. pp.244-250.
- Debnath, Lokenath. "The Legacy of Leonhard Euler, A Tricentennial Tribute", Imperial College Press. Hackensack, NJ. ©2010.
- Dunham, William. "Euler: The Master of Us All", The Mathematical Association of America. Washington, DC. ©1999
- Finkel, B. F. "Biography: Leonhard Euler", The American Mathematical Monthly. http://www. jstor.org/stable/2968971, Vol. 4. No. 12 (Dec., 1987) Web. 15 Oct. 2012. pp. 297-302.
- O' Connor, J. J. and Robertson, E.F. "Leonhard Euler." Euler Biography. http://www-history.mcs.st-andrews.ac.uk/ Biographies/Euler.html, Sept. 1998. Web. 13 Oct. 2012.
- Sandifer, Edward C. "How Euler Did it", The Mathematical Association of America. Washington, DC. ©2007
- Sangwin, C. J. "An Infinite Series of Surprises." Plus.maths.org. http://plus.maths.org/content/ infinite-series-surprises_Dec. 2001. Web. 13 Oct. 2012

