

Gaussian Shift (Mean Shift) Clustering and Variance Approximation

Jason Taillon
SUNYIT
31 March 2013

SUNY

Introduction

- Part 1
 - Clustering
 - Technique & Theory
- Part 2
 - Variance Estimation
 - Sub-grouping
 - Displacement Analysis

Overview & Background

- Mean Shift Clustering is a method of grouping data together, using gradient finding Algorithm
- Applications
 - Genetics
 - Clustering genes with similar expressions or motifs
 - Machine Vision
 - Grouping objects or people together
 - Mathematics
 - Finding groups or underlying distributions in data

- Given this data:
 - Are there clusters
 - How do we find them

Given a set of points in a Cartesian plane

1. Select a Starting Point

- 1. Select a Starting Point
- 2. This point becomes a local mean.

- 1. Select a Starting Point
- 2. This point becomes a local mean.
- 3. Cast a window with radius R, about the local mean

- 1. Select a Starting Point
- 2. This point becomes a local mean.
- 3. Cast a window with radius R, about the local mean
- 4. Take Mean of all points in window, this becomes new local mean

- 1. Select a Starting Point
- 2. This point becomes a local mean.
- 3. Cast a window with radius R, about the local mean
- 4. Take Mean of all points in window, this becomes new local mean
- 5. Now mean is shifted

- 1. Select a Starting Point
- 2. This point becomes a local mean.
- 3. Cast a window with radius R, about the local mean
- 4. Take Mean of all points in window, this becomes new local mean
- 5. Now mean is shifted
- 6. Recast Window and Repeat Process

- 1. Select a Starting Point
- 2. This point becomes a local mean.
- 3. Cast a window with radius R, about the local mean
- 4. Take Mean of all points in window, this becomes new local mean
- 5. Now mean is shifted
- 6. Recast Window and Repeat Process.
- 7. Eventually a Convergence is reached and

Formula

 Mean Shift – Is an algorithm for finding the local mode, or modes in a sample population. It is also known as a gradient finding algorithm when used with a Gaussian Kernel

Mean-Shift Formula

$$m(x) = \frac{\sum_{x_i \in N(x)} K(x_i - x) x_i}{\sum_{x_i \in N(x)} K(x_i - x)}$$

Kernel: Gaussian

 $K(x_i - x) = e^{-c||x_i - x||^2}$

Weighted Mean

$$\bar{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

$$m(x) = \frac{\sum_{x_i \in N(x)} K(x_i - x) x_i}{\sum_{x_i \in N(x)} K(x_i - x)}$$

$$K(x_i - x) = e^{-c||x_i - x||^2}$$

- 1. Select a Starting Point
- 2. This point becomes a local mean.
- 3. Cast a window with radius R, about the local mean
- 4. Take Mean of all points in window, this becomes new local mean
- 5. Now mean is shifted
- 6. Recast Window and Repeat Process.
- 7. Eventually a Convergence is reached and

Clustering Results

Part II

Variance Estimation

Variance, Normal Distribution

In probability theory, the **normal** (or **Gaussian**) **distribution** is a continuous probability distribution, defined by the formula

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

The parameter σ is its standard deviation; its variance is therefore σ^2 .

Discrete random variable

If the random variable X is discrete with probability mass function $x_1 \rightarrow p_1, ..., x_n \rightarrow p_n$, then

$$Var(X) = \sum_{i=1}^{n} (p_i \cdot (x_i - \mu)^2) = \sum_{i=1}^{n} (p_i \cdot x_i^2) - \mu^2$$

Mean Shift Assumes Equal Size Distributions

- What Are the true sizes of these clusters
 - We must not assume all our clusters have the same distribution size in terms of variance.

Variance Estimation and Displacement Vector

- The Diamonds Represent the displacement at iterations in the clustering
- The "Trail" is representative of the gradient finding process.
- The displacement trail can be used to determine the variance of an underlying distribution.

Conceptual Idea

- Displacement Analysis:
 - Is really a change to the process of clustering
 - Normally we have a fixed window size.

Conceptual Idea

- Displacement Analysis:
 - The difference is when convergence is reached
 - We increase the size of the window incrementally
 - Re-Compute localmeanLet converge

Conceptual Idea

- Displacement Analysis:
 - Keep repeating
 until displacement
 vector experiences
 a slight divergence
 & re-convergence
 - This happens as window ingests
 statistical outliers to the distribution

Two Normal Distributions

The End

Method Two – Group Cluster Centers

