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Some Parameters:

I x : the position of the card

I b : the number of columns of cards

I p : the size of the largest column

I N : the number of cards in the deck
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Dynamical Systems

First Trick:

I f : Z→ Z given by f(x) = a+
⌈
x
b

⌉
(a = p)

Second Trick:

I f : Z→ Z given by f(x) = a−
⌈
x
b

⌉
(a = N + 1− p)
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First Trick

Consider the dynamical system (Z, f) with f : Z→ Z given by f(x) = a+
⌈
x
b

⌉
:

I If a 6≡ 0 mod (b− 1) then

x̄ =

⌈
ab

b− 1

⌉
is the only fixed point, and every trajectory converges
monotonically to x̄.

I If a ≡ 0 mod (b− 1) then

x̄1 =
ab

b− 1
, x̄2 = x̄1 + 1

are the only fixed points, and every trajectory converges
monotonically to the nearest fixed point.
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First Trick

Proof:

Let
a = µ(b− 1) + ρ, 0 ≤ ρ < b− 1

and assume that

x = mb+ r, 0 ≤ r < b, m ∈ Z,

is a fixed point. Then f(x) = x, so

mb+ r = µ(b− 1) + ρ+m+
⌈r
b

⌉
or

(m− 1)(b− 1) = ρ− r +
⌈r
b

⌉
.

From these we get:
⌈
r
b

⌉
= 1, r −

⌈
r
b

⌉
= ρ, and m = µ.
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First Trick

Case 1: a 6≡ 0 mod (b− 1)

If a 6≡ 0 mod (b− 1), then ρ > 0. Then r 6= 0, 1 and r = ρ+ 1,
so we get

x = mb+ r

= µb+ ρ+ 1

= a+ µ+ 1

= a+
a

b− 1
+
b− 1− ρ
b− 1

= a+

⌈
a

b− 1

⌉
=

⌈
ab

b− 1

⌉
= x̄.
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First Trick

Case 2: a ≡ 0 mod (b− 1)

If a ≡ 0 mod (b− 1), then ρ = 0. Then r = 0 or r = 1.
With r = 0, we get

x = mb+ r = µb = a+ µ = a+
a

b− 1
=

ab

b− 1
= x̄1.

With r = 1, we get

x = µb+ 1 = x̄1 + 1 = x̄2.
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First Trick
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First Trick

Monotonic Convergence

We also want to show that these trajectories monotonically
approach the fixed points we just solved for.

I Monotonicity comes from the construction of the function.

I Convergence follows because the function is bounded by
the constraints of the card trick.
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Second Trick

Consider the dynamical system (Z, f) with f : Z→ Z given by f(x) = a−
⌈
x
b

⌉
.

I If a 6≡ 1 mod (b+ 1), then the function has exactly one
fixed point

x̄ =

⌊
ab

b+ 1

⌋
.

I If a ≡ 1 mod (b+ 1), then the function has an attracting
two-cycle

x̄1 =
b(a− 1)

b+ 1
, x̄2 = x̄1 + 1

and no fixed points.
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Second Trick

Proof:

I’m not actually going to do this proof.
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Second Trick

Comparing the Tricks

First Trick

I monotonic convergence

I uses ceiling function

I a = p

I when a ≡ 0 mod (b− 1),
two fixed points

I with 14 cards, x̄ = 8

I with 32 cards, x̄ = 17

Second Trick

I no monotonic convergence

I uses floor function

I a = N + 1− p
I when a ≡ 1 mod (b+ 1),

attracting two-cycle

I with 14 cards, x̄ = 7

I with 32 cards, x̄ = 16
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First Trick

Consider the dynamical system (Z, f) with f : Z→ Z given by f(x) = a+
⌈
x
b

⌉
:

Let B = ab
b−1 . Then

I If b− 1 - a and x > dBe,

τ(x) =

⌈
log

(
x−B
dBe −B

)
/ log b

⌉
.

I If b− 1 - a and x < dBe,

τ(x) =

⌊
log

(
B − x

1− (dBe −B)

)
/ log b

⌋
+ 1.
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First Trick

Consider the dynamical system (Z, f) with f : Z→ Z given by f(x) = a+
⌈
x
b

⌉
:

(continued...)

I If b− 1 | a and x > B + 1,

τ(x) =

⌈
log(x−B)

log b

⌉
.

I If b− 1 | a and x < B,

τ(x) =

⌊
log(B − x)

log b

⌋
+ 1.
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First Trick

Proof:

When x > 17 =
⌈
33
2

⌉
,

τ1(x) =

⌈
log

(
x−B
dBe −B

)
/ log b

⌉
=

⌈
log

(
x− 33

2

17− 33
2

)
/ log 3

⌉

=

⌈
log3

(
x− 33

2
1
2

)⌉
= dlog3(2x− 33)e .
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First Trick

Proof:

(continued...)

When x < 17,

τ2(x) =

⌊
log

(
B − x

1− (dBe −B)

)
/ log b

⌋
+ 1

=

⌊
log

(
33
2 − x

1− (17− 33
2 )

)
/ log 3

⌋
+ 1

=

⌊
log3

(
33
2 − x

1
2

)⌋
+ 1

= blog3(33− 2x)c+ 1.
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First Trick

Proof:

(continued...)

τ1(32) = dlog3(2(32)− 33)e
= dlog3(31)e

τ = 4.

τ2(1) = blog3(33− 2(1))c+ 1

= blog3(31)c+ 1

τ = 4.
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Second Trick

Consider the dynamical system (Z, f) with f : Z→ Z given by f(x) = a−
⌈
x
b

⌉
.

No known formula.

Calculations imply τ = 4.
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In Conclusion...

Two card tricks that seem similar are driven by very different
dynamical systems.

We saw...

I different types of fixed points

I different uses of the parameters

I different levels of predictability

Any Questions??
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