Pentagrids and Penrose Tilings

Stacy Mowry, Shriya Shukla

April 1, 2013

Background

- The limitations of the matching and inflation methods in constructing Penrose tilings

Background

- The limitations of the matching and inflation methods in constructing Penrose tilings
- Can one construct an infinite plane with finite information?

Background

- The limitations of the matching and inflation methods in constructing Penrose tilings
- Can one construct an infinite plane with finite information?
- In the following slides, we demonstrate a method that can be used to form a Penrose tiling for the infinite plane.

Background

- The limitations of the matching and inflation methods in constructing Penrose tilings
- Can one construct an infinite plane with finite information?
- In the following slides, we demonstrate a method that can be used to form a Penrose tiling for the infinite plane.

DeBrujin's Insight

DeBrujin's Insight

- Intersections of 2 'ribbons' in the Penrose tilings used to represent a particular rhomb.

DeBrujin's Insight

- Intersections of 2 'ribbons' in the Penrose tilings used to represent a particular rhomb.
- There exist five different orientations for the rhombii.

DeBrujin's Insight

- Intersections of 2 'ribbons' in the Penrose tilings used to represent a particular rhomb.
- There exist five different orientations for the rhombii.
- Hence it is possible to find a relation between the pentagrid and Penrose tilings.

What is a Pentagrid?

Full Pentagrid

DeBrujin's Conditions

DeBrujin's Conditions

- The pentagrid must be regular. A pentagrid is defined as regular when only two lines of the grid intersect at a point.

DeBrujin's Conditions

- The pentagrid must be regular. A pentagrid is defined as regular when only two lines of the grid intersect at a point.
- $\sum_{j=0}^{4} \lambda_{j}=0$

Explaining the dual

Explaining the dual

Explaining the dual

- The dual here is a 1-1 mapping between the intersection of ribbons and the rhombi in the Penrose.

Explaining the dual

- The dual here is a 1-1 mapping between the intersection of ribbons and the rhombi in the Penrose.
- Each section around the intersection of two ribbons is called a space and the four spaces represent the four vertices of the rhombus they map to.

Labeling the Pentagrid

Labeling the Pentagrid

- First we pick a consistent origin

Labeling the Pentagrid

- First we pick a consistent origin
- Second, we label each of the five grids either clockwise or counter-clockwise.

Labeling the Pentagrid

- First we pick a consistent origin
- Second, we label each of the five grids either clockwise or counter-clockwise.
- Each space becomes a five-tuple, which later is mapped to a two-dimensional point that marks a vertex of a rhomb.

Introducing DeBrujin's Formula

Given the five-tuple, ($\left.K_{0}, K_{1}, K_{2}, K_{3}, K_{4}\right)$, associated with a space, the following formula is used to determine the vertex $\left(a_{i}, b_{i}\right)$ which it corresponds to in the two-dimensional plane

Introducing DeBrujin's Formula

Given the five-tuple, ($\left.K_{0}, K_{1}, K_{2}, K_{3}, K_{4}\right)$, associated with a space, the following formula is used to determine the vertex $\left(a_{i}, b_{i}\right)$ which it corresponds to in the two-dimensional plane

$$
\left(a_{i}, b_{i}\right)=\sum_{j=0}^{4} K_{j}\left(\cos \frac{2 \pi j}{5}, \sin \frac{2 \pi j}{5}\right)
$$

Example: Forming 5-tuples

- Picking an arbitrary intersection, we obtain the following four 5-tuples

Example: Forming 5-tuples

- Picking an arbitrary intersection, we obtain the following four 5-tuples
- (-1,-1,-1,-1,-1)
- ($-1,0,-1,-1,-1$)
- (-1,0,-1,0,-1)
- (-1,-1,-1,0,-1)

Example: Forming 5-tuples

- Picking an arbitrary intersection, we obtain the following four 5-tuples
- (-1,-1,-1,-1,-1)
- ($-1,0,-1,-1,-1$)
- (-1,0,-1,0,-1)
- (-1,-1,-1,0,-1)

Example:Mapping from five dimensions to two dimensions

- Using DeBrujin's formula i.e., $\left(a_{i}, b_{i}\right)=\sum_{j=0}^{4} K_{j}\left(\cos \frac{2 \pi j}{5}, \sin \frac{2 \pi j}{5}\right)$,we get the following four vertices : $(0,0),(0.309,0.951),(.5, .363)$ and (-.21, .608).

Example:Mapping from five dimensions to two dimensions

- Using DeBrujin's formula i.e., $\left(a_{i}, b_{i}\right)=\sum_{j=0}^{4} K_{j}\left(\cos \frac{2 \pi j}{5}, \sin \frac{2 \pi j}{5}\right)$, we get the following four vertices : $(0,0),(0.309,0.951),(.5, .363)$ and (-.21, .608).
- For instance, $(-1,-1,-1,-1,-1)$ maps to $-1(\cos 0, \sin 0)$ $\left(\cos \frac{2 \pi}{5}, \sin \frac{2 \pi}{5}\right)-\left(\cos \frac{4 \pi}{5}, \sin \frac{4 \pi}{5}\right)-\left(\cos \frac{6 \pi}{5}, \sin \frac{6 \pi}{5}\right)-\left(\cos \frac{8 \pi}{5}, \sin \frac{8 \pi}{5}\right)=$ $(0,0)$

Example:Mapping from five dimensions to two dimensions

- Using DeBrujin's formula i.e., $\left(a_{i}, b_{i}\right)=\sum_{j=0}^{4} K_{j}\left(\cos \frac{2 \pi j}{5}, \sin \frac{2 \pi j}{5}\right)$, we get the following four vertices: $(0,0),(0.309,0.951),(.5, .363)$ and (-.21, .608).
- For instance, $(-1,-1,-1,-1,-1)$ maps to $-1(\cos 0, \sin 0)$ $\left(\cos \frac{2 \pi}{5}, \sin \frac{2 \pi}{5}\right)-\left(\cos \frac{4 \pi}{5}, \sin \frac{4 \pi}{5}\right)-\left(\cos \frac{6 \pi}{5}, \sin \frac{6 \pi}{5}\right)-\left(\cos \frac{8 \pi}{5}, \sin \frac{8 \pi}{5}\right)=$ $(0,0)$

Example:Mapping from five dimensions to two dimensions

Example:Mapping from five dimensions to two dimensions

Next step : A different rhomb

Next step : A different rhomb

