Ramsey Number and Other Knot Invariants

Maribeth Johnson Hamiltor College

Ramsey Number and Other Knot Invariants

Maribeth Johnson Hamilton College

In collaboration with Rollie Trapp, California State University, San Bernadino

April 6, 2013

Knots

Ramsey Number and Other Knot Invariants

> Maribeth Johnson Hamiltor College

A **knot** is a closed curve embedded in three dimensions which is not self-intersecting. Of particular interest to us are the (p,q) torus knots, or $T_{p,q}$.

Knots

Ramsey Number and Other Knot Invariants

> Maribeth Johnson Hamiltor College

A **knot** is a closed curve embedded in three dimensions which is not self-intersecting. Of particular interest to us are the (p,q) torus knots, or $T_{p,q}$.

Definition

Torus knots lie on the unknotted torus. A (p, q) torus knot winds around the axis of revolution p times and wraps around the core of the torus q times.

Knots

Ramsey Number and Other Knot Invariants

> Maribeth Johnson Hamiltor College

A **knot** is a closed curve embedded in three dimensions which is not self-intersecting. Of particular interest to us are the (p,q) torus knots, or $T_{p,q}$.

Definition

Torus knots lie on the unknotted torus. A (p, q) torus knot winds around the axis of revolution p times and wraps around the core of the torus q times.

We will deal particularly with the class of torus knots $T_{p-1,p}$.

Ramsey Number and Other Knot Invariants

Ramsey Number and Other Knot Invariants

Ramsey Number and Other Knot Invariants

- Bridge Number: Fewest number of maxima in any projection of the knot. $br(T_{2.3}) = 2$.
- Arc Index: Fewest number of pages in an open-book decomposition of the knot. $\alpha(T_{2,3}) = 5$.

Ramsey Number and Other Knot Invariants

- *Bridge Number:* Fewest number of maxima in any projection of the knot. $br(T_{2,3}) = 2$.
- Arc Index: Fewest number of pages in an open-book decomposition of the knot. $\alpha(T_{2,3}) = 5$.
- *Stick Number:* Fewest number of sticks needed to create the knot in 3-space. $s(T_{2,3}) = 6$.

Ramsey Number and Other Knot Invariants

- Bridge Number: Fewest number of maxima in any projection of the knot. $br(T_{2.3}) = 2$.
- Arc Index: Fewest number of pages in an open-book decomposition of the knot. $\alpha(T_{2,3}) = 5$.
- Stick Number: Fewest number of sticks needed to create the knot in 3-space. $s(T_{2,3}) = 6$.
- **Crossing Number:** Fewest number of crossings in any projection of the knot. $c(T_{2,3}) = 3$.

Graph Theory

Ramsey Number and Other Knot Invariants

> Maribeth Johnson Hamiltor College

A **graph** is a set of vertices connected by edges. A **complete graph** on *n* vertices is a set of *n* vertices such that each pair of vertices is connected by an edge. A **Hamiltonian cycle** of a graph is a cycle which visits every vertex exactly once.

Graph Theory

Ramsey Number and Other Knot Invariants

> Maribeth Johnson Hamiltor College

A **graph** is a set of vertices connected by edges. A **complete graph** on *n* vertices is a set of *n* vertices such that each pair of vertices is connected by an edge. A **Hamiltonian cycle** of a graph is a cycle which visits every vertex exactly once.

Definition

A **linear spatial embedding** of K_n is a copy of K_n in 3-space such that every edge is straight and no two edges intersect one another.

Cyclic Polytope

Ramsey Number and Other Knot Invariants

Ramsey Number

Ramsey Number and Other Knot Invariants

> Maribeth Johnson Hamiltor College

Definition

The **Ramsey number** of a knot is the smallest n such that any linear spatial embedding of K_n contains the knot K.

Negami [5] proved R(K) is finite for any knot K.

It is known R(unknot) = 3.

Ramírez Alfonsín [1] proved $R(T_{2,3}) = 7$.

Constructing Arc Presentations

Ramsey Number and Other Knot Invariants

Reducing Arc Presentations

Ramsey Number and Other Knot Invariants

> Maribeth Johnson Hamilton College

Based on moves defined by Cromwell [2].

Arc Merge:

Bridge Number of a Hamiltonian Cycle

Ramsey Number and Other Knot Invariants

> Maribeth Johnson Hamilton College

Remember that the bridge number of a knot is the minimum number of maxima in any projection.

Bridge Number of a Hamiltonian Cycle

Ramsey Number and Other Knot Invariants

> Maribeth Johnson Hamilton College

Remember that the bridge number of a knot is the minimum number of maxima in any projection.

Definition

The bridge number of a Hamiltonian cycle, denoted b(H) is the number of maxima in the projection of the cycle in C_n .

Bridge Number of a Hamiltonian Cycle

Ramsey Number and Other Knot Invariants

> Maribeth Johnson Hamilton College

Remember that the bridge number of a knot is the minimum number of maxima in any projection.

Definition

The bridge number of a Hamiltonian cycle, denoted b(H) is the number of maxima in the projection of the cycle in C_n .

Reducing Arc Presentations

Ramsey Number and Other Knot Invariants

> Maribeth Johnson Hamiltor College

Lemma

For a knot K, corresponding to a Hamiltonian cycle of C_n , $\alpha(K) + b(H) \le n$.

Proof.

Note that a maximum can be reduced by an arc merge, so we can always perform b(H) arc merges, showing $\alpha(K) \le n - b(H)$, or $\alpha(K) + b(H) \le n$.

Application to Ramsey Number

Ramsey Number and Other Knot Invariants

> Maribeth Johnson Hamiltor College

Theorem

For any knot K, $\alpha(K) + br(K) \leq R(K)$.

Proof.

Note that since for any knotted cycle of C_n $b(H) \geq br(K)$, our previous result implies that for K corresponding to H of C_n , $\alpha(K) + br(K) \leq n$. Since K lives on $C_{R(K)}$ by definition of Ramsey number, it follows that $\alpha(K) + br(K) \leq R(K)$.

Application to Ramsey Number

Ramsev Number and Other Knot Invariants

Corollary

$$R(T_{p-1,p})\geq 3p-2.$$

Proof.

Our theorem gives us that

 $R(T_{p-1,p}) \geq \alpha(T_{p-1,p}) + br(T_{p-1,p})$. An application of work by Schubert [6] shows $br(T_{p-1,p}) = p-1$, and an application of work by Matsuda [4] shows us $\alpha(T_{p-1,p}) = 2p - 1$.

Combining these results we find $R(T_{p-1,p}) > 3p-2$.

Application to Ramsey Number

Ramsey Number and Other Knot Invariants

> Maribeth Johnson Hamilton College

Corollary

$$R(T_{p-1,p}) - s(T_{p-1,p}) \ge p-2.$$

Proof.

We just showed $R(T_{p-1,p}) \ge 3p-2$. An application of a theorem by Jin [3] gives us that $s(T_{p-1,p}) = 2p$. Combining these results, $R(T_{p-1,p}) - s(T_{p-1,p}) \ge p-2$.

Ramsey Number and Other Knot Invariants

Ramsey Number and Other Knot Invariants

> Maribeth Johnson Hamiltor College

I Can we find other classes of knots for which the difference between the Ramsey number and stick number grows without bound?

Ramsey Number and Other Knot Invariants

- 1 Can we find other classes of knots for which the difference between the Ramsey number and stick number grows without bound?
- 2 We have shown that the difference between Ramsey number and stick number of $T_{p-1,p}$ is at least linear. Is it, in actuality, approximately linear? Quadratic? How can we best model this difference?

Ramsey Number and Other Knot Invariants

- Can we find other classes of knots for which the difference between the Ramsey number and stick number grows without bound?
- 2 We have shown that the difference between Ramsey number and stick number of $T_{p-1,p}$ is at least linear. Is it, in actuality, approximately linear? Quadratic? How can we best model this difference?
- 3 Do our reductions on arc presentations create a normal form from which we can gather more information about the knot?

References

Ramsey Number and Other Knot Invariants

- J.L. Ramírez Alfonsín, Spatial graphs and oriented matroids: the trefoil, Discrete and Computational Geometry 22 (1999), no. 1, 149–158.
- Peter Cromwell, *Knots and links*, Cambridge University Press, 2004.
- Gyo Taek Jin, *Polygon indices and superbridge indices of torus knots and links*, Journal of Knot Theory and Its Ramifications **6** (1997), no. 2, 281–289.
- Hiroshi Matsuda, *Links in an open book decomposition* and the standard contact structure, Precedings of the American Mathematical Society **134** (2006), no. 12, 3697–3702.
- Seiya Negami, *Ramsey theorems for knots, links and spatial graphs*, Transactions of the American Mathematical Society **324** (1991), no. 2, 527–541.
- Horst Schubert, Über eine numerische knoteninvariante, Mathematische Zeitschrift **61** (1954), 245–288.