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Knots

A knot is a closed curve embedded in three dimensions which
is not self-intersecting. Of particular interest to us are the
(p, q) torus knots, or Tp,q.

Definition

Torus knots lie on the unknotted torus. A (p, q) torus knot
winds around the axis of revolution p times and wraps around
the core of the torus q times.

We will deal particularly with the class of torus knots Tp�1,p.
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Knot Invariants

The Trefoil Knot, T2,3

Bridge Number: Fewest number of maxima in any
projection of the knot. br(T2,3) = 2.
Arc Index: Fewest number of pages in an open-book
decomposition of the knot. ↵(T2,3) = 5.
Stick Number: Fewest number of sticks needed to create
the knot in 3-space. s(T2,3) = 6.
Crossing Number: Fewest number of crossings in any
projection of the knot. c(T2,3) = 3.
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Graph Theory

A graph is a set of vertices connected by edges. A complete
graph on n vertices is a set of n vertices such that each pair of
vertices is connected by an edge. A Hamiltonian cycle of a
graph is a cycle which visits every vertex exactly once.

Definition

A linear spatial embedding of Kn is a copy of Kn in 3-space
such that every edge is straight and no two edges intersect one
another.
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Cyclic Polytope
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Ramsey Number

Definition

The Ramsey number of a knot is the smallest n such that any
linear spatial embedding of Kn contains the knot K .

Negami [5] proved R(K ) is finite for any knot K .

It is known R(unknot) = 3.
Raḿırez Alfonśın [1] proved R(T2,3) = 7.
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Constructing Arc Presentations
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Reducing Arc Presentations

Based on moves defined by Cromwell [2].

Arc Merge:
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Bridge Number of a Hamiltonian Cycle

Remember that the bridge number of a knot is the minimum
number of maxima in any projection.

Definition

The bridge number of a Hamiltonian cycle, denoted b(H) is the
number of maxima in the projection of the cycle in Cn.
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Reducing Arc Presentations

Lemma

For a knot K, corresponding to a Hamiltonian cycle of Cn,
↵(K ) + b(H)  n.

Proof.

Note that a maximum can be reduced by an arc merge, so we
can always perform b(H) arc merges, showing
↵(K )  n � b(H), or ↵(K ) + b(H)  n.
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Application to Ramsey Number

Theorem

For any knot K, ↵(K ) + br(K )  R(K ).

Proof.

Note that since for any knotted cycle of Cn b(H) � br(K ), our
previous result implies that for K corresponding to H of Cn,
↵(K ) + br(K )  n. Since K lives on CR(K) by definition of
Ramsey number, it follows that ↵(K ) + br(K )  R(K ).
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Application to Ramsey Number

Corollary

R(Tp�1,p) � 3p � 2.

Proof.

Our theorem gives us that
R(Tp�1,p) � ↵(Tp�1,p) + br(Tp�1,p). An application of work
by Schubert [6] shows br(Tp�1,p) = p � 1, and an application
of work by Matsuda [4] shows us ↵(Tp�1,p) = 2p � 1.
Combining these results we find R(Tp�1,p) � 3p � 2.
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Application to Ramsey Number

Corollary

R(Tp�1,p)� s(Tp�1,p) � p � 2.

Proof.

We just showed R(Tp�1,p) � 3p � 2. An application of a
theorem by Jin [3] gives us that s(Tp�1,p) = 2p. Combining
these results, R(Tp�1,p)� s(Tp�1,p) � p � 2.
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Open Questions

1 Can we find other classes of knots for which the di↵erence
between the Ramsey number and stick number grows
without bound?

2 We have shown that the di↵erence between Ramsey
number and stick number of Tp�1,p is at least linear. Is it,
in actuality, approximately linear? Quadratic? How can we
best model this di↵erence?

3 Do our reductions on arc presentations create a normal
form from which we can gather more information about
the knot?
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