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Introdction to Aperiodicity

@ Periodic Tiling: Plane can be tiled by vector translations of prototiles.
o Infinite chessboard
@ Non-periodic: Opposite of periodic
o Infinite chessboard, but switch around 2 squares at random.
@ Aperiodic Tile Set: Set of prototiles that only form non-periodic
tilings
@ Question: Does an aperiodic prototile set exist?
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Introduction to Aperiodicity (cont)

e Wang [1961] first proposes no aperiodic prototile set exists
o "Decidability"

o Example:

K A N
A XA A

K.

Lhttp://grahamshawcross.com /2012/10/12/wang-tiles-and-aperiodic-
tiling/usersgrahamshawcrossdocumentsblog _ draftswang-tiles-and-aper-6/
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Introduction to Aperiodicity (cont)

@ 1966: Berger, Wang's student, uses Turing machine to show that
Wang tiles must tile aperiodically.

e 20,000+ tiles in first set
@ Penrose [1974] narrows it down to 2 tiles
@ "Einstein" problem

e Ein = one, stein = rock
e Can the plane be tiled aperiodically by only one tile?

@ Taylor and Socolar [2010] find the solution... Maybe? (Next talk!)
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The Robinson Tiles

@ Robinson [1971] described set of six tiles
o Tile plane aperiodically

(a), (). (c)
(d).(e). ()
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Corners

o Notice the difference of tile (a). Call it "cornered," others
"cornerless"
e Following “Tilings and Patterns” (Griinbaum and Shephard, 1987),
first consider simplified tile set
o Only cornered and cornerless squares (ignoring the sides)

@ Note that the cornered tiles must alternate every row or column and
n n

Zhttp://fac-web.spsu.edu/math /tiling/21.htm|
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Alternate Representation

e For visual/analytic clarity,
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Alternate Representation (cont)
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Alternate Representation (cont)
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3x3 Block

@ Consider the 3 x 3 block

@ Cornered... Corners

@ Uncornered cross in the middle
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7x7 Block

=
I
WHY

@ Notice the three 3 X 3 blocks separated by two "fault" lines

@ Can extend again to 15 x 15 etc... Using the same technique with
"faults"
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Proof of Aperiodicity

@ Reconsider 3 x 3 block
o

@ Crosses are 2 squares apart

@ In general, for any n, in a (2" — 1) x (2" — 1) block, crosses will be
2" apart.

@ However, this means no symmetry through a smaller distance than 2".

o Make 2" arbitrarily large -> no symmetry -> Non-periodic
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Relation to Taylor-Socolar

@ Key is the ever expanding "block"

@ Next talk will reveal an ever expanding "triangle" created by
Taylor-Socolar

@ Thus, they both have aperiodicity emerge from same source.
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