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Markov Chains

Markov Chain: random process containing a sequence of variables
X1,X2,X3, . . . ,Xr such that given the present state, the future
state is conditionally independent of past states.

p(Xt+1 = j |Xt = it)
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Markov Chains

Examples:

I Games of chance

I Drunkard’s walk

I Google PageRank

I Asset pricing models

I Baseball analysis
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State of Economy Example

Figure: Directed Graph Figure: Transition Matrix
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Long Term Markov Chain Behavior

Transition Matrix:

To
1 2 . . . n

From 1 a1,1 a1,2 · · · a1,n

2 a2,1 a2,2 · · · a2,n
...

...
...

. . .
...

n an,1 an,2 · · · an,n
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Long Term Markov Chain Behavior

Define p as the probability state distribution of ith row vector,
with transition matrix, A. Then at time t = 1,

pA = p1

Taking subsequent iterations, the Markov chain over time develops
to the following

(pA)A = pA2, pA3, pA4
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State of Economy Example

For example if at time t we are in a bear market, then 3 time
periods later at time t + 3 the distribution is,

pA3 = p3

[
0 1 0

]  .9 .075 .025
.15 .8 .05
.25 .25 .5

3

=
[
.3575 .56825 .07425

]
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Long Term Markov Chain Behavior

To determine stationary state distributions, we must find a probability distribution p
which satisfies the condition

pA = p

[
p(1) p(2) · · · p(n)

]

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n

 =
[
p(1) p(2) · · · p(n)

]
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Long Term Markov Chain Behavior

However, there is an easier way to determine stationary probability distributions. Let’s
reverse our thinking and consider the probability of being in a certain state at t + 1.

I p(1) = .9p(1) + .15p(2) + .25p(3),
I p(2) = .075p(1) + .8p(2) + .25p(3),
I p(3) = .025p(1) + .05p(2) + .5p(3),
I with the condition, p(1) + p(2) + p(3) = 1
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Four Square Circuit

To
1 2 3 4

From 1 1/6 3/6 2/6 0
2 1/6 3/6 2/6 0
3 2/6 3/6 1/6 0
4 2/6 3/6 1/6 0
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Four Square Circuit

After the first throw, the probabilities of landing on each square are:

p1(1) =
1

6
p1(2) =

1

2
p1(3) =

1

3
p1(4) = 0

After two throws, the probabilities of landing on each square are:

p2(1) =
2

9
p2(2) =

1

2
p2(3) =

5

18
p2(4) = 0
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Four Square Circuit

Let pt(n) represent the probability of landing on square n after t die rolls.

I p0(1) = 1, p0(2) = p0(3) = p0(4) = 0.

I pt+1(1) = 1
6
pt(1) + 1

6
pt(2) + 2

6
pt(3) + 2

6
pt(4),

I pt+1(2) = 3
6
pt(1) + 3

6
pt(2) + 3

6
pt(3) + 3

6
pt(4),

I pt+1(3) = 2
6
pt(1) + 2

6
pt(2) + 1

6
pt(3) + 1

6
pt(4),

I pt+1(4) = 0.
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Four Square Circuit

p(1) =
1

6
p(1) +

1

6
p(2) +

2

6
p(3)

p(2) =
3

6
p(1) +

3

6
p(2) +

3

6
p(3)

p(3) =
2

6
p(1) +

2

6
p(2) +

1

6
p(3)

p(4) = 0

with the condition,

p(1) + p(2) + p(3) + p(4) = 1
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Four Square Circuit



1 1 1 1

5
6

- 1
6

- 1
3

0

- 1
2

1
2

- 1
2

0

- 1
3

- 1
3

5
6

0

∣∣∣∣∣∣∣∣∣∣∣∣∣

1

0

0

0


row reduce echelon form−−−−−−−−−−−−−−→



1 0 0 3
14

0 1 0 1
2

0 0 1 2
7

0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3
14

1
2

2
7

0



p(1) = 3
14

p(2) = 1
2

p(3) = 2
7

p(4) = 0
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Application to Monopoly

Modifications

I 40 squares

I Doubles Rule

I Community Chest and Chance Cards

Markov Chain with 3× 40 = 120 states
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Stable Probabilties
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Monopoly Strategy

Considerations

I Rent Earnings

I Probability of Landing on Property

I Development Costs
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Monopoly Strategy

Analyze by probability of landing on a square for a single turn, not a roll.

p(1) =
30

36
, p(2) =

6

36

(
30

36

)
, p(3) =

6

26

(
6

36

)
(1)

E [X ] = 1

(
30

36

)
+ 2

(
6

36
·

30

36

)
+ 3

(
6

36
·

6

36
· 1
)

=
43

36
= 1.194
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Monopoly Strategy

Consider the following inequality.

Revenue ≥ Cost

p(n) · R · E [X ] · Turn ≥ Cost

Turn =

(
Cost

p(n) · R · E [X ]

)
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Monopoly Strategy
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Monopoly Strategy
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Monopoly Strategy

Color Investment Turn
Orange Hotel 20
Light Blue Hotel 25
Dark Blue 3 House 29
Maroon 3 House 29
Red 3 House 29
Yellow 3 House 30
Railroad All 4 32
Green 3 Houses 34
Purple Hotel 37
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