Markov Chains in the Game of Monopoly

Ben Li

April 1, 2013

Markov Chains

Markov Chain: random process containing a sequence of variables $X_{1}, X_{2}, X_{3}, \ldots, X_{r}$ such that given the present state, the future state is conditionally independent of past states.

$$
p\left(X_{t+1}=j \mid X_{t}=i_{t}\right)
$$

Markov Chains

Examples:

- Games of chance
- Drunkard's walk
- Google PageRank
- Asset pricing models
- Baseball analysis

State of Economy Example

Figure: Directed Graph

$$
P=\left[\begin{array}{ccc}
0.9 & 0.075 & 0.025 \\
0.15 & 0.8 & 0.05 \\
0.25 & 0.25 & 0.5
\end{array}\right] .
$$

Figure: Transition Matrix

Long Term Markov Chain Behavior

Transition Matrix:

		To			
		1	2	\cdots	n
From	1	$\mathrm{a}_{1,1}$	$\mathrm{a}_{1,2}$	\cdots	$\mathrm{a}_{1, n}$
	2	$\mathrm{a}_{2,1}$	$\mathrm{a}_{2,2}$	\cdots	$\mathrm{a}_{2, n}$
	\vdots	\vdots	\vdots	\ddots	\vdots
	n	$\mathrm{a}_{n, 1}$	$\mathrm{a}_{n, 2}$	\cdots	$\mathrm{a}_{n, n}$

Long Term Markov Chain Behavior

Define p as the probability state distribution of i th row vector, with transition matrix, A. Then at time $t=1$,

$$
p A=p_{1}
$$

Long Term Markov Chain Behavior

Define p as the probability state distribution of i th row vector, with transition matrix, A. Then at time $t=1$,

$$
p A=p_{1}
$$

Taking subsequent iterations, the Markov chain over time develops to the following

$$
(p A) A=p A^{2}, p A^{3}, p A^{4}
$$

State of Economy Example

For example if at time t we are in a bear market, then 3 time periods later at time $t+3$ the distribution is,

$$
p A^{3}=p_{3}
$$

$$
\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
.9 & .075 & .025 \\
.15 & .8 & .05 \\
.25 & .25 & .5
\end{array}\right]^{3}=\left[\begin{array}{lll}
.3575 & .56825 & .07425
\end{array}\right]
$$

Long Term Markov Chain Behavior

To determine stationary state distributions, we must find a probability distribution p which satisfies the condition

$$
p A=p
$$

$$
\left[\begin{array}{llll}
p(1) & p(2) & \cdots & p(n)
\end{array}\right]\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}
\end{array}\right]=\left[\begin{array}{llll}
p(1) & p(2) & \cdots & p(n)
\end{array}\right]
$$

Long Term Markov Chain Behavior

However, there is an easier way to determine stationary probability distributions. Let's reverse our thinking and consider the probability of being in a certain state at $t+1$.

- $p(1)=.9 p(1)+.15 p(2)+.25 p(3)$,
- $p(2)=.075 p(1)+.8 p(2)+.25 p(3)$,
$\triangleright p(3)=.025 p(1)+.05 p(2)+.5 p(3)$,
- with the condition, $p(1)+p(2)+p(3)=1$

Four Square Circuit

Four Square Circuit

After the first throw, the probabilities of landing on each square are:

$$
p_{1}(1)=\frac{1}{6} \quad p_{1}(2)=\frac{1}{2} \quad p_{1}(3)=\frac{1}{3} \quad p_{1}(4)=0
$$

After two throws, the probabilities of landing on each square are:

$$
p_{2}(1)=\frac{2}{9} \quad p_{2}(2)=\frac{1}{2} \quad p_{2}(3)=\frac{5}{18} \quad p_{2}(4)=0
$$

Four Square Circuit

Let $p_{t}(n)$ represent the probability of landing on square n after t die rolls.

- $p_{0}(1)=1, \quad p_{0}(2)=p_{0}(3)=p_{0}(4)=0$.
- $p_{t+1}(1)=\frac{1}{6} p_{t}(1)+\frac{1}{6} p_{t}(2)+\frac{2}{6} p_{t}(3)+\frac{2}{6} p_{t}(4)$,
- $p_{t+1}(2)=\frac{3}{6} p_{t}(1)+\frac{3}{6} p_{t}(2)+\frac{3}{6} p_{t}(3)+\frac{3}{6} p_{t}(4)$,
- $p_{t+1}(3)=\frac{2}{6} p_{t}(1)+\frac{2}{6} p_{t}(2)+\frac{1}{6} p_{t}(3)+\frac{1}{6} p_{t}(4)$,
- $p_{t+1}(4)=0$.

Four Square Circuit

$$
\begin{aligned}
& p(1)=\frac{1}{6} p(1)+\frac{1}{6} p(2)+\frac{2}{6} p(3) \\
& p(2)=\frac{3}{6} p(1)+\frac{3}{6} p(2)+\frac{3}{6} p(3) \\
& p(3)=\frac{2}{6} p(1)+\frac{2}{6} p(2)+\frac{1}{6} p(3) \\
& p(4)=0
\end{aligned}
$$

with the condition,

$$
p(1)+p(2)+p(3)+p(4)=1
$$

Four Square Circuit

$$
\left(\begin{array}{cccc|c}
1 & 1 & 1 & 1 & 1 \\
\frac{5}{6} & -\frac{1}{6} & -\frac{1}{3} & 0 & 0 \\
-\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & 0 & 0 \\
-\frac{1}{3} & -\frac{1}{3} & \frac{5}{6} & 0 & 0
\end{array}\right) \xrightarrow{\text { row reduce echelon form }}\left(\begin{array}{cccc|c}
1 & 0 & 0 & \frac{3}{14} & \frac{3}{14} \\
0 & 1 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 1 & \frac{2}{7} & \frac{2}{7} \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Application to Monopoly

Modifications

- 40 squares
- Doubles Rule
- Community Chest and Chance Cards

Application to Monopoly

Modifications

- 40 squares
- Doubles Rule
- Community Chest and Chance Cards

Markov Chain with $3 \times 40=120$ states

Stable Probabilties

Square	Property	Probability	Square	Property	Probability
0	Go	0.02914	20	Free Parking	0.02825
1	Mediterranean Avenue	0.02007	21	Kentucky Avenue	0.02614
2	Community Chest	0.01775	22	Chance	0.01045
3	Baltic Avenue	0.02037	23	Indiana Avenue	0.02567
4	Income Tax	0.02193	24	Illinois Avenue	0.02993
5	Reading Railroad	0.02801	25	B\&O Railroad	0.02893
6	Oriental Avenue	0.02132	26	Atlantic Avenue	0.02537
7	Chance	0.00815	27	Ventnor Avenue	0.02519
8	Vermont Avenue	0.02187	28	Water Works	0.02651
9	Connecticut Avenue	0.02168	29	Marvin Gardens	0.02438
10	Just Visiting (Jail)	0.02139	30	Go To Jail	0.09457
11	St. Charles Place	0.02556	31	Pacific Avenue	0.02524
12	Electric Company	0.02614	32	North Carolina Avenue	0.02472
13	States Avenue	0.02174	33	Community Chest	0.02228
14	Virginia Avenue	0.02426	34	Pennsylvania Avenue	0.02353
15	Pennsylvania Railroad	0.02635	35	Short Line Railroad	0.02291
16	St. James Place	0.02680	36	Chance	0.00816
17	Community Chest	0.02296	37	Park Place	0.02060
18	Tennessee Avenue	0.02821	38	Luxury Tax	0.02052
19	New York Avenue	0.02812	39	Boardwalk	0.02483

Ben Li

Markov Chains in the Game of Monopoly

Monopoly Strategy

Considerations

- Rent Earnings
- Probability of Landing on Property
- Development Costs

Monopoly Strategy

Analyze by probability of landing on a square for a single turn，not a roll．

$$
\begin{gather*}
p(1)=\frac{30}{36}, \quad p(2)=\frac{6}{36}\left(\frac{30}{36}\right), \quad p(3)=\frac{6}{26}\left(\frac{6}{36}\right)(1) \tag{1}\\
E[X]=1\left(\frac{30}{36}\right)+2\left(\frac{6}{36} \cdot \frac{30}{36}\right)+3\left(\frac{6}{36} \cdot \frac{6}{36} \cdot 1\right)=\frac{43}{36}=1.19 \overline{4}
\end{gather*}
$$

Monopoly Strategy

Consider the following inequality.

$$
\text { Revenue } \geq \text { Cost }
$$

Monopoly Strategy

Consider the following inequality.

$$
\text { Revenue } \geq \text { Cost }
$$

$$
p(n) \cdot R \cdot E[X] \cdot \text { Turn } \geq \text { Cost }
$$

Monopoly Strategy

Consider the following inequality.

$$
\text { Revenue } \geq \text { Cost }
$$

$$
p(n) \cdot R \cdot E[X] \cdot \text { Turn } \geq \text { Cost }
$$

$$
\text { Turn }=\left(\frac{\text { Cost }}{p(n) \cdot R \cdot E[X]}\right)
$$

Monopoly Strategy

Property	Prob.	E[Rent]	Cost	Turns	E[Rent]	Cost	Turns	E[Rent]	Cost	Turns	E[Rent]	Cost	Tums	E[Rent]	Cost	Turns	E[Rent]	Cost	Turns
Mediterranean Avenue	0.02007	0.05	60	1252	0.24	170	710	0.72	220	306	2.16	270	126	3.84	320	84	5.99	370	62
Baltic Avenue	0.02037	0.10	60	617	0.49	170	350	1.46	220	151	4.38	270	62	7.79	320	42	10.95	370	34
Reading Railroad	0.02801	1.67	200	120	3.35	400	120	5.02	600	120	6.69	800	120						
Oriental Avenue	0.02132	0.15	100	655	0.76	370	485	2.29	420	184	6.88	470	69	10.19	520	52	14.01	570	41
Vermont Avenue	0.02187	0.16	100	639	0.78	370	473	2.35	420	179	7.05	470	67	10.45	520	50	14.37	570	40
Connecticut Avenue	0.02168	0.21	120	580	1.04	370	358	2.85	420	148	7.77	470	61	11.65	520	45	15.54	570	37
St. Charles Place	0.02556	0.31	140	459	1.53	540	354	4.58	640	140	13.74	740	54	19.08	840	45	22.90	940	42
States Avenue	0.02174	0.26	140	540	1.30	540	416	3.90	640	165	11.69	740	64	16.23	840	52	19.48	940	49
Virginia Avenue	0.02426	0.35	160	461	1.74	540	311	5.22	640	123	14.49	740	52	20.28	840	42	26.08	940	37
Pennsylvania Railroad	0.02635	1.57	200	128	3.15	400	128	4.72	600	128	6.29	800	128						
St. James Place	0.02680	0.45	180	402	2.24	660	295	6.40	760	119	17.61	860	49	24.01	960	40	30.41	1060	35
Tennessee Avenue	0.02821	0.47	180	382	2.36	660	280	6.74	760	113	18.53	860	47	25.27	960	38	32.01	1060	34
New York Avenue	0.02812	0.54	200	373	2.69	660	246	7.39	760	103	20.15	860	43	26.87	960	36	33.59	1060	32
Kentucky Avenue	0.02614	0.56	220	392	2.81	830	296	7.81	980	126	21.86	1130	52	27.32	1280	47	32.78	1430	44
Indiana Avenue	0.02567	0.55	220	399	2.76	830	301	7.67	980	128	21.46	1130	53	26.83	1280	48	32.19	1430	45
Illinois Avenue	0.02993	0.71	240	336	3.57	830	233	10.72	980	92	26.81	1130	43	33.07	1280	39	39.32	1430	37
B\&O Railroad	0.02893	1.73	200	116	3.46	400	116	5.18	600	116	6.91	800	116						
Atlantic Avenue	0.02537	0.67	260	390	3.33	950	285	10.00	1100	110	24.24	1250	52	29.55	1400	48	34.85	1550	45
Ventnor Avenue	0.02519	0.66	260	393	3.31	950	288	9.93	1100	111	24.07	1250	52	29.34	1400	48	34.60	1550	45
Marvin Gardens	0.02438	0.70	280	401	3.49	950	272	10.48	1100	105	24.75	1250	51	29.85	1400	47	34.94	1550	45
Pacific Avenue	0.02524	0.78	300	383	3.92	1120	286	11.76	1320	113	27.13	1520	57	33.16	1720	52	38.44	1920	50
North Carolina Avenue	0.02472	0.77	300	391	3.84	1120	292	11.52	1320	115	26.57	1520	58	32.48	1720	53	37.65	1920	52
Pennsylvania Avenue	0.02353	0.79	320	407	4.22	1120	266	12.65	1320	105	28.11	1520	55	33.73	1720	51	39.35	1920	49
Short Line Railroad	0.02291	1.37	200	147	2.74	400	147	4.10	600	147	5.47	800	147						
Park Place	0.02060	0.86	350	407	4.31	950	221	12.30	1150	94	27.07	1350	50	31.99	1550	49	36.91	1750	48
Boardwalk	0.02483	1.48	400	270	5.93	950	161	17.79	1150	65	41.52	1350	33	50.42	1550	31	59.32	1750	30

Ben Li

Markov Chains in the Game of Monopoly

Monopoly Strategy

Ben Li

Markov Chains in the Game of Monopoly

Monopoly Strategy

Color	Investment	Turn
Orange	Hotel	20
Light Blue	Hotel	25
Dark Blue	3 House	29
Maroon	3 House	29
Red	3 House	29
Yellow	3 House	30
Railroad	All 4	32
Green	3 Houses	34
Purple	Hotel	37

Jorg Bewersdorff, Luck, Logic and White Lies: The Mathematics of Games, A K Peters (2005), 106-120.J. Laurie Snell Finite Markov Chains and their Applications, The American Mathematical Monthly (1959), 66 (2), 99-104.

