What lurks beneath the folds? The mathematics of folding on a grid Ben MacDonald, Massachusetts Academy of Math and Science at WPI Professor Cristina Ballantine, College of the Holy Cross

History

Some Terminology

- Stack
- Point of View of the Folder
- Fold
- Step
- Cell Sequence
- Fold Sequence
- Family

$2^{n-i} \times 2^{n-i} \times 4^{i}$ for n = 2 and i = 0

1α	2α	3α	4α
5α	6α	7α	8α
9α	10α	11α	12α
13α	14α	15α	16α

Influence of Grid Size

n	Permutations	Sequences	Distinct Sequences	Families
	(4 ⁿ)!	32 ⁿ	16 ⁿ	2 ⁴ⁿ⁻²
0	1	1	1	0.25
1	24	32	16	4
2	2.09E+13	1024	256	64
3	1.27E+89	32768	4096	1024

Vertical Folds

L+

R+

L-

B-

Horizontal Folds

1	2 \	3	4
5	6	7	8
9	10	11	12
13	14	15	16

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

B+

T+

T-

В-

Some Terminology

- Stack
- Point of View of the Folder
- Fold
- Step
- Cell Sequence
- Fold Sequence
- Family

Fold Sequences by Family for n = 1

n = 1			
Fold Sequence	Fold Sequence	Final Cell Sequence	
L+T+	R+B-	2β, 1α, 3β, 4α	
L+B+	R+T-	4β, 3α, 1β, 2α	
L-T-	R-B+	4α, 3β, 1α, 2β	
L-B-	R-T+	2α, 1β, 3α, 4β	
L+B-	R+T+	1β, 2α, 4β, 3α	
L+T-	R+B+	3β, 4α, 2β, 1α	
L-B+	R-T-	3α, 4β, 2α, 1β	
L-T+	R-B-	1α, 2β, 4α, 3β	
T+L+	B+L-	3β, 2α, 1β, 3α	
T+R+	B+R-	4β, 1α, 2β, 4α	
T-R+	B-L-	4α, 2β, 1α, 3β	
T-L+	B-R-	3α, 1β, 2α, 4β	
T+L-	B+R+	2β, 4α, 3β, 1α	
T+R-	B+L+	1β, 3α, 4β, 2α	
T-R-	B-L+	1α, 3β, 4α, 2β	
T-L-	B-R+	2α, 4β, 3α, 1β	

Transformations

- Sequence Preserving Transformations
- Sequence Reversing Transformations
- α/β Reversing Transformations
- Numerical Reversing Transformations
- Composition Rules

Sequence Preserving Transformations

n = 1		
Fold Sequence	Fold Sequence	Final Cell Sequence
L+T+	R+B-	2β, 1α, 3β, 4α

$$L+T+\xrightarrow{cscc}R+B-$$

Sequence Reversing Transformations

n = 1		
Fold Sequence	Fold Sequence	Final Cell Sequence
L+T+	R+B-	2β, 1α, 3β, 4α
L-T-	R-B+	4α, 3β, 1α, 2β

$$L+T+\stackrel{SCSC}{\longleftrightarrow} L-T-$$

α/β Reversing Transformations

n = 1		
Fold Sequence	Fold Sequence	Final Cell Sequence
L+T+	R+B-	2β, 1α, 3β, 4α
L-B-	R-T+	2α, 1β, 3α, 4β

$$L+T+ \stackrel{SCCC}{\longleftrightarrow} L-B-$$

Numerical Reversing Transformations

n = 1			
Fold Sequence	Fold Sequence	Final Cell Sequence	
L+T+	R+B-	2β, 1α, 3β, 4α	
L+B+	R+T-	4β, 3α, 1β, 2α	

$$L+T+\xrightarrow{SSCS}L+B+$$

Composing Transformations

$$CSCC \circ SCCC = CCSS \qquad \begin{array}{c} C & S & C & C \\ + & S & C & C & C \\ \hline C & C & S & S \\ \hline C & C & C & C \\ \hline C & C & S & S \\ \hline C & C & C & C \\ \hline C & C & S & S \\ \hline C & C & C & C \\ \hline C & C & S & S \\ \hline C & C & S & S \\ \hline C & C & S & S \\ \hline C & C & S & S \\ \hline C & C & S & S \\ \hline C & C & C & C \\ \hline C & C & S & S \\ \hline C & C & S & S \\ \hline C & C & C & C \\ \hline C & C & S & S \\ \hline C & C & C & C \\ \hline C & C & S & S \\ \hline C & C & C & C \\ \hline C & C & S & S \\ \hline C & C & C & C \\ \hline C & C & S & S \\ \hline C & C & C & C \\ \hline C & C & S & S \\ \hline C & C & C & C \\ \hline C & C & S & S \\ \hline C & C & C & C \\ \hline C & C & S & S \\ \hline C & C & C & C \\ \hline C & C & S & S \\ \hline C & C & C & C \\ \hline C & C & S & S \\ \hline C & C & C & C \\ \hline C & C & S & S \\ \hline C & C & C & C \\ \hline C & C & S & S \\ \hline C & C & C & C \\ \hline C & C & S & S \\ \hline C & C & C & C \\ \hline C & C & S & S \\ \hline C & C & C & C \\ \hline$$

Applications

- Stacked computer chips
- Solar panels (space)
- Encryption
- Air bags
- Threading/computers

References

- Legendre, S. (2013). Foldings and Meanderings. arXiv:1302.2025v1 [math.CO]
 8 Feb 2013. Retrieved February 10, 2013 from http://arxiv.org/pdf/1302.2025v1.pdf
- Hull, Thomas (2006). Project Origami: Activities for Exploring Mathematics. A K Peters, Ltd. ISBN 978-1-56881-258-8.
- Robert Lang's website: langorigami.com
- Pictures:
 - http://spaceports.blogspot.com/2007_11_01_archive.html
 - http://www.wired.com/dangerroom/2013/02/icecool/

Properties

P1. The grid, or piece of paper A_i , is a stack with dimensions $2^{n-i} \times 2^{n-i} \times 4^i$.

- P2. For any given n, the number of folds performed to transform the piece of paper into a final stack will be 2n.
- P3. When a grid has been completely folded into a final stack, i = n.

Properties

P4. For all *n*, there exist eight possible first folds and four possible second folds for each step.

P5. Applying one step (which is two folds, one across each axis) to *A* will increment the index *i* by one and restore the front face of the grid to a square.

Properties

P6. The fold sequence is a sequence of length 2*n* where each pair of elements consists of one element from the set {L+, L-, R+, R-} and another element from the set {T+, T-, B+, B-}. It doesn't matter which set is selected from first.

P7. The same sequence can result from multiple folding sequences.

- T1. For any n, folding the grid allows for a total of 32^n sequences to be generated.
- T2. The α and β for any final cell sequence will always be alternating.
- T3. A final stack can start with either α or β and the very first fold determines the α/β sequence.

- T4. For any n, there are 2^n ways to generate a distinct sequence. This also means that there are 16^n distinct sequences.
- T5. For any n, there exist 2^{4n-2} possible families.
- T6. For n=1, every member of a family starts with either $\{L, R\}$ or $\{T, B\}$. In other words, all fold sequences of a family are generated by an initial fold that is always over the same axis.

- T4. For any n, there are 2^n ways to generate a distinct sequence. This also means that there are 16^n distinct sequences.
- T5. For any n, there exist 2^{4n-2} possible families.
- T6. For n=1, every member of a family starts with either $\{L, R\}$ or $\{T, B\}$. In other words, all fold sequences of a family are generated by an initial fold that is always over the same axis.

- T7. For n=1, pairs of fold sequences related by the transformation CSCC generate identical final cell sequences.
- T8. For n=1, pairs of fold sequences related by the transformation SCCC generate two final cell sequences that have the same cell number ordering but have swapped α and β . In other words, the cell number ordering is preserved whereas the α/β sequence is reversed.

T9. For n=1, pairs of fold sequences related by the transformation SSCS generate two final cell sequences that have the same α/β sequence but the cell number ordering is reversed. In other words, α/β sequence is preserved whereas the cell number ordering is reversed.

T10. For n=1, pairs of fold sequences related by the transformation SCSC generate two final cell sequences that have the reversed α/β sequence and the cell number ordering is reversed. In other words, the α/β sequence and the cell numbering order are reversed.

T11. The results of applying multiple transformations to a fold sequence follow the addition properties described on the next slide.