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DISTINCT PRIME DIVISOR FUNCTION

I Any positive integer n factors uniquely as

n = pe1
1 pe2

2 · · · p
ed
d

where p1, p2, p3, ..., pd are distinct prime numbers. Let d(n)
be the number of distinct prime factors of n.

I d(9) = 1

I d(6) = 2

I Our goal in our project was to determine whether a
specific relationship could be used to approximate

M

∑
n=N+1

d(n) (for arbitrary integers M and N).
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DEFINITIONS

I Let F2 denote the field with 2 elements, so F2 = Z/2.

I For each n, there exists a modular curve X0(n) with genus
g(n).

I An involution is a map f such that composing f with itself
gives the identity map

ff = id
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DEFINITIONS

I From X0(n) one can obtain (up to isomorphism) an
involution τ(n) on F

2g(n)
2 .

I It is known that for n odd, there are exactly

2g(n)+2d−1−1

elements of F
2g(n)
2 which are fixed by this involution τ(n).

I d(n) is determined by the involution τ(n) and the genus
g(n).

I Can we model the number of prime factors of an integer
by a random involution?
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NUMBER OF FINITE SETS

I It is often useful to count objects X, weighted by 1
|Aut(X)| ,

where Aut(X) denotes the group of automorphisms of X
(isomorphisms from X to itself).

I Every nonempty finite set is in bijection with a set of the
form {1, 2, . . . , n}, so up to isomorphism, the finite sets are
∅, {1}, {1, 2}, {1, 2, 3}, ...

I For a finite set with k elements, the number of
automorphisms is precisely the number of permutations of
k elements: k! = (k)(k− 1)...(2)(1)

I Thus, the ‘number’ of random finite sets is
∞

∑
k=0

1
k!

= e.
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Fm
2 VECTOR SPACES

I For any positive integer m, Fm
2 has the structure of an

F2-vector space.

I The converse is also true: any F2-vector space is
isomorphic to Fm

2 for a positive integer m.
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AUTOMORPHISMS OF Fm
2

I The automorphisms of Fm
2 are the elements of GLm F2, or

the group of m x m invertible matrices.

I

|GLm F2| =
m

∏
n=1

(2m − 2n−1)

I Thus, the number of F2-vector spaces of dimension m is
equal to

∞

∑
m=1

m

∏
n=1

1
2m − 2n−1
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F2[Z/2] MODULES

I An F2-vector space with involution is equivalent to a
module over the ring F2[Z/2].

I This identification is useful in determining the number of
automorphisms of F2-vector spaces with involution.
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F2[Z/2]-MODULES

I Since the involution f is acting on Fm
2 , it will be in the form

of an m×m matrix.

Theorem

Any F2[Z/2]-module is isomorphic to F2[Z/2]a x Fb
2 for a unique

pair of non-negative integers (a, b).

I (Serge Lang’s Algebra, Ch. 3, Sec. 7)
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F2[Z/2]-MODULES
I In general, the F2[Z/2]-module F2[Z/2]a x Fb

2
corresponds to the F2-vector space F2a+b

2 together with an
involution f whose (2a + b) x (2a + b) matrix is given by:



0 1 0 0 · · · 0 0 0 0 0
1 0 0 0 · · · 0 0 0 0 0
...

...
...

...
. . .

...
...

...
...

...
0 0 0 0 · · · 0 1 0 0 0
0 0 0 0 · · · 1 0 0 0 0
0 0 0 0 · · · 0 0 1 0 0
...

...
...

...
. . .

...
...

...
. . .

...
0 0 0 0 · · · 0 0 0 0 1


(where there are a copies of

(
0 1
1 0

)
matrices diagonally for

the upper left 2a x 2a corner of the matrix, followed by b
copies of 1’s along the diagonal for the bottom right b× b
corner).
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FIXED POINTS IN A F2-VECTOR SPACE
I In F2[Z/2]a x Fb

2 there are (2a)(2b) = 2a+b fixed points.

I Recall that the involution τ(n) on F
2g(n)
2 has exactly

2g(n)+2d−1−1 fixed points.

a + b = g(n) + 2d−1 − 1
2a + b = 2g(n)

I Solving this system yields

a = g(n)− 2d−1 + 1

and
b = 2(2d−1 − 1)

I Rearranged:
d = log2 (g− a + 1)
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AUTOMORPHISMS OF F2[Z/2]a X Fb
2

Theorem

Let (a, b) be a pair of non-negative integers. The number of
automorphisms of the F2[Z/2]-module F2[Z/2]a x Fb

2 is exactly

|GLa F2||GLb F2||Matbxa F2|2|Mataxa F2|.

I Using the expressions for |GLm F2| that we developed
earlier, we can simplify the automorphism equation to the
following:

|Aut(a, b)| =
(

a

∏
x=1

(2a − 2x−1)

)(
b

∏
y=1

(2b − 2y−1)

)
(2ab)2(2a2

)
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AUTOMORPHISMS OF F2[Z/2]a X Fb
2

I

|Aut(a, b)| ≈ C · 2a2+(a+b)2

for a certain constant C.
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COUNTING AND PROBABILITIES WITH F2-VECTOR

SPACES

I Given a natural number n and a pair (a, b) of non-negative
integers such that 2a + b = n, the probability that an
involution on Fn

2 is isomorphic to the involution
corresponding to F2[Z/2]a x Fb

2 is:

1/|Aut(a, b)|
∑a′,b′(1/|Aut(a, b)|) =

1
2a2+(a+b)2

b n
2 c

∑
a=0

1
2a2+(a+(n−2a))2

where the sum is taken over all pairs of non-negative
integers (a′, b′) such that 2a′ + b′ = n.
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COUNTING AND PROBABILITIES WITH F2-VECTOR

SPACES

I For F2[Z/2]a x Fb
2 , the number of fixed points is 2a+b.

Therefore, the expected number of fixed points of an
involution on F2 is:

∑
a′,b′

f (a′, b′) · 2a+b

where f (a, b) is fraction from the previous slide which
represents the probability of an involution on Fn

2 being
isomorphic to F2[Z/2]a x Fb

2 , and the sum is being taken
over all (a′, b′) such that 2a′ + b′ = n.



INTRODUCTION AUTOMORPHISMS RANDOM INVOLUTIONS PROJECT Acknowledgments

COUNTING AND PROBABILITIES WITH F2-VECTOR

SPACES
I The total number of F2-vector spaces with involution is

given by the sum

∞

∑
n=1

∑
a′,b′

1
Aut(a′, b′)

=
∞

∑
n=1

b n
2 c

∑
a=0

1
Aut(a, n− 2a)

I Let the above sum be D. Then the probability that a
randomly chosen F2-vector space with involution will
have dimension n is

∑
a′,b′

1
Aut(a′, b′)

∞

∑
n=1

b n
2 c

∑
a=0

1
Aut(a, n− 2a)

=

b n
2 c

∑
a=0

1
Aut(a, n− 2a)

∞

∑
n=1

b n
2 c

∑
a=0

1
Aut(a, n− 2a)
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RANDOM INVOLUTIONS AND τ(n)

I Goal: compare random involutions with τ(n) (and thereby
the approximations for d(n)) for odd values of n.

I Computing the expected value of d(n) using the involution
τ(n) gives the following formula:

g(n)

∑
a=1

log2 (g(n)− a + 1)
Aut(a, 2g(n)− a)

g(n)

∑
n=1

1
Aut(a, 2g(n)− a)

I Analysis with Mathematica suggests that this value tends
to a constant.
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