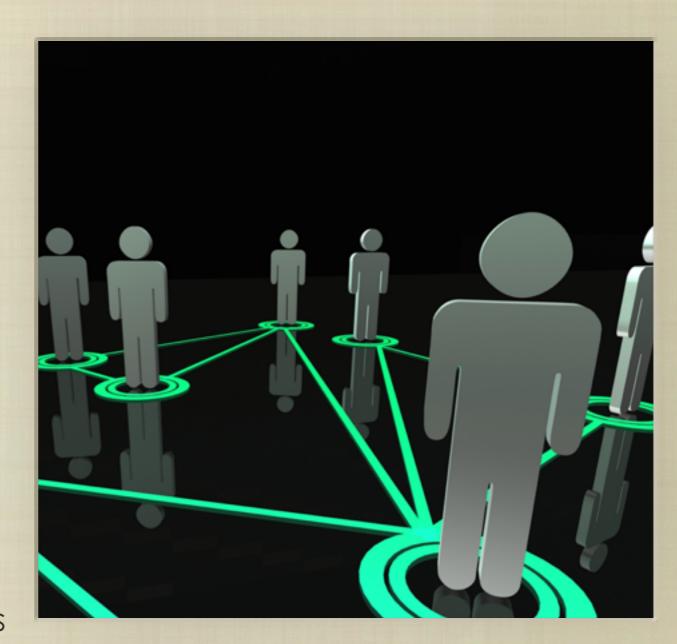
Ability of Collaborative Social Networks to Complete Directed Acyclic Task


Jize Zhang, Rallye Shen, Mäneka Puligandla & Kelly Zaccheo

Smith College Advisor: Ben Baumer

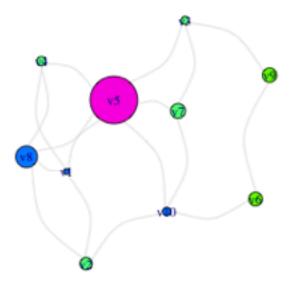
Overview

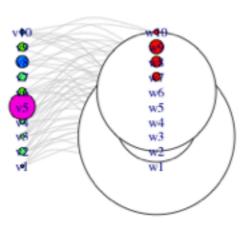
- $G = (G_s, G_T, R)$
 - composite graph
- $G_s = (V_s, E_s)$
 - undirected social network;
 - f assigns V_s (expertise)
- $G_t = (V_t, E_t)$
 - directed acyclic graph of tasks:
 - g assigns V_t (task difficulty)
- R: assignment of researchers to tasks

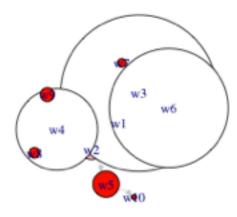
Collaboration

- In theory collaboration should increase productivity
- Desirable Properties:
 - Monotonic, Submodular

$$c(V, E) = \left(1 + \frac{|E|}{\binom{|V|}{2}}\right) \cdot \sum_{v \in V} f(v)$$


$$c(V, E) = \left[\log\left(\sum_{v \in v'} \text{ expertise } (v) + 1\right)\right] \cdot \left(1 + \frac{\log(|E| + 1)}{\log\binom{n}{2} + 1}\right)$$


$$c(V, E) = \log \sum_{v \in v'} [\text{ expertise } (v) \times ((\text{ deg}(v) \text{ in } G') + 1)]$$


G1 (Social Network) Erdos renyi (gnp) graph

R (Assignments) Bipartite Mapping

G2 (Task Graph) Tree

|V| = 10 , |E| = 17 , Edge Density = 0.378 Collective Expertise = 35.26 |E| = 50 , Edge Density = 0.5 Alls Tasks are Not Completed |V| = 10 , |E| = 9 , Diameter = 3 5 complete, 2 solvable, 3 remaining Max Difficulty = 46.58

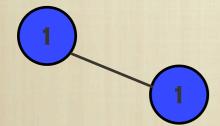
OPTIMIZATION

Goals:

- For each researcher: assume no limit on number of assignments
- Minimize total number of assignments to complete each task

Algorithms

Greedy


- Idea:
 - Assign best researcher to all tasks
- If all tasks are not complete...
 - Assign next best researcher to the remaining incomplete tasks
 - Problem of finding next 'best' researcher
 - Compute collaboration function of best researcher with all remaining researchers and choose the researchers that maximizes the collaboration function

Counter-Examples

- Greedy is not optimal
- At best 3/2 approximation
- Counterexample: for any collaboration function

Demo

http://rstudio.smith.edu:3838/algorithms/

Future Work

- Compare collaboration functions
- Find algorithms that work better than greedy
- More realistic constraints
 - Ex: Cap number of tasks

