Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

Generalized Splines

Madeline Handschy, Julie Melnick, Stephanie Reinders

Smith College

April 1, 2013

Generalized Splines

Madeline Handschy, Julie Melnick, Stephanie Reinders

Generalized Splines

Madeline Handschy, Julie Melnick Stephanie Reinders

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

▶ Splines are used in engineering to represent objects.

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

▶ Splines are used in engineering to represent objects.

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

▶ Splines are used in engineering to represent objects.

We will use splines to graphically represent systems of congruences.

What is a System of Congruences?

Generalized Splines

Madeline Handschy, Julie Melnick Stephanie Reinders

What is a System of Congruences?

Generalized Splines

Madeline Handschy, Julie Melnick Stephanie Reinders ▶ We say $x \equiv y \mod a$ if x - y is a multiple of n.

Example

$$3 \equiv 13 \mod 5$$
 because $13 - 3 = 10 = 2 \cdot 5$

What is a System of Congruences?

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders ▶ We say $x \equiv y \mod a$ if x - y is a multiple of n.

Example

$$3 \equiv 13 \mod 5 \text{ because } 13 - 3 = 10 = 2 \cdot 5$$

➤ A spline is a graphical representation of a system of congruences. We label the nodes of the graph with the variables and the edges with the moduli. Below is the spline for the above congruence.

Paths with 3 Vertices

Generalized Splines

Madeline Handschy, Julie Melnick Stephanie Reinders

$$x \equiv y \mod a_1$$

 $y \equiv z \mod a_2$

Why is this useful?

Generalized Splines

Madeline Handschy, Julie Melnick Stephanie

```
x_1 \equiv x_2 \mod a_1 x_2 \equiv x_3 \mod a_2 x_3 \equiv x_4 \mod a_3

x_4 \equiv x_5 \mod a_4 x_5 \equiv x_6 \mod a_5 x_6 \equiv x_1 \mod a_6

x_5 \equiv x_1 \mod a_7 x_5 \equiv x_2 \mod a_8 x_5 \equiv x_3 \mod a_9

x_4 \equiv x_2 \mod a_{10} x_4 \equiv x_1 \mod a_{11} x_4 \equiv x_6 \mod a_{12}
```

Why is this useful?

Generalized Splines

Madeline Handschy, Julie Melnicl Stephanie Reinders

```
x_1 \equiv x_2 \mod a_1 x_2 \equiv x_3 \mod a_2 x_3 \equiv x_4 \mod a_3

x_4 \equiv x_5 \mod a_4 x_5 \equiv x_6 \mod a_5 x_6 \equiv x_1 \mod a_6

x_5 \equiv x_1 \mod a_7 x_5 \equiv x_2 \mod a_8 x_5 \equiv x_3 \mod a_9

x_4 \equiv x_2 \mod a_{10} x_4 \equiv x_1 \mod a_{11} x_4 \equiv x_6 \mod a_{12}
```


Main Questions

Generalized Splines

Madeline Handschy Julie Melnio Stephanio Reinders

- Can we list all possible splines of a certain shape?
- Can we find a basis for the set of triangular splines?
- What can we find out about splines other than cycles?

General Triangle

Generalized Splines

Madeline Handschy, Julie Melnick Stephanie Reinders

$$x \equiv y \mod a_1$$
 $y \equiv z \mod a_2$ $z \equiv x \mod a_3$

Triangle Solutions

Generalized **Splines**

$$x \equiv y \mod a_1$$

$$x \equiv y \mod a_1$$
 $y \equiv z \mod a_2$ $z \equiv x \mod a_3$

$$z \equiv x \mod a_3$$

Generalized Splines

Madeline Handschy, Julie Melnicl Stephanie Reinders

System of Congruences

$$0 \equiv y \mod a_1$$
 $y \equiv z \mod a_2$ $z \equiv 0 \mod a_3$

Theorem

There is a minimal value for *y* such that a spline of this form exists.

Generalized **Splines**

$$0 \equiv y \mod 3$$

$$0 \equiv y \mod 3$$
 $y \equiv z \mod 4$ $z \equiv 0 \mod 5$

$$z \equiv 0 \mod 5$$

Chinese Remainder Theorem

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

System of Congruences

$$x \equiv a_1 \mod n_1$$

 $x \equiv a_2 \mod n_2$

There exists a solution x if the integers n_1, n_2 are coprime.

```
If gcd(n_1, n_2) \neq 1 a solution x exists if and only if a_1 \equiv a_2 mod gcd(n_1, n_2).
```

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

```
System of Congruences 0 \equiv y \mod a_1 \qquad \mathbf{z} \equiv \mathbf{y} \mod \mathbf{a}_2 \qquad \mathbf{z} \equiv \mathbf{0} \mod \mathbf{a}_3
```

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

System of Congruences

$$0 \equiv y \mod a_1$$
 $\mathbf{z} \equiv \mathbf{y} \mod \mathbf{a_2}$ $\mathbf{z} \equiv \mathbf{0} \mod \mathbf{a_3}$

By the Chinese Remainder Theorem, this system of congruences will have a solution if and only if

$$y \equiv 0 \mod \gcd(a_2, a_3)$$

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

System of Congruences

$$0 \equiv y \mod a_1$$
 $\mathbf{z} \equiv \mathbf{y} \mod \mathbf{a_2}$ $\mathbf{z} \equiv \mathbf{0} \mod \mathbf{a_3}$

By the Chinese Remainder Theorem, this system of congruences will have a solution if and only if

$$y \equiv 0 \mod \gcd(a_2, a_3)$$

▶ Thus $y = k \gcd(a_2, a_3)$ for some $k \in \mathbb{Z}$.

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

$$\mathbf{0} \equiv \mathbf{y} \mod \mathbf{a_1} \qquad y \equiv z \mod a_2 \qquad z \equiv 0 \mod a_3$$

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

System of Congruences

$$\mathbf{0} \equiv \mathbf{y} \mod \mathbf{a_1} \qquad y \equiv z \mod \mathbf{a_2} \qquad z \equiv 0 \mod \mathbf{a_3}$$

▶ Thus $y = \ell a_1$ for some $\ell \in \mathbb{Z}$.

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

$$\mathbf{0} \equiv \mathbf{y} \mod \mathbf{a_1} \qquad y \equiv z \mod \mathbf{a_2} \qquad z \equiv 0 \mod \mathbf{a_3}$$

- ▶ Thus $y = \ell a_1$ for some $\ell \in \mathbb{Z}$.
- ▶ Recall $y = k \gcd(a_2, a_3)$ for some $k \in \mathbb{Z}$.

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

$$\mathbf{0} \equiv \mathbf{y} \mod \mathbf{a_1} \qquad y \equiv z \mod \mathbf{a_2} \qquad z \equiv 0 \mod \mathbf{a_3}$$

- ▶ Thus $y = \ell a_1$ for some $\ell \in \mathbb{Z}$.
- ▶ Recall $y = k \gcd(a_2, a_3)$ for some $k \in \mathbb{Z}$.
- ▶ We want to minimize y . . .

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

$$\mathbf{0} \equiv \mathbf{y} \mod \mathbf{a_1} \qquad y \equiv z \mod \mathbf{a_2} \qquad z \equiv 0 \mod \mathbf{a_3}$$

- ▶ Thus $y = \ell a_1$ for some $\ell \in \mathbb{Z}$.
- ▶ Recall $y = k \gcd(a_2, a_3)$ for some $k \in \mathbb{Z}$.
- ▶ We want to minimize y . . .
- ▶ Let $y = \text{lcm}(\text{gcd}(a_2, a_3), a_1)$.

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

$$\begin{array}{c}
z \\
a_3 \\
a_1
\end{array} \\
0 \\
\text{lcm}(\gcd(a_2, a_3), a_1))$$

Next we check that a spline exists:

We must have a solution to the system of congruences

$$z \equiv \operatorname{lcm}(\gcd(a_2, a_3), a_1)) \mod a_2$$

 $z \equiv 0 \mod a_3$

By the Chinese Remainder Theorem, we have a solution z if and only if

$$lcm(gcd(a_2, a_3), a_1)) \equiv 0 \mod gcd(a_2, a_3).$$

General Square

Generalized Splines

Madeline Handschy, Julie Melnick Stephanie Reinders

$$x \equiv y \mod a_1$$

$$z \equiv w \mod a_3$$

$$y \equiv z \mod a_2$$

$$w \equiv x \mod a_4$$

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

$$x \equiv y \mod a_1$$

 $z \equiv w \mod a_3$

$$y \equiv z \mod a_2$$

 $w \equiv x \mod a_4$

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

System of Congruences

$$0 \equiv 0 \mod a_1$$

$$0 \equiv z \mod a_2$$

$$z \equiv w \mod a_3$$

$$w \equiv 0 \mod a_4$$

Rewrite this as...

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

System of Congruences

$$0 \equiv z \mod a_2$$
 $z \equiv w \mod a_3$ $w \equiv 0 \mod a_4$

This is essentially the same as a triangle.

Generalized Splines

Madeline Handschy, Julie Melnick Stephanie Reinders

$$0 \equiv y \mod a_1$$

 $z \equiv w \mod a_3$

$$y \equiv z \mod a_2$$

$$w \equiv 0 \mod a_4$$

Bases: Can we find a basis for the set of triangular splines?

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

Can we find a basis for the set of triangular splines?

Bases: What Solutions Have We Mentioned So Far?

Generalized Splines

Madeline Handschy, Julie Melnick Stephanie Reinders

Bases: What Solutions Have We Mentioned So Far?

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

In the center triangle, y is the minimal solution stated in the theorem we mentioned earlier. $y = lcm(a_1, gcd(a_2, a_3))$

Bases: What Solutions Have We Mentioned So Far?

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

In the center triangle, y is the minimal solution stated in the theorem we mentioned earlier. $y = lcm(a_1, gcd(a_2, a_3))$ We can write each of these solutions as a vector:

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \qquad \begin{pmatrix} z \\ y \\ 0 \end{pmatrix}, \qquad \begin{pmatrix} \mathsf{lcm}(a_2, a_3) \\ 0 \\ 0 \end{pmatrix}$$

Bases: Do these vectors form a basis?

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \qquad \begin{pmatrix} z \\ y \\ 0 \end{pmatrix}, \qquad \begin{pmatrix} \mathsf{lcm}(a_2, a_3) \\ 0 \\ 0 \end{pmatrix}$$

Do these vectors form a basis?

Bases: Do these vectors form a basis?

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \qquad \begin{pmatrix} z \\ y \\ 0 \end{pmatrix}, \qquad \begin{pmatrix} \mathsf{lcm}(a_2, a_3) \\ 0 \\ 0 \end{pmatrix}$$

Do these vectors form a basis?

► Goal 1: Show that every linear combination of these vectors is a solution.

Bases: Do these vectors form a basis?

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \qquad \begin{pmatrix} z \\ y \\ 0 \end{pmatrix}, \qquad \begin{pmatrix} \mathsf{lcm}(a_2, a_3) \\ 0 \\ 0 \end{pmatrix}$$

Do these vectors form a basis?

- ► Goal 1: Show that every linear combination of these vectors is a solution.
- ► Goal 2: Show that every solution can be written as a linear combination of these vectors.

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

$$\alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

$$\alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} z \\ y \\ 0 \end{pmatrix}$$

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie

$$\alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} z \\ y \\ 0 \end{pmatrix} + \gamma \begin{pmatrix} \mathsf{lcm}(a_2, a_3) \\ 0 \\ 0 \end{pmatrix}$$

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

$$\alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} z \\ y \\ 0 \end{pmatrix} + \gamma \begin{pmatrix} \mathsf{lcm}(a_2, a_3) \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} \alpha + \beta z + \gamma \operatorname{lcm}(a_2, a_3) \\ \alpha + \beta y \\ \alpha \end{pmatrix}$$

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

$$\alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} z \\ y \\ 0 \end{pmatrix} + \gamma \begin{pmatrix} \mathsf{lcm}(a_2, a_3) \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} \alpha + \beta z + \gamma \operatorname{lcm}(a_2, a_3) \\ \alpha + \beta y \\ \alpha \end{pmatrix}$$

Is this a solution?

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

Is this a solution?

$$\alpha + \beta z + \gamma \operatorname{lcm}(a_2, a_3)$$

$$a_3 \qquad a_2 \qquad \alpha + \beta y$$

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

Is this a solution?

$$\begin{array}{c|c} \alpha + \beta z + \gamma \operatorname{lcm}(a_2, a_3) \\ \\ a_3 & \alpha + \beta y \end{array}$$

Remember: $y = lcm(a_1, gcd(a_2, a_3))$

Generalized Splines

Madeline Handschy, ulie Melnick Stephanie

Check edge a_1 :

$$\alpha + \beta z + \gamma \operatorname{lcm}(a_2, a_3)$$

$$a_3 \sum_{a_1}^{a_2} \alpha + \beta \operatorname{lcm}(a_1, \operatorname{gcd}(a_2, a_3))$$

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

Check edge a₁:

$$\alpha + \beta z + \gamma \operatorname{lcm}(a_2, a_3)$$

$$a_3 \sum_{a_1}^{a_2} \alpha + \beta \operatorname{lcm}(a_1, \operatorname{gcd}(a_2, a_3))$$

Need to show: $\alpha + \beta \operatorname{lcm}(\gcd(a_2, a_3), a_1) \equiv \alpha \mod a_1$

Generalized Splines

Madeline Handschy, Julie Melnick Stephanie Reinders

Check edge a₁:

$$\alpha + \beta z + \gamma \operatorname{lcm}(a_2, a_3)$$

$$a_3 \sum_{a_1}^{a_2} \alpha + \beta \operatorname{lcm}(a_1, \operatorname{gcd}(a_2, a_3))$$

Need to show: $\alpha + \beta \operatorname{lcm}(\gcd(a_2, a_3), a_1) \equiv \alpha \mod a_1$

We can write $lcm(gcd(a_2, a_3), a_1)$ as some multiple k of a_1 . Then we have

$$\alpha + \beta ka_1$$

Generalized Splines

Madeline Handschy, Julie Melnicl Stephanie Reinders

Check edge a₁:

$$\alpha + \beta z + \gamma \operatorname{lcm}(a_2, a_3)$$

$$a_3 \sum_{a_1}^{a_2} \alpha + \beta \operatorname{lcm}(a_1, \operatorname{gcd}(a_2, a_3))$$

Need to show: $\alpha + \beta \operatorname{lcm}(\gcd(a_2, a_3), a_1) \equiv \alpha \mod a_1$

We can write $lcm(gcd(a_2, a_3), a_1)$ as some multiple k of a_1 . Then we have

$$\alpha + \beta ka_1 = \alpha + na_1$$
 for some integer n .

Generalized Splines

Madeline Handschy, Julie Melnicl Stephanie Reinders

Check edge a₁:

$$\alpha + \beta z + \gamma \operatorname{lcm}(a_2, a_3)$$

$$a_3 \sum_{a_1}^{a_2} \alpha + \beta \operatorname{lcm}(a_1, \operatorname{gcd}(a_2, a_3))$$

Need to show: $\alpha + \beta \operatorname{lcm}(\gcd(a_2, a_3), a_1) \equiv \alpha \mod a_1$

We can write $lcm(gcd(a_2, a_3), a_1)$ as some multiple k of a_1 . Then we have

$$\alpha + \beta ka_1 = \alpha + na_1$$
 for some integer n .

Thus $\alpha + \beta \operatorname{lcm}(\gcd(a_2, a_3), a_1) \equiv \alpha \mod a_1$.

Generalized Splines

Madeline Handschy, Julie Melnicl Stephanie Reinders

We showed that the first edge, a_1 , is satisfied.

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

We showed that the first edge, a_1 , is satisfied. In a similar fashion we can show that edges a_2 and a_3 are also satisfied.

Theorem

Every linear combination of

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \qquad \begin{pmatrix} z \\ y \\ 0 \end{pmatrix}, \qquad \begin{pmatrix} \mathsf{lcm}(a_2, a_3) \\ 0 \\ 0 \end{pmatrix}$$

is a solution to a triangular spline.

Bases: Work in Progress

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

► Goal 1 Complete: We showed every linear combination of the vectors is a solution.

Bases: Work in Progress

Generalized Splines

Madeline Handschy Julie Melnio Stephanio Reinders

- ▶ Goal 1 Complete: We showed every linear combination of the vectors is a solution.
- ► Goal 2: Every solution can be written as a linear combination of the vectors. We are still working to prove this.

Notation

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

- ▶ Let S_n = the star graph with n vertices of degree 1
- $ightharpoonup K_n$ = the complete graph on n vertices
- W_n = the wheel graph on n vertices
- $ightharpoonup C_n$ = the cycle graph on n vertices.

Chinese Remainder Theorem: Star Graphs

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

System of Congruences

$$x \equiv a_1 \mod n_1$$

 $x \equiv a_2 \mod n_2$

There exists a solution x if the integers n_1, n_2 are coprime.

If $\gcd(n_1, n_2) \neq 1$ a solution x exists if and only if $a_1 \equiv a_2$ mod $\gcd(n_1, n_2)$.

Wheels: Relationship to star graphs

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

Corollary: A sufficient condition for W_n to have non-trivial solutions is for the labels of the edges adjacent to the "center vertex" (i.e. the vertex of degree n - 1) to be pairwise relatively prime.

Complete Graphs: Relationship to star graphs

Generalized Splines

Madeline Handschy, Julie Melnic Stephanie Reinders

$$ightharpoonup K_n = K_{n-1} + S_{n-1}$$

$$K_n = C_3 + \sum_{i=3}^{n-1} S_i$$

▶ Corollary: A sufficient condition for K_n to have non-trivial solutions is for n-3 of the vertices to have the following condition on their adjacent edges: all n-1 edges adjacent to the vertex v_i have labels that are pairwise relatively prime.

Thanks!

Generalized Splines

Madeline Handschy, Iulie Melnic Stephanie Reinders

Thank you to

- Our advisor Professor Julianna Tymoczko
- The Smith College Department of Mathematics and Statistics
- ▶ The National Science Foundation, Grant DMS-1143716