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What is a Spline?

I Splines are used in engineering to represent objects.

I We will use splines to graphically represent systems of
congruences.
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What is a System of Congruences?

I We say x ≡ y mod a if x − y is a multiple of n.

Example

3 ≡ 13 mod 5 because 13− 3 = 10 = 2 · 5

I A spline is a graphical representation of a system of
congruences. We label the nodes of the graph with the
variables and the edges with the moduli. Below is the
spline for the above congruence.

x

y

a

3

13

5
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Paths with 3 Vertices

System of Congruences

x ≡ y mod a1

y ≡ z mod a2

x

y

z

a2

a1
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Why is this useful?

System of Congruences

x1 ≡ x2 mod a1 x2 ≡ x3 mod a2 x3 ≡ x4 mod a3

x4 ≡ x5 mod a4 x5 ≡ x6 mod a5 x6 ≡ x1 mod a6

x5 ≡ x1 mod a7 x5 ≡ x2 mod a8 x5 ≡ x3 mod a9

x4 ≡ x2 mod a10 x4 ≡ x1 mod a11 x4 ≡ x6 mod a12

x1 x2

x3

x4x5

x6
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Main Questions

I Can we list all possible splines of a certain shape?

I Can we find a basis for the set of triangular splines?

I What can we find out about splines other than cycles?
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General Triangle

System of Congruences

x ≡ y mod a1 y ≡ z mod a2 z ≡ x mod a3

x

y

z

a1

a2

a3



Generalized
Splines

Madeline
Handschy,

Julie Melnick,
Stephanie
Reinders

Triangle Solutions

System of Congruences

x ≡ y mod a1 y ≡ z mod a2 z ≡ x mod a3

1

1

1

a1

a2

a3

0

?

?

a1

a2

a3

0

0

lcm(a2, a3)

a1

a2

a3
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Existence of Solution as Application of CRT

System of Congruences

0 ≡ y mod a1 y ≡ z mod a2 z ≡ 0 mod a3

0

y

z

a1

a2

a3

Theorem

There is a minimal value for y such that a spline of this form
exists.
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Existence of Solution as Application of CRT

System of Congruences

0 ≡ y mod 3 y ≡ z mod 4 z ≡ 0 mod 5

0

y

z

3

4

5

0

3

15

3

4

5

0

12

20

3

4

5
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Chinese Remainder Theorem

System of Congruences

x ≡ a1 mod n1

x ≡ a2 mod n2

There exists a solution x if
the integers n1, n2 are
coprime.
If gcd(n1, n2) 6= 1 a
solution x exists if and
only if a1 ≡ a2
mod gcd(n1, n2).
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Existence of Solution as Application of CRT

System of Congruences

0 ≡ y mod a1 z ≡ y mod a2 z ≡ 0 mod a3

I By the Chinese Remainder Theorem, this system of
congruences will have a solution if and only if

y ≡ 0 mod gcd(a2, a3)

I Thus y = k gcd(a2, a3) for some k ∈ Z.
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Existence of Solution as Application of CRT

System of Congruences

0 ≡ y mod a1 y ≡ z mod a2 z ≡ 0 mod a3

I Thus y = `a1 for some ` ∈ Z.

I Recall y = k gcd(a2, a3) for some k ∈ Z.

I We want to minimize y . . .

I Let y = lcm(gcd(a2, a3), a1).
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Existence of Solution as Application of CRT

0

lcm(gcd(a2, a3), a1))

z

a1

a2
a3

Next we check that a spline exists:

I We must have a solution to the system of congruences

z ≡ lcm(gcd(a2, a3), a1)) mod a2

z ≡ 0 mod a3

I By the Chinese Remainder Theorem, we have a solution z
if and only if

lcm(gcd(a2, a3), a1)) ≡ 0 mod gcd(a2, a3).
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General Square

System of Congruences

x ≡ y mod a1 y ≡ z mod a2

z ≡ w mod a3 w ≡ x mod a4

x y

zw

a1

a2

a3

a4
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Square Solutions

System of Congruences

x ≡ y mod a1 y ≡ z mod a2

z ≡ w mod a3 w ≡ x mod a4

1 1

11

a1

a2

a3

a4

0 ?

??

a1

a2

a3

a4

0 0

??

a1

a2

a3

a4

0 0

0
lcm(a3, a4)

a1

a2

a3

a4
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Square Solutions

System of Congruences

0 ≡ 0 mod a1 0 ≡ z mod a2

z ≡ w mod a3 w ≡ 0 mod a4

Rewrite this as...
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Square Solutions

System of Congruences

0 ≡ z mod a2 z ≡ w mod a3 w ≡ 0 mod a4

This is essentially the same as a triangle.

0 0

zw

a1

a2

a3

a4

0

z

w

a2

a3
a4
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Square Solutions

System of Congruences

0 ≡ y mod a1 y ≡ z mod a2

z ≡ w mod a3 w ≡ 0 mod a4

0 y

zw

a1

a2

a3

a4
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Bases: Can we find a basis for the set of triangular
splines?

Can we find a basis for the set of triangular splines?
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Bases: What Solutions Have We Mentioned So
Far?

1

1

1

a1

a2

a3

0

y

z

a1

a2

a3

0

0

lcm(a2, a3)

a1

a2

a3

In the center triangle, y is the minimal solution stated in the
theorem we mentioned earlier. y = lcm(a1, gcd(a2, a3))
We can write each of these solutions as a vector:1

1
1

 ,

z
y
0

 ,

lcm(a2, a3)
0
0


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Bases: Do these vectors form a basis?

1
1
1

 ,

z
y
0

 ,

lcm(a2, a3)
0
0


Do these vectors form a basis?

I Goal 1: Show that every linear combination of these
vectors is a solution.

I Goal 2: Show that every solution can be written as a
linear combination of these vectors.
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Goal 1: Show that every linear combination of
these vectors a solution

α

1
1
1



+ β

z
y
0

 + γ

lcm(a2, a3)
0
0



=

α + βz + γ lcm(a2, a3)
α + βy
α


Is this a solution?
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Goal 1: Show that every linear combination of
these vectors a solution

α

1
1
1

 + β

z
y
0



+ γ

lcm(a2, a3)
0
0



=

α + βz + γ lcm(a2, a3)
α + βy
α


Is this a solution?
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Goal 1: Show that every linear combination of
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Goal 1: Show that every linear combination of
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Goal 1: Show that every linear combination of
these vectors a solution

Is this a solution?

α

α + βy

α + βz + γ lcm(a2, a3)

a1

a2

a3

Remember: y = lcm(a1, gcd(a2, a3))
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Goal 1: Show that every linear combination of
these vectors a solution

Is this a solution?

α

α + βy

α + βz + γ lcm(a2, a3)

a1

a2

a3

Remember: y = lcm(a1, gcd(a2, a3))
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Goal 1: Show that every linear combination of
these vectors a solution

Check edge a1:

α

α + β lcm(a1, gcd(a2, a3))

α + βz + γ lcm(a2, a3)

a1

a2
a3

Need to show: α + β lcm(gcd(a2, a3), a1) ≡ α mod a1

We can write lcm(gcd(a2, a3), a1) as some multiple k of a1.
Then we have

α + βka1 = α + na1 for some integer n.

Thus α + β lcm(gcd(a2, a3), a1) ≡ α mod a1.
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Goal 1: Show that every linear combination of
these vectors a solution

Check edge a1:
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Goal 1: Show that every linear combination of
these vectors a solution

We showed that the first edge, a1, is satisfied.

In a similar fashion we can show that edges a2 and a3 are also
satisfied.

Theorem

Every linear combination of1
1
1

 ,

z
y
0

 ,

lcm(a2, a3)
0
0


is a solution to a triangular spline.
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Goal 1: Show that every linear combination of
these vectors a solution

We showed that the first edge, a1, is satisfied.
In a similar fashion we can show that edges a2 and a3 are also
satisfied.

Theorem

Every linear combination of1
1
1

 ,

z
y
0

 ,

lcm(a2, a3)
0
0


is a solution to a triangular spline.
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Bases: Work in Progress

I Goal 1 Complete: We showed every linear combination of
the vectors is a solution.

I Goal 2: Every solution can be written as a linear
combination of the vectors. We are still working to prove
this.
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Notation

I Let Sn = the star graph with n vertices of degree 1

I Kn = the complete graph on n vertices

I Wn = the wheel graph on n vertices

I Cn = the cycle graph on n vertices.
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Chinese Remainder Theorem: Star Graphs

System of Congruences

x ≡ a1 mod n1

x ≡ a2 mod n2

There exists a solution x if
the integers n1, n2 are
coprime.
If gcd(n1, n2) 6= 1 a
solution x exists if and
only if a1 ≡ a2
mod gcd(n1, n2).
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Wheels: Relationship to star graphs

I Wn = Cn−1 + Sn−1

I

I Corollary: A sufficient condition for Wn to have non-trivial
solutions is for the labels of the edges adjacent to the
”center vertex” (i.e. the vertex of degree n - 1) to be
pairwise relatively prime.
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Complete Graphs: Relationship to star graphs

I Kn = Kn−1 + Sn−1

I Kn = C3 +
n−1∑
i=3

Si

I

I Corollary: A sufficient condition for Kn to have non-trivial
solutions is for n-3 of the vertices to have the following
condition on their adjacent edges: all n-1 edges adjacent
to the vertex vi have labels that are pairwise relatively
prime.
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Thanks!

Thank you to
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