

Self-Similar vs. Combinatorial Tiling

Substitution/Inflate and Subdivide Rule

Self-Similar Tiling

Self-Similar vs. Combinatorial Tiling

- Substitution/Inflate and Subdivide Rule
- No geometric resemblance to itself
- Substitution of non-constant length

Combinatorial Tiling

Self-Similar Tiling

- A is a finite set called an alphabet whose elements are letters.
- A* is the set of all words with elements from A.
- A symbolic substitution is any map σ : A → A*.

- A is a finite set called an alphabet whose elements are letters.
- A* is the set of all words with elements from A.
- A **symbolic substitution** is any map $\sigma : \mathcal{A} \to \mathcal{A}^*$.

Let $\mathcal{A} = \{a, b\}$ and let $\sigma(a) = ab$ and $\sigma(b) = a$.

- A is a finite set called an alphabet whose elements are letters.
- A* is the set of all words with elements from A.
- A **symbolic substitution** is any map $\sigma : \mathcal{A} \to \mathcal{A}^*$.

Let
$$\mathcal{A} = \{a, b\}$$
 and let $\sigma(a) = ab$ and $\sigma(b) = a$.

If we begin with *a* we get:

- A is a finite set called an alphabet whose elements are letters.
- A* is the set of all words with elements from A.
- A **symbolic substitution** is any map $\sigma : A \to A^*$.

Let
$$A = \{a, b\}$$
 and let $\sigma(a) = ab$ and $\sigma(b) = a$.

If we begin with *a* we get:

- The block lengths are Fibonacci numbers 1, 2, 3, 5, 8, 13, ...
- substitution of non-constant length or combinatorial substitution

• The substitution matrix M is the $n \times n$ matrix with entries given by

 m_{ij} = the number of tiles of type i in the substitution of the tile of type j

The substitution matrix M is the $n \times n$ matrix with entries given by

 m_{ij} = the number of tiles of type i in the substitution of the tile of type j

$$\sigma(a) = ab$$
$$\sigma(b) = a$$

$$\sigma(b) = a$$

• The substitution matrix M is the $n \times n$ matrix with entries given by

 m_{ij} = the number of tiles of type i in the substitution of the tile of type j

$$\sigma(a) = ab$$
$$\sigma(b) = a$$

substitution matrix for one-dimensional Fibonacci substitution:

$$M = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

Eigenvectors and Eigenvalues

• **Eigenvector** - a non-zero vector v that, when multiplied by square matrix A yields the original vector multiplied by a single number λ

Eigenvectors and Eigenvalues

• **Eigenvector** - a non-zero vector v that, when multiplied by square matrix A yields the original vector multiplied by a single number λ

$$A\vec{v} = \lambda \vec{v}$$

λ is the eigenvalue of A corresponding to v.

Eigenvectors and Eigenvalues

• **Eigenvector** - a non-zero vector v that, when multiplied by square matrix A yields the original vector multiplied by a single number λ

$$A\vec{v} = \lambda \vec{v}$$

- λ is the eigenvalue of A corresponding to v.
- This equation has non-trivial solutions if and only if

$$\det(A - \lambda I) = 0$$

• Solve for λ to find eigenvalues.

Eigenvalues are the roots of the characteristic polynomial

$$\lambda^2 - \lambda - 1 = 0$$

Eigenvalues are the roots of the characteristic polynomial

$$\lambda^2 - \lambda - 1 = 0$$

 Perron Eigenvalue - largest positive real valued eigenvalue that is larger in modulus than the other eigenvalues of the matrix

Eigenvalues are the roots of the characteristic polynomial

$$\lambda^2 - \lambda - 1 = 0$$

- Perron Eigenvalue largest positive real valued eigenvalue that is larger in modulus than the other eigenvalues of the matrix
- Perron Eigenvalue of Fibonacci substitution matrix:

$$\frac{1+\sqrt{5}}{2}=\gamma$$

the golden mean

The Fibonacci Direct Product Substitution

The direct product of the one-dimensional Fibonacci substitution with itself.

$$\{a,b\}$$
x $\{a,b\}$

where
$$(a,a) = 1$$
, $(a,b) = 2$, $(b,a) = 3$, $(b,b) = 4$.

The Fibonacci Direct Product Substitution

The direct product of the one-dimensional Fibonacci substitution with itself.

$$\{a,b\}$$
x $\{a,b\}$

where
$$(a,a) = 1$$
, $(a,b) = 2$, $(b,a) = 3$, $(b,b) = 4$.

The Fibonacci Direct Product Substitution

The direct product of the one-dimensional Fibonacci substitution with itself.

$$\{a,b\}$$
x $\{a,b\}$

where
$$(a,a) = 1$$
, $(a,b) = 2$, $(b,a) = 3$, $(b,b) = 4$.

- Not self-similar
- Not an inflate and subdivide rule

Several Iterations of Tile Types

Several Iterations of Tile Types

The substitution matrix for the Fibonacci Direct Product is

$$M = \left(\begin{array}{ccccc} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{array} \right) = \left(\begin{array}{ccccc} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array} \right)$$

Eigenvalues are the roots of the characteristic polynomial

$$\det(M - \lambda I) = 0$$

$$\lambda^4 - \lambda^3 - 4\lambda^2 - \lambda + 1 = 0$$

Eigenvalues are the roots of the characteristic polynomial

$$\det(M - \lambda I) = 0$$

$$\lambda^4 - \lambda^3 - 4\lambda^2 - \lambda + 1 = 0$$

Perron Eigenvalue of Fibonacci Direct Product substitution matrix:

$$\left(\frac{1+\sqrt{5}}{2}\right)^2 = \gamma^2$$

the golden mean squared

Replace and Rescale Method

Replace and Rescale Method

Rescale volumes by the Perron Eigenvalue raised to the n^{th} power: $1/\gamma^{2n}$ where n corresponds to the n^{th} -level of our block.

Rescale volumes by the Perron Eigenvalue raised to the n^{th} power: $1/\gamma^{2n}$ where n corresponds to the n^{th} -level of our block.

This results in a level-0 tile with different lengths that the original. Repeat for other tile types. The substitution rule is now self-similar.

Self-Similar Fibonacci Direct Product

Combinatorial Substitution Rule

Self-Similar Fibonacci Direct Product

Combinatorial Substitution Rule

Self-Similar Inflate and Subdivide Rule

Compare level-5 tiles of the Fibonacci Direct Product (left)

Combinatorial Tiling

Compare level-5 tiles of the Fibonacci Direct Product (left) and the selfsimilar tiling (right).

Combinatorial Tiling

Self-Similar Tiling

- Not known whether replace-and-rescale method always works
- Replace-and-rescale method works in all known examples

Self-Similar Fibonacci DPV

Self-Similar non-Pisot DPV

References

 N.P. Frank, A primer of substitution tilings of the Euclidean plane, Expositiones Mathematicae, 26 (2008) 4, 295-386

Further Readings

 R. Kenyon, B. Solomyak, On the Characterization of Expansion Maps for Self-Affine Tiling, Discrete Comput Geom, 43 (2010), 577-593