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« No geumetric resemblance to itself

*  Substitution of non-constant length
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One-Dimensional Symbolic Substitution

* Ais a finite set called an alphabet whose elements are letters.
* A% is the set of all words with elements from A4.
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One-Dimensional Symbolic Substitution

* Ais a finite set called an alphabet whose elements are letters.

* A% is the set of all words with elements from A4.

+ A symbolic substitution is any map o - 4 — A"

Let A= {a,b} and let o(a) = ab and a(b) = a.

If we begin with a we get:
a—ab—aba—abaab—abaababa— abaababaabaab—-

* The block lengths are Fibonacci numbers 1, 2, 3, 5, 8, 13, ...

*  substitution of non-constant length or combinatorial substitution
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typeJ
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Substitution Matrix
* The substitution matrix M is the nx n matrix with entries given by
m;; = the number of tiles of type i in the substitution of the tile of

typeJ

a(a) = ab
a(b) =a

«  substitution matrix for one-dimensional Fibonacct substitution:

m .
e 1 12 1 1

m, —m,, 1 0



Eigenvectors and Eigenvalues

+ Eigenvector - a non-zero vector v that, when multiplied by square
matrix A yields the original vector multiplied by a single number 4
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Eigenvectors and Eigenvalues

Eigenvector - a non-zero vector v that, when multiplied by square
matrix A yields the original vector multiplied by a single number 4

Av = AV

A 1s the eigenvalue of 4 corresponding to v.

This equation has non-trivial solutions if and only if
det(A=AI)=0

Solve for 4 to find eigenvalues.
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Expansion Constant

Eigenvalues are the roots of the characteristic polynomial

AM=A-1=0

Perron Eigenvalue - largest positive real valued eigenvalue that is
larger in modulus than the other eigenvalues of the matrix

Perron Eigr:nvalur: of Fibonacci substitution matrix:

2 the golden mean



The Fibonacci Direct Product Substitution

The direct product of the one-dimensional Fibonacci substitution with itself.
{a.b}x{a b}

where (a,a) =1, (a.b) =2, (b,a) =3, (b,b) =4.
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The direct product of the one-dimensional Fibonacci substitution with itself.

{a.b}x{a.b}

where (a,a) =1, (a,b) =2, (ba) =3, (b,b)=4.
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The Fibonacci Direct Product Substitution

The direct product of the one-dimensional Fibonacci substitution with itself.

{a.b}x{a.b}

where (a,a) =1, (a,b) =2, (ba) =3, (b,b)=4.
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»  Not self-similar

« Not an inflate and subdivide rule
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Substitution Matrix

2~ B2 |-

The substitution matrix for the Fibonacci Direct Product is

my, ny, m; "y, ] b

Hiyy My, Rl M,y

iy My, Rl My,

= - 2 =
o O =
= 2 O

My By, My, My,




Expansion Constant

Eigenvalues are the roots of the characteristic polynomial

det(M - A1) =0
A=A —4A - A+1=0



Expansion Constant

+ Eigenvalues are the roots of the characteristic polynomial

det(M - A1) =0
A=A —4A - A+1=0

+ Perron Eigenvalue of Fibonacci Direct Product substitution matrix:

1+\/§ E_ 5

5 Y

the golden mean squared



Replace and Rescale Method
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Replace and Rescale Method
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Rescale volumes by the Perron Eigenvalue raised to the nth power:

1/’}’2” where 1 corresponds to the nth-level of our block.




Replace-and-rescale Method

-

Rescale volumes by the Perron Eigenvalue raised to the nth power:

1f’}’2” where 1 corresponds to the nth-level of our block.

This results in a level-0 tile with different lengths that the original.
Repeat for other tile types. The substitution rule is now self-similar.



Self-Similar Fibonacci Direct Product
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Combinatorial Substitution Rule
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Self-Similar Fibonacci Direct Product
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Combinatorial Substitution Rule

~f O-(m B-[ =

Self-Similar Inflate and Subdivide Rule



Replace-and-rescale Method

Compare level-5 tiles of the Fibonacci Direct Product (left)

Combinatorial Tiling



Replace-and-rescale Method

Compare level-5 tiles of the Fibonacci Direct Product (left) and the self-

similar tiling (right).

Combinatorial Tiling Self-Similar Tiling




Replace-and-rescale Method

«  Not known whether replace-and-rescale me thod always works

. Replaf:ﬂ-and-rf:sscalﬂ method works in all known Examples;

Self-Similar Fibonacci DPV Self-Similar non-Pisot DPV
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