

 $www.web designer depot.com/{\color{blue}2009/03/50}-twitter-comic-strips$

Gili Rusak

Albany Area Math Circle Siena College, Loudonville, NY

ntroduction

Overview on Online Social Networks (OSNs)

- Over the past decade, online social networking sites (Facebook, Twitter, MySpace, Google+) gained widespread usage.
- This led to scientific study of OSNs as a revolutionary topic within computer science.

http://www.twitter.com

http://www.google.com/+

ntroduction

Overview on Online Social Networks (OSNs)

Before OSNs

-Theoretical studies of behavior of hypothetical networks

[Easley &Kleinberg 2010]

Now

-Actual communications studied on various scales [Jiang et al. 2010]

• Multidisciplinary applications in economics, business, advertising, psychology, and sociology

Introduction-Twitter

- Twitter is an online microblogging communication system.
- Offers users the ability to interact with various members in their community.
 - A Twitter community can be defined in many ways;
 - The entire Twitter community, 500 million users, is the Twittersphere [Dungan 2012]
- Key terms of Twitter:
 - "Tweets": short messages of 140 characters or less
 - "Retweet": forwarding a tweet
 - "Followings": the accounts a user follows (any accounts in Twittersphere)
 - "Followers": the accounts that follow a certain user (any in Twittersphere)

ntroduction-Twitter

- Unlike other OSNs (Facebook, MySpace), Twitter offers a directed relationship; if user A follows B,
 B does not have to follow A.
- Twitter is an open public data site; information can be mined and found by anyone [Kwak et al. 2010, Ye & Wu 2010].
- Twitter has become a popular OSN among teenagers.

Research Purpose

- Links between computer science, mathematics and sociology
- I study statistical properties of Twitter communications among a subset of closely-related teenager communities
 - Two groups each from distinct school districts of ~200 members each
- I analyze:
 - Characteristics of teenager communities
 - Comparisons with Twittersphere results
 - Tendencies of teenagers to interact with others who are like them
- I find applications in:
 - Identifying personalities of certain members
 - Characteristics of gender
 - Twitter; a news media oriented for teenagers
 - Advertising among teenagers

Methods and Analysis Techniques

- Data collection methods
 - Codes accessing the data
- Data analysis techniques

From probability theory

- Probability density function (pdf)
 - Probability that random member X has a property with value V
- Complementary cumulative distribution function (ccdf)
 - Probability that random member X has a property with value greater than V

From graph-network theory

- Density
- Breadth First Search (BFS) method[Easley & Kleinberg 2010]
- Centrality

Distribution of Followings

- •Similar trends
- •Followings pdf- fluctuations from classical Rayleigh curve
- •Peaks at: 25, 45, 95, 135, 205 followings
- •Dips at: 70, 125, 185, 220 followings
- •Reflects groups of followings at certain sizes.

- •Similar ccdf that differs from Twittersphere results [Kwak et al. 2010]
- •A random teenager follows more users than a general population user.
- •Results in a higher density of teenager networks and lower degrees of separation

Correlation of Followers and Followings

- •# followers (*fr*) correlates with # followings (*fg*)
- •Trend line: $fg \sim fr^{1.15}$ (power law)
- •Favorites = .32(Tweets).95
- •Active users tweet more often and also favorite more tweets

Centrality and Personality

Centrality vs Followings

Centrality

1.5

1 0 200 400 600 800

followings

- •In general communities: centrality ranges 1 large #'s
- •Theoretical centrality for this group: ranges 1 193.
- •Actual centrality: ranges 1.5 2.5

- •Centrality is directly related with # followers and # followings.
- •A large number of both followers and followings hints at an extrovert personality [Adali et al. 2012].

Temporal Reciprocity

- •Reciprocity occurs when user A follows B and B follows A back.
- •Earlier date: before school started; later date: middle of school year
- •Later date reflects shift towards higher end of pdf
- •Represents higher % reciprocity
- •Expected temporal quality
- •Large amounts of reciprocated friendships hints at actual friendships
- •~67% of general Twittersphere have no reciprocated friendships, [Kwak et al. 2010]

Homophily of Gender

- •Homophily: people who are alike will become friends
- •Equal number of girls and boys studied
- •Girls follow slightly more % other girls than boys follow % other boys.
- •Shown by shift of pink towards higher end and blue spread more evenly.

- •Homophily of gender in followers is ~52%.
- •Links to sociology which shows that girls are more cliquey than boys at teenager level [Ennett & Bauman 2000]
- •No such general results exist.

Homophily in # followers

1-50
51-100
101-150
151-200
201-250
251-300

- •Close friendship: a directed friendship where user A "mentions" B
- •Density of close friendship graph: ~1%; density of all followers: ~17%.
- •Results from people talking to some of their followers only.
- •This NWB graph shows close friendships of a small random sample.
- •Graph is color-coded based on # followers.
- •People with similar # followers communicate.

•Triadic closure: if user A is friends with B and C, then B and C are also friends.

Additional Observed Trends

- Degree of separation (dos):
 - # of steps that separates members in the network
 - Within these dense, closely-related communities, dos ~2
 - Within a tweet and retweet most of community receives a message
 - General dos in Twittersphere ~4 [Kwak et al 2010]
- Privacy setting
 - 12% teenagers studied use privacy setting
 - 61% of which were female
 - Only ~6% private accounts in the Twittersphere [Moore 2009]
 - Reflects cautiousness of teenagers, especially among females
- ~50% of a teenager's followers attends school with him

News Media

- Two peaks in number of tweets per week
 - 1) Week of presidential debate and school dance
 - Debate: ~270 tweets
 - Dance: ~600 tweets
 - 2) Tragic event involving local teenagers
 - ~90% of tweets during that day

Conclusions

- Unique teenager properties:
 - Community followings pdf show fluctuations
 - More # followings than # followers
 - Large % reciprocated relationships (real friendships)
 - Central members: many followers and extroverts
 - Females: slightly more friendly with other females
 - Teenager networks: formed based on school district (dense)
 - Teenagers are more cautious than other users

Applications

- Specific personality traits and influence on community
 - Done by analyzing centrality in community (extrovert)
 - In terms of school, this also relates to degrees of popularity
- Differences between cautiousness of males and females
 - Increase probability of inferring gender
 - Can be used for advertising
 - Future work: try to distinguish more accurately between males and females

Applications

- Determine whether social bullying or harassment is occurring
- Information flows quickly through Twitter
 - Especially in teenager setting because of high density (dos ~2)
 - Can be used to spread information/news to community
 - Rumor can be traced back to the member who started it.
- Teenagers use Twitter as social media
 - Pertinent [teenagers] news travels quickly
 - I.e. in recent, local tragic events, Twitter was used as a media, to transfer information
 - Teenagers, alone, outreached to famous athletes by trending tweets on Twitter
 - Shows strength, power, and support of teenager community through use of Twitter

Euture Work

• Future work includes:

- Studying properties of more specific actual communications between members of the community (i.e. repeated words, topics of interest)
- Finding distinguishable characteristics between males and females
- Tracing retweet trees to further understand mechanisms of information spread
- Determining subgroups within the tightly connected communities with homophily
- Conduct comparisons with additional teenager communities to further solidify the trends found.

Acknowledgements

- Professor Sibel Adali, RPI
- Mr. Covert, Shaker High School
- Dr. Mary O'Keeffe, Albany Area Math Circle, Union College

Thank you for your attention!

