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Pinwheel Tilings

Non-periodic, self-similar tilings

Countably infinite distinct tile orientations
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Pinwheel Tiles

Pinwheel tilings made from right triangle prototiles with side
lengths 1, 2 and

√
5

Consider a ”standard triangle” with vertices at
(-.5, -.5), (.5, -.5), and (-.5, 1.5):
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Inflation and Subdivision

−→

Given ”standard triangle,” multiply by MP =

(
2 1
−1 2

)
.

Subdivide inflated tile
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Substitution Rule

Iterations of inflation and subdivision produce a pinwheel tiling:
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Contraction Mappings

Contraction Mapping

For a metric space (M, d), a function f : M → M such that
∃k ∈ R where k < 1 and ∀x , y ∈ M,

d(f (x), f (y)) ≤ kd(x , y)

Example: Consider the map f : R2 → R2 defined by

f (x , y) = M−1
P (x , y), where M−1

P =

(
2
5 −1

5
1
5

2
5

)
.

−→
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Iterated Function Systems

Iterated Function System

A finite set of contraction mappings on a complete metric space.
That is,

{fi : M → M|i = 1, 2, ...,N,N ∈ N}

where each fi is a contraction mapping and M is a complete metric
space (Every Cauchy sequence in M converges in M)

Theorem

For any iterated function system on Rn, there exists a unique fixed
set S. That is, there exists S ⊆ Rn such that

S =
N⋃
i=1

fi (S).
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Constructing Fractals Within the Pinwheel Tiling
The Aorta Method

The following defines an iterated function system:

f1(x , y) = M−1
P ∗ Ry (x , y) + (−0.4,−0.2),

f2(x , y) = M−1
P (x , y),

f3(x , y) = Rπ ∗M−1
P (x , y).

−→

This has a fixed set A =
3⋃

i=1

fi (A). We call A the aorta.
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Stages of the Aorta Generation

→ →

→ → . . .→

Three control points: (0, 0), (−0.5, 0), (0, 0.5)

These points are invariant under our iterated function system.
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Continuation

Discontinuities only happen
in two orientations

Copy/paste part of aorta at
side control points
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Fractiles

Continued aorta now subdivides the space

New tiling of the plane with a finite number of tiles

These tiles have fractal boundary
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Fractile Substitution Rule

Pinwheel substitution rule induces a well-defined substitution
on the fractiles

Primary result of paper by Drs. Frank and Whittaker
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New Method

Identify points of interest beforehand

No continuation necessary
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•

• •
•

•

•

1
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New Method

Identify points of interest beforehand
No continuation necessary

Method 2

•

•• •
•

•

•

1
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New Method

Method 1

1
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New Method

Method 2

1
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Where to go from here?

New method somewhat ad-hoc

Identify relationship between methods

Use new method approach on other tilings
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