## The Checkerboard <br> Challenge

Akritee Shrestha Hamilton College '13 HRUMC 2013

## The Checkerboard



## The Checkerboard



## The Checkerboard


$>$ The main diagonal of the grid contains no coins

## The Checkerboard


> The main diagonal of the grid contains no coins
$>$ The arrangement of the coins is diagonally symmetric

## The Challenge



Cover $n$ columns, $n<9$ such that an even number of coins remains visible in each row.

## The Challenge



Cover $n$ columns, $n<9$ such that an even number of coins remains visible in each row.

## The Solution?



The Solution!!!


## Existence: <br> Does a Solution Exist for Every ‘Checkerboard’?

## Checkerboards and Matrices



## Checkerboards and Matrices


$\bar{\equiv}\left[\begin{array}{lllllllll}0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0\end{array}\right]$

## Checkerboards and Matrices

$$
A=\left[\begin{array}{lllllllll}
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

## Checkerboards and Matrices

$$
A=\left[\begin{array}{lllllllll}
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

$A_{j}-j^{\text {th }}$ column of the matrix $A$

## Checkerboards and Matrices

$$
A=\left[\begin{array}{lllllllll}
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

$A_{j}-j^{\text {th }}$ column of the matrix $A$
$A_{2}+A_{4}+A_{6}+A_{7}+A_{8}+A_{9}=\left[\begin{array}{l}2 \\ 4 \\ 4 \\ 4 \\ 2 \\ 4 \\ 4 \\ 2 \\ 2\end{array}\right]$

## Checkerboards and Matrices

$$
A=\left[\begin{array}{lllllllll}
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

$A_{j}-j^{\text {th }}$ column of the matrix $A$

$$
A_{2}+A_{4}+A_{6}+A_{7}+A_{8}+A_{9}=\left[\begin{array}{l}
2 \\
4 \\
4 \\
4 \\
2 \\
4 \\
4 \\
2 \\
2
\end{array}\right] \quad \text { or } \quad A \cdot\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
4 \\
4 \\
2 \\
4 \\
4 \\
2 \\
2
\end{array}\right]
$$

## Checkerboards and Matrices

$$
A=\left[\begin{array}{lllllllll}
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

$A_{j}-j^{\text {th }}$ column of the matrix $A$

$$
A_{2}+A_{4}+A_{6}+A_{7}+A_{8}+A_{9}=\left[\begin{array}{l}
2 \\
4 \\
4 \\
4 \\
2 \\
4 \\
4 \\
2 \\
2
\end{array}\right]
$$

solution matrix
縣

## Checkerboards and Matrices


$A_{j}-j^{\text {th }}$ column of the matrix $A$

$$
A_{2}+A_{4}+A_{6}+A_{7}+A_{8}+A_{9}=\left[\begin{array}{l}
2 \\
4 \\
4 \\
4 \\
2 \\
4 \\
4 \\
2 \\
2
\end{array}\right] \quad \text { or } \quad A \cdot\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
4 \\
4 \\
2 \\
4 \\
4 \\
2 \\
2
\end{array}\right]
$$

## Checkerboards and Matrices


$A \cdot\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \\ 4 \\ 4 \\ 4 \\ 2 \\ 4 \\ 4 \\ 2 \\ 2\end{array}\right]$

## WORKING OVER $[\mathbb{Z}]_{2}$ FIELD

$[\mathbb{Z}]_{2}$ is the smallest finite field consisting of two elements 0 and 1 .

By modular arithmetic, for all integers $z$
$z \equiv 0(\bmod 2)$, if $z$ is even
$z \equiv 1(\bmod 2)$, if $z$ is odd

## WORKING OVER $[\mathbb{Z}]_{2}$ FIELD

$$
A \cdot\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
4 \\
4 \\
2 \\
4 \\
4 \\
2 \\
2
\end{array}\right]
$$

## WORKING OVER $[\mathbb{Z}]_{2}$ FIELD

$$
A \cdot\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
4 \\
4 \\
2 \\
4 \\
4 \\
2 \\
2
\end{array}\right] \quad \overline{=} \quad A \cdot\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

## WORKING OVER $[\mathbb{Z}]_{2}$ FIELD

$$
A \cdot\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
4 \\
4 \\
2 \\
4 \\
4 \\
2 \\
2
\end{array}\right] \quad \overline{=} \quad A \cdot\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

$$
A X=\mathbf{0}
$$

## WORKING OVER $[\mathbb{Z}]_{2}$ FIELD

$$
A X=\mathbf{0}
$$

$$
A=\left[\begin{array}{lllllllll}
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

## WORKING OVER [Z] ${ }_{2}$ FIELD

$$
A X=\mathbf{0}
$$

$$
\left.A=\left[\begin{array}{lllllllll}
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0
\end{array}\right] \xrightarrow\left[{\left(\text { over }[\mathbb{Z}]_{2}\right.}\right)\right]{\operatorname{RREF}}\left[\begin{array}{lllllllll}
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

## WORKING OVER $[\mathbb{Z}]_{2}$ FIELD

$$
A X=\mathbf{0}
$$

$$
\left[\begin{array}{lllllllll}
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7} \\
x_{8} \\
x_{9}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

$$
x_{1}=0, x_{2}=1, x_{3}=0, x_{4}=1, x_{5}=0, x_{6}=1, x_{7}=1, x_{8}=1, x_{9}=1
$$

## WORKING OVER $[\mathbb{Z}]_{2}$ FIELD

$$
A X=\mathbf{0}
$$

$$
\left[\begin{array}{lllllllll}
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7} \\
x_{8} \\
x_{9}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

$$
x_{1}=0, x_{2}=1, x_{3}=0, x_{4}=1, x_{5}=0, x_{6}=1, x_{7}=1, x_{8}=1, x_{9}=1
$$

## WORKING OVER [Z] ${ }_{2}$ FIELD

$$
A X=\mathbf{0}
$$

$\left[\begin{array}{lllllllll}1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right] \cdot\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6} \\ x_{7} \\ x_{8} \\ x_{9}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$
$\boldsymbol{X}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]$

$$
x_{1}=0, x_{2}=1, x_{3}=0, x_{4}=1, x_{5}=0, x_{6}=1, x_{7}=1, x_{8}=1, x_{9}=1
$$

## Existence Theorem

Definition: Let $m$ be an odd number. Over the field $[\mathbb{Z}]_{2}$, a checkerboard matrix is an $m \times m$ symmetric matrix with diagonal elements equal to 0 .

## Existence Theorem

Definition: Let $m$ be an odd number. Over the field $[\mathbb{Z}]_{2}$, a checkerboard matrix is an $m \times m$ symmetric matrix with diagonal elements equal to 0 .

Terminology: An elementary product of an $m \times m$ matrix is a product of $m$ elements of the matrix such that the each element in the product is located on a unique row $i$ and a unique column $j$, where $0 \leq i, j \leq m$. The set of ordered pairs $(i, j)$ is the corresponding transversal.

## Existence Theorem

Definition: Let $m$ be an odd number. Over the field $[\mathbb{Z}]_{2}$, a checkerboard matrix is an $m \times m$ symmetric matrix with diagonal elements equal to 0 .

Terminology: An elementary product of an $m \times m$ matrix is a product of $m$ elements of the matrix such that the each element in the product is located on a unique row $i$ and a unique column $j$, where $0 \leq i, j \leq m$. The set of ordered pairs $(i, j)$ is the corresponding transversal.

Theorem: A checkerboard matrix has a non-trivial nullspace.

## Proof

Let $A$ be an $m \times m$ checkerboard matrix. We want to show: $\operatorname{det}(A)=0$ over $[\mathbb{Z}]_{2}$.

## Proof

Let $A$ be an $m \times m$ checkerboard matrix.
We want to show: $\operatorname{det}(A)=0$ over $[\mathbb{Z}]_{2}$.
$\operatorname{Det}(\mathrm{A})$ is an alternating sum of elementary products of $A$.
Since we are working over $[\mathbb{Z}]_{2},+1=-1$.
$\operatorname{Det}(\mathrm{A})$ is just an ordinary sum of the elementary products of A. An $m \times m$ matrix has $m$ ! elementary products.

## Proof

Let $A$ be an $m \times m$ checkerboard matrix.
We want to show: $\operatorname{det}(A)=0$ over $[\mathbb{Z}]_{2}$.
$\operatorname{Det}(\mathrm{A})$ is an alternating sum of elementary products of $A$.
Since we are working over $[\mathbb{Z}]_{2},+1=-1$.
$\operatorname{Det}(\mathrm{A})$ is just an ordinary sum of the elementary products of A.
An $m \times m$ matrix has $m$ ! elementary products.
We want to show that the sum of these $m$ ! elementary products is 0 .

## Proof

We want to show that the sum of these $m$ ! elementary products is 0 .

## Proof

We want to show that the sum of these $m$ ! elementary products is 0 .
Case I: If a transversal contains an ordered pair $(i, i)$, i.e it represents a diagonal element, the corresponding elementary product is equal to 0 .

## Proof

We want to show that the sum of these $m$ ! elementary products is 0 .

Case I: If a transversal contains an ordered pair ( $i, i$, i.e it represents
a diagonal element, the corresponding elementary product is equal to 0 .

Case II: If a transversal represents no diagonal element, it will have a 'mirror image' obtained by reflection across the diagonal.

## Proof

We want to show that the sum of these $m$ ! elementary products is 0 .

Case I: If a transversal contains an ordered pair $(i, i)$, i.e it represents
a diagonal element, the corresponding elementary product is equal to 0 .

Case II: If a transversal represents no diagonal element, it will have a 'mirror image' obtained by reflection across the diagonal. Since each elementary product consists of an odd number of elements, each transversal is distinct from its mirror image.

## Proof

We want to show that the sum of these $m$ ! elementary products is 0 .

Case I: If a transversal contains an ordered pair ( $i, i$, i.e it represents a diagonal element, the corresponding elementary product is equal to 0 .

Case II: If a transversal represents no diagonal element, it will have a 'mirror image' obtained by reflection across the diagonal.
Since each elementary product consists of an odd number of elements, each transversal is distinct from its mirror image.
Since $A$ is symmetric, the elementary products corresponding to the the transversal and its mirror image are equal. Since we are working over $[\mathbb{Z}]_{2}$, their sum is equal to 0 .

## Proof

We want to show that the sum of these $m$ ! elementary products is 0 .
Case I: If a transversal contains an ordered pair $(i, i)$, i.e it represents a diagonal element, the corresponding elementary product is equal to 0 .

Case II: If a transversal represents no diagonal element, it will have a 'mirror image' obtained by reflection across the diagonal.
Since each elementary product consists of an odd number of elements, each transversal is distinct from its mirror image.
Since $A$ is symmetric, the elementary products corresponding to the the transversal and its mirror image are equal. Since we are working over $[\mathbb{Z}]_{2}$, their sum is equal to 0 .
So, the sum of the elementary products is 0 .

## Proof

Let $A$ be an $m \times m$ checkerboard matrix.
We want to show: $\operatorname{det}(A)=0$ over $[\mathbb{Z}]_{2}$.
$\operatorname{Det}(\mathrm{A})$ is an alternating sum of elementary products of $A$.
Since we are working over $[\mathbb{Z}]_{2},+1=-1$.
$\operatorname{Det}(\mathrm{A})$ is just an ordinary sum of the elementary products of A.
An $m \times m$ matrix has $m$ ! elementary products.
The sum of these $\boldsymbol{m}$ ! elementary products is 0 .

## Reference

L. Zulli, The Incredibly Knotty Checkerboard Challenge, Mathematics Magazine 71(1998), 378-385

## AcKnowledgements

Professor Richard Bedient
Hamilton College Mathematics Department Williams College

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{ll}
0 \\
1 & 0 \\
0 \\
0 \\
0
\end{array}\right]
$$

$$
\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right] \quad\left[\quad\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right]\right.
$$

$$
\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 1
\end{array}\right]
$$

