THE CHECKERBOARD CHALLENGE

Akritee Shrestha Hamilton College '13 HRUMC 2013

> The main diagonal of the grid contains no coins

The main diagonal of the grid contains no coins

> The arrangement of the coins is diagonally symmetric

THE CHALLENGE

Cover *n* columns, n < 9 such that an even number of coins remains visible in each row.

THE CHALLENGE

Cover *n* columns, n < 9 such that an even number of coins remains visible in each row.

THE SOLUTION!!!

EXISTENCE: DOES A SOLUTION EXIST FOR EVERY 'CHECKERBOARD'?

 $= \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$

A =

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

 A_j - $j^{
m th}$ column of the matrix A

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

 A_j - $j^{
m th}$ column of the matrix A

$$A_2 + A_4 + A_6 + A_7 + A_8 + A_9 =$$

$$\begin{bmatrix} 2\\4\\4\\2\\4\\4\\2\\2\\2\end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

 A_j - $j^{
m th}$ column of the matrix A

$$A_{2} + A_{4} + A_{6} + A_{7} + A_{8} + A_{9} = \begin{bmatrix} 2\\4\\4\\4\\2\\4\\4\\2\\2 \end{bmatrix} \quad \text{or} \quad A \cdot \begin{bmatrix} 0\\1\\0\\1\\0\\1\\1\\1\\1\\1 \end{bmatrix} =$$

 $\frac{2}{2}$

 $\mathbf{2}$

4

4

4

244

 $\frac{2}{2}$

or

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

 A_j - j^{th} column of the matrix A

$$A_2 + A_4 + A_6 + A_7 + A_8 + A_9 =$$

 $A \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$

solution matrix

 A_j - $j^{
m th}$ column of the matrix A

$$A_{2} + A_{4} + A_{6} + A_{7} + A_{8} + A_{9} = \begin{bmatrix} 2\\4\\4\\4\\2\\4\\4\\2\\2 \end{bmatrix} \quad \text{or} \quad A \cdot \begin{bmatrix} 0\\1\\0\\1\\0\\1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 2\\4\\4\\4\\2\\2\\2 \end{bmatrix}$$

 $[\mathbb{Z}]_2$ is the smallest finite field consisting of two elements 0 and 1.

By modular arithmetic, for all integers z $z \equiv 0 \pmod{2}$, if z is even $z \equiv 1 \pmod{2}$, if z is odd

AX = 0

AX = 0

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

AX = 0

AX = 0

$$\begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \\ x_8 \\ x_9 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

 $x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 1, x_5 = 0, x_6 = 1, x_7 = 1, x_8 = 1, x_9 = 1$

AX = 0

$$\begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \\ x_8 \\ x_9 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

 $x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 1, x_5 = 0, x_6 = 1, x_7 = 1, x_8 = 1, x_9 = 1$

AX = 0

 $x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 1, x_5 = 0, x_6 = 1, x_7 = 1, x_8 = 1, x_9 = 1$

EXISTENCE THEOREM

Definition: Let *m* be an odd number. Over the field $[\mathbb{Z}]_2$, a **checkerboard matrix** is an *m* × *m* symmetric matrix with diagonal elements equal to 0.

EXISTENCE THEOREM

Definition: Let *m* be an odd number. Over the field $[\mathbb{Z}]_2$, a **checkerboard matrix** is an *m* × *m* symmetric matrix with diagonal elements equal to 0.

Terminology: An **elementary product** of an $m \times m$ matrix is a product of m elements of the matrix such that the each element in the product is located on a unique row i and a unique column j, where $0 \le i, j \le m$. The set of ordered pairs (i, j) is the corresponding **transversal**.

EXISTENCE THEOREM

Definition: Let *m* be an odd number. Over the field $[\mathbb{Z}]_2$, a **checkerboard matrix** is an *m* × *m* symmetric matrix with diagonal elements equal to 0.

Terminology: An **elementary product** of an $m \times m$ matrix is a product of m elements of the matrix such that the each element in the product is located on a unique row i and a unique column j, where $0 \le i, j \le m$. The set of ordered pairs (i, j) is the corresponding **transversal**.

Theorem: A checkerboard matrix has a non-trivial nullspace.

Let A be an $m \times m$ checkerboard matrix. We want to show: det(A) = 0 over $[\mathbb{Z}]_2$.

Let A be an $m \times m$ checkerboard matrix.

We want to show: det(A) = 0 over $[\mathbb{Z}]_2$.

Det(A) is an alternating sum of elementary products of A.

Since we are working over $[\mathbb{Z}]_2$, +1 = -1.

Det(A) is just an ordinary sum of the elementary products of A. An $m \times m$ matrix has m! elementary products.

Let A be an $m \times m$ checkerboard matrix.

We want to show: det(A) = 0 over $[\mathbb{Z}]_2$.

Det(A) is an alternating sum of elementary products of A.

Since we are working over $[\mathbb{Z}]_2$, +1 = -1.

Det(A) is just an ordinary sum of the elementary products of A.

An $m \times m$ matrix has m! elementary products.

We want to show that the sum of these *m*! elementary products is 0.

We want to show that the sum of these m! elementary products is 0.

- We want to show that the sum of these m! elementary products is 0.
- <u>Case I:</u> If a transversal contains an ordered pair (i, i), i.e it represents a diagonal element, the corresponding elementary product is equal to 0.

We want to show that the sum of these m! elementary products is 0.

<u>Case I:</u> If a transversal contains an ordered pair (i, i), i.e it represents a diagonal element, the corresponding elementary product is equal to 0.

<u>Case II:</u> If a transversal represents no diagonal element, it will have a 'mirror image' obtained by reflection across the diagonal.

We want to show that the sum of these m! elementary products is 0.

<u>Case I:</u> If a transversal contains an ordered pair (i, i), i.e it represents a diagonal element, the corresponding elementary product is equal to 0.

<u>Case II:</u> If a transversal represents no diagonal element, it will have a 'mirror image' obtained by reflection across the diagonal.

Since each elementary product consists of an odd number of elements, each transversal is distinct from its mirror image.

We want to show that the sum of these m! elementary products is 0.

<u>Case I:</u> If a transversal contains an ordered pair (i, i), i.e it represents a diagonal element, the corresponding elementary product is equal to 0.

<u>Case II:</u> If a transversal represents no diagonal element, it will have a 'mirror image' obtained by reflection across the diagonal.

Since each elementary product consists of an odd number of elements, each transversal is distinct from its mirror image.

Since A is symmetric, the elementary products corresponding to the the transversal and its mirror image are equal. Since we are working over $[\mathbb{Z}]_2$, their sum is equal to 0.

We want to show that the sum of these m! elementary products is 0.

<u>Case I:</u> If a transversal contains an ordered pair (i, i), i.e it represents a diagonal element, the corresponding elementary product is equal to 0.

<u>Case II:</u> If a transversal represents no diagonal element, it will have a 'mirror image' obtained by reflection across the diagonal.

Since each elementary product consists of an odd number of elements, each transversal is distinct from its mirror image.

Since A is symmetric, the elementary products corresponding to the the transversal and its mirror image are equal. Since we are working over $[\mathbb{Z}]_2$, their sum is equal to 0.

So, the sum of the elementary products is 0.

Let A be an $m \times m$ checkerboard matrix.

We want to show: det(A) = 0 over $[\mathbb{Z}]_2$.

Det(A) is an alternating sum of elementary products of A.

Since we are working over $[\mathbb{Z}]_2$, +1 = -1.

Det(A) is just an ordinary sum of the elementary products of A.

An $m \times m$ matrix has m! elementary products.

The sum of these *m*! elementary products is 0.

QED

REFERENCE

L. Zulli, The Incredibly Knotty Checkerboard Challenge, *Mathematics Magazine* 71(1998), 378-385

Acknowledgements

Professor Richard Bedient Hamilton College Mathematics Department Williams College

