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» The main diagonal of the grid contains no coins
» The arrangement of the coins i1s diagonally symmetric
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Cover n columns, n < 9 such that an even number of coins remains
visible 1n each row.



THE CHALLENGE

Cover n columns, n < 9 such that an even number of coins remains ‘
visible in each row.
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THE SOLUTION!!!




EXISTENCE:
DOES A SOLUTION EXIST FOR EVERY
‘CHECKERBOARD’?




CHECKERBOARDS AND MATRICES
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A. - j*h column of the matrix A
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WORKING OVER [Z]; FIELD

[Z]5 1s the smallest finite field consisting of two
elements 0 and 1.

By modular arithmetic, for all integers z
z=0(mod 2), if z is even
z=1 (mod 2), 1f z 1s odd
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WORKING OVER [Z]; FIELD
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EXISTENCE THEOREM

Definition: Let m be an odd number. Over the field|Zl,, a
checkerboard matrix is an m X m symmetric matrix with
diagonal elements equal to O.
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checkerboard matrix is an m X m symmetric matrix with
diagonal elements equal to O.

Terminology: An elementary product of an m X m matrix
1s a product of m elements of the matrix such that the each
element in the product is located on a unique row i and a
unique column j, where 0 <i, j < m. The set of ordered pairs
(i, j) 1s the corresponding transversal.



EXISTENCE THEOREM

Definition: Let m be an odd number. Over the field|Zl,, a
checkerboard matrix is an m X m symmetric matrix with
diagonal elements equal to O.

Terminology: An elementary product of an m X m matrix
1s a product of m elements of the matrix such that the each
element in the product is located on a unique row i and a
unique column j, where 0 <i, j < m. The set of ordered pairs
(i, j) 1s the corresponding transversal.

Theorem: A checkerboard matrix has a non-trivial nullspace.
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Let A be an m X m checkerboard matrix.
We want to show: det(4) = 0 over [Zl;.
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Since we are working over [Zl., +1 =-1.

Det(A) 1s just an ordinary sum of the elementary products of A.

An m X m matrix has m! elementary products.
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Det(A) 1s an alternating sum of elementary products of A.
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Det(A) 1s just an ordinary sum of the elementary products of A.
An m X m matrix has m! elementary products.

We want to show that the sum of these m! elementary
products is 0.
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PROOF

We want to show that the sum of these m! elementary
products is 0.

Case I: If a transversal contains an ordered pair (i, i), 1.e it represents

a diagonal element, the corresponding elementary product is equal
to 0.
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Case II: If a transversal represents no diagonal element, it will have a
‘mirror image’ obtained by reflection across the diagonal.
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elements, each transversal is distinct from its mirror image.
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We want to show that the sum of these m! elementary
products is 0.

Case II: If a transversal represents no diagonal element, it will have a
‘mirror image’ obtained by reflection across the diagonal.

Since each elementary product consists of an odd number of
elements, each transversal is distinct from its mirror image.

Since A 1s symmetric, the elementary products corresponding to the
the transversal and its mirror image are equal. Since we are
working over [Z],, their sum is equal to O.



PROOF

We want to show that the sum of these m! elementary
products is 0.

Case II: If a transversal represents no diagonal element, it will have a
‘mirror image’ obtained by reflection across the diagonal.

Since each elementary product consists of an odd number of
elements, each transversal is distinct from its mirror image.

Since A 1s symmetric, the elementary products corresponding to the
the transversal and its mirror image are equal. Since we are
working over [Z],, their sum is equal to O.

So, the sum of the elementary products is 0.



PROOF

Let A be an m X m checkerboard matrix.

We want to show: det(4) = 0 over [Zl;.

Det(A) 1s an alternating sum of elementary products of A.
Since we are working over [Zl., +1 =-1.

Det(A) 1s just an ordinary sum of the elementary products of A.
An m X m matrix has m! elementary products.

The sum of these m! elementary products is 0.
QED
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