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EXISTENCE: 
DOES A SOLUTION EXIST FOR EVERY 

‘CHECKERBOARD’? 
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0   1   1   0   0   0   1   0   0    
1   0   1   1   0   1   1   1   0    
1   1   0   0   1   0   1   1   1    
0   1   0   0   0   1   1   0   1    
0   0   1   0   0   1   0   1   0    
0   1   0   1   1   0   1   1   0    
1   1   1   1   0   1   0   0   1    
0   1   1   0   1   1   0   0   0    
0   0   1   1   0   0   1   0   0  
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0   1   1   0   0   0   1   0   0    
1   0   1   1   0   1   1   1   0    
1   1   0   0   1   0   1   1   1    
0   1   0   0   0   1   1   0   1    
0   0   1   0   0   1   0   1   0    
0   1   0   1   1   0   1   1   0    
1   1   1   1   0   1   0   0   1    
0   1   1   0   1   1   0   0   0    
0   0   1   1   0   0   1   0   0  
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Aj - jth column of the matrix A 
 

 

0   1   1   0   0   0   1   0   0    
1   0   1   1   0   1   1   1   0    
1   1   0   0   1   0   1   1   1    
0   1   0   0   0   1   1   0   1    
0   0   1   0   0   1   0   1   0    
0   1   0   1   1   0   1   1   0    
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0   1   1   0   1   1   0   0   0    
0   0   1   1   0   0   1   0   0  
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Aj - jth column of the matrix A 
 

 

A2 + A4 + A6 + A7 + A8 + A9  = 
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WORKING OVER      FIELD 

       is the smallest finite field consisting of two 
elements 0 and 1. 
 
By modular arithmetic, for all integers z  
z ≡ 0 (mod 2), if z is even 
z ≡ 1 (mod 2), if z is odd 
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THE CHECKERBOARD CHALLENGE
Akritee Shrestha
Hamilton College

Advisor: Professor Richard Bedient

A standard checkerboard contains a 9 ⇥ 9 grid formed by its vertices. Suppose
a number of coins are placed on the vertices so that the following two conditions
are satisfied:

1. The diagonal of the grid, which goes from the upper-left to the lower-right
corner, contains no coins.

2. The arrangement of the coins is diagonally symmetric.

Is it possible to have an even number of coins on each row by covering 8 or fewer
columns?
This talk will consider the folllowing checkerboard that satisfies condition (1)
and (2) and show that a solution exists.

It will then generalize the problem and prove Theorem 1.

Theorem 1. Let n be an odd number. Let A be a symmetric, n ⇥ n matrix

over the field Z/2Z such that every element on the diagonal is 0. Then there

exists a non-zero vector in the nullspace of A.

Reference

Zulli, Louis. The Incredibly Knotty Checkerboard Challenge. Mathematics
Magazine, 1998. 71(5):378-385
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0   1   1   0   0   0   1   0   0    
1   0   1   1   0   1   1   1   0    
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1   1   0   1   0   1   0   1   0    
0   1   1   1   1   1   0   0   1    
0   0   1   1   1   0   1   1   1    
0   0   0   1   1   1   0   1   1    
0   0   0   0   1   0   1   0   1    
0   0   0   0   0   1   0   1   0    
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0   0   0   0   0   0   0   1   1    
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1   1   0   1   0   1   0   1   0    
0   1   1   1   1   1   0   0   1    
0   0   1   1   1   0   1   1   1    
0   0   0   1   1   1   0   1   1    
0   0   0   0   1   0   1   0   1    
0   0   0   0   0   1   0   1   0    
0   0   0   0   0   0   1   0   1    
0   0   0   0   0   0   0   1   1    
0   0   0   0   0   0   0   0   0  

x1 = 0, x2 = 1, x3 = 0, x4 = 1, x5 = 0, x6 = 1, x7 = 1, x8 = 1, x9 = 1   

x1 
x2 
x3 
x4 
x5 
x6 
x7 
x8 
x9 

0
0
0
0
0
0
0
0
0

 .      =  

WORKING OVER      FIELD [   ]2  

THE CHECKERBOARD CHALLENGE
Akritee Shrestha
Hamilton College

Advisor: Professor Richard Bedient

A standard checkerboard contains a 9 ⇥ 9 grid formed by its vertices. Suppose
a number of coins are placed on the vertices so that the following two conditions
are satisfied:

1. The diagonal of the grid, which goes from the upper-left to the lower-right
corner, contains no coins.

2. The arrangement of the coins is diagonally symmetric.

Is it possible to have an even number of coins on each row by covering 8 or fewer
columns?
This talk will consider the folllowing checkerboard that satisfies condition (1)
and (2) and show that a solution exists.

It will then generalize the problem and prove Theorem 1.

Theorem 1. Let n be an odd number. Let A be a symmetric, n ⇥ n matrix

over the field Z/2Z such that every element on the diagonal is 0. Then there

exists a non-zero vector in the nullspace of A.

Reference

Zulli, Louis. The Incredibly Knotty Checkerboard Challenge. Mathematics
Magazine, 1998. 71(5):378-385

1



 
 
 
 
 

 

 

 

 

AX  = 0 

x1 = 0, x2 = 1, x3 = 0, x4 = 1, x5 = 0, x6 = 1, x7 = 1, x8 = 1, x9 = 1   

1   1   0   1   0   1   0   1   0    
0   1   1   1   1   1   0   0   1    
0   0   1   1   1   0   1   1   1    
0   0   0   1   1   1   0   1   1    
0   0   0   0   1   0   1   0   1    
0   0   0   0   0   1   0   1   0    
0   0   0   0   0   0   1   0   1    
0   0   0   0   0   0   0   1   1    
0   0   0   0   0   0   0   0   0  

x1 
x2 
x3 
x4 
x5 
x6 
x7 
x8 
x9 

0
0
0
0
0
0
0
0
0

 .      =  

WORKING OVER      FIELD [   ]2  

THE CHECKERBOARD CHALLENGE
Akritee Shrestha
Hamilton College

Advisor: Professor Richard Bedient

A standard checkerboard contains a 9 ⇥ 9 grid formed by its vertices. Suppose
a number of coins are placed on the vertices so that the following two conditions
are satisfied:

1. The diagonal of the grid, which goes from the upper-left to the lower-right
corner, contains no coins.

2. The arrangement of the coins is diagonally symmetric.

Is it possible to have an even number of coins on each row by covering 8 or fewer
columns?
This talk will consider the folllowing checkerboard that satisfies condition (1)
and (2) and show that a solution exists.

It will then generalize the problem and prove Theorem 1.

Theorem 1. Let n be an odd number. Let A be a symmetric, n ⇥ n matrix

over the field Z/2Z such that every element on the diagonal is 0. Then there

exists a non-zero vector in the nullspace of A.

Reference

Zulli, Louis. The Incredibly Knotty Checkerboard Challenge. Mathematics
Magazine, 1998. 71(5):378-385

1



 
 
 
 
 

 

 

 

 

AX  = 0 
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1   1   0   1   0   1   0   1   0    
0   1   1   1   1   1   0   0   1    
0   0   1   1   1   0   1   1   1    
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Theorem: A checkerboard matrix has a non-trivial nullspace. 
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Let A be an m × m checkerboard matrix.  
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