BLOCK ISOPERIMETRIC PROBLEMS

What do math and LegosTM have in common? Whales.

Our Research Problem

Using Legos TM, what is the smallest perimeter that will enclose a given area?

Our Research Problem	
Background Information	
Whale Theorem Proof	
Hydropronic Sequence	
Future Work	
	HISTORICAL MOTIVATION

Queen Dido

Previous Work

$$MA(P) = \left(\frac{P}{2} - \left(\lceil \frac{P}{4} \rceil + 1\right)\right)\left(\lceil \frac{P}{4} \rceil - 1\right)$$

- Maximum area is always square or pronic.
- Perimeter is always even.
- Conclusion: A square or a square-like rectangle has the greatest amount of area.

Relations Between The Projects

They maximized area given a specified perimeter.
We wanted to minimize perimeter given a specified area.

Research Question: Given a specified area, what is the most efficient way to enclose that given area?

Definitions!

□ LegoTM Curve: a single continuous arrangement of 1x1 blocks such that each block has exactly two neighbors. *

- Neighbor: a block that occupies the space adjacent to another block in one of the four cardinal directions along the grid. *
- * Referenced from work of: Bower, Espinoza, Green, Roca, and Townsend

Improper LegoTM Curves

Definitions!

Perimeter: the number of blocks used to create a
 Lego TM curve. (Reminder: Perimeters are always even)

□ Area: the number of studs enclosed by a Lego[™] curve.

Our Research Problem	
Background Information	
Whale Theorem Proof	
Hydropronic Sequence	
Future Work	
	WHALE THEOREM

The Whale Theorem

Using Legos TM, what is the smallest perimeter needed to enclose a specified area?

$$P(A) = 2\lceil 2\sqrt{A}\rceil + 4$$

Our Research Problem	
Background Information	
Whale Theorem Proof	
Hydropronic Sequence	
Future Work	
	PROOF

Non Square & Non Pronic Formula

In order to find the next possible square or pronic use this formula:

$$A^* = \lceil \frac{A}{\lceil \sqrt{A} \rceil} \rceil \lceil \sqrt{A} \rceil$$

- Examples:
 - $\Box A = 8$
 - \triangle A = 2012

Examples

$$A = 8$$

$$A^* = \lceil \frac{8}{\lceil \sqrt{8} \rceil} \rceil \lceil \sqrt{8} \rceil = 9$$

$$A = 2012$$

$$A^* = \lceil \frac{2012}{\lceil \sqrt{2012} \rceil} \rceil \lceil \sqrt{2012} \rceil = 2025$$

Graph of:
$$A^* = \lceil \frac{A}{\lceil \sqrt{A} \rceil} \rceil \lceil \sqrt{A} \rceil$$

Graph of: $MA(P) = (\frac{P}{2} - (\lceil \frac{P}{4} \rceil + 1))(\lceil \frac{P}{4} \rceil - 1)$

Our Research Problem	
Background Information	
Whale Theorem Proof	
Hydropronic Numbers	
Future Work	
	HYDROPRONIC NUMBERS

Hydropronic Numbers

 A number that is not square or pronic and can be arranged as a rectangle using its two closest factors to maintain minimum perimeter.

□ 3, 8, 10, 15, 18, 21, 24, 28, 32, 35, 40, 45...etc

Hydropronic Numbers

- Example: A = 24
 Factors: 1, 2, 3, 4, 6, 8, 12, 24
 - Arrange a rectangle of 6 x 4

Hydropronic

Area: 24

Hydropronic: 6 x 4 (24)

Whale Theorem

Area: 24 Next Square or Pronic: 5 x 5 (25)

Optimal Perimeters for Area = 24

Finding Hydropronic Numbers

$$A_{k} = \left\lceil \frac{A}{\left\lceil \sqrt{A} \right\rceil} \right\rceil \left(\left\lceil \sqrt{A} \right\rceil - 1 \right)$$

$$A^{*} = \left\lceil \frac{A}{\left\lceil \sqrt{A} \right\rceil} \right\rceil \left\lceil \sqrt{A} \right\rceil$$

Whalego Sequence

- Numbers that can be arranged as rectangles and maintain the minimum perimeter are in the WhaLego sequence. All of these numbers can be classified as square, pronic, or hydropronic.
- □ The first few numbers in this sequence are:
 - 1, 2, 3, 4, 6, 8, 9, 10, 12, 15, 16, 18, 20, 21...etc

Our Research Problem	
Background Information	
Whale Theorem Proof	
Hydropronic Numbers	
Future Work	
	FUTURE WORK &
	REFERENCES

Future Work

- Furthering Hydropronic Sequence
 - Finding a generating formula
- Lego Double Bubble Problem
 - Enclosing two areas
 - Whalego sequence shows up
- 3-Dimensional Spaces

References

Brower, T.; Espinoza, J.; Green, A.; Roca, A.;
 Townsend, B. LEGOTM Isoperimetric Problem,
 preprint (2010).

Capogna, L.; Donatella, D.; Pauls, S.; Tyson, J. An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, 1st ed., Birkhauser Verlag AG, Basel, Boston, 2007.

Questions?

Special thanks to the National Science Foundation (DMS- 1005046), Dr. Casey Douglas, and the St. Mary's College of Maryland Department of Mathematics and Computer Science.