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Generating Functions and  

Exponential Generating Functions 

• Given a sequence {𝑎𝑛} we can associate to it 

two functions determined by power series: 

• Its (ordinary) generating function is 

𝑓 𝒙 =  𝒂𝒏𝒙
𝒏

∞

𝒏=𝟏

 

• Its exponential generating function is 

𝒈 𝒙 =  
𝒂𝒏
𝒏!
𝒙𝒏

∞

𝒏=𝟏

 

 



Examples 
• The o.g.f and the e.g.f of {1,1,1,1,...} are: 

• f(x) = 1 + 𝑥 + 𝑥2 + 𝑥3 +⋯ =
1

1−𝑥
,   and 

• g(x) = 1 +
𝑥

1!
+
𝑥2

2!
+
𝑥3

3!
+⋯ = 𝑒𝑥, respectively. 

The second one explains the name... 

Operations on the functions correspond to manipulations 

on the sequence.   For example, adding two sequences 

corresponds to adding the ogf’s, while to shift the index 

of a sequence, we multiply the ogf by x, or differentiate 

the egf.  Thus, the functions provide a convenient way of 

studying the sequences.    

Here are a few more famous examples: 



Bernoulli & Euler Numbers 

• The Bernoulli Numbers Bn are defined by 

the following egf:  

 

 

 

• The Euler Numbers En are defined by the 

following egf:  
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Catalan and Bell Numbers 

• The Catalan Numbers Cn are known to have the 

ogf:    

𝐶 𝑥 =  𝐶𝑛𝑥
𝑛 =
1 − 1 − 4𝑥

2𝑥
=

2

1 + 1 − 4𝑥

∞

𝑛=1

 

• Let Sn denote the number of different ways of 

partitioning a set with n elements into nonempty 

subsets.   It is called a Bell number.   It is known 

to have the egf: 

 
𝑆𝑛
𝑛!
𝑥𝑛 =

∞

𝑛=1

𝑒 𝑒
𝑥−1  



Higher Order Bernoulli and Euler Numbers 

• The nth Bernoulli Number of order w,  Bw
n is 

defined for positive integer w by: 

 

 

 

 

• The nth Euler Number of order w,  Ew
n is 

similarly defined for positive integer w as: 

2𝑒𝑥

𝑒2𝑥 + 1

𝑤

=  
𝐸𝑤𝑛
𝑛!
𝑥𝑛

∞

𝑛=1
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Reversing the Process 
• If you start with a function and ask what sequence generates it 

(as an ogf), the answer is given by Taylor’s theorem: 

 

𝑐𝑛 =
𝑓 𝑛 (0)

𝑛!
 

• More generally, if we use powers of (x-a) in place of powers of 
x, Taylor’s theorem gives: 

𝑐𝑛 =
𝑓 𝑛 (𝑎)

𝑛!
 

 

• Let us abbreviate the n’th Taylor coefficient of f about x = a by: 

 

𝑇𝑛 𝑓; 𝑎 =
𝑓 𝑛 (𝑎)

𝑛!
 



A Key Question 
• I have mentioned that operations on the functions correspond 

to manipulations of the sequence.  What manipulations 

correspond to composing the generating functions? 

 

• That is, we are asking to express  
𝑇𝑛 𝑓  ⃘𝑔; 𝑎  

    in terms of the Taylor coefficients of f and of g. 

 

• In January, 2008, I published a paper entitled Explicit 
Formulas for Bernoulli and Euler Numbers, in the 
electronic journal Integers.  In this paper, I answer the above 
question and give some applications of the answer. 



A Key Answer 
• Since 

𝑇𝑛 𝑓  ⃘𝑔; 𝑎 =
𝑓  ⃘𝑔 (𝑛)(𝑎)

𝑛!
, 

 
the answer would depend on evaluating the numerator, which 
means extending the chain rule to nth  derivatives.  This was 
done (and published by Faà di Bruno in 1855.)  I noticed (in 
1994) a corollary of di Bruno’s formula which exactly answers the 
above question. 

 

 

 

• Francesco Faà di Bruno: 



THE MAIN RESULT 

With the above definitions, if both 𝑦 =  𝑓(𝑥) and 𝑥 =  𝑔(𝑡) have n 

derivatives, then so does 𝑦 =  𝑓   ⃘ 𝑔(𝑡), and 

 

𝑻𝒏 𝒇  ⃘𝒈; 𝒂 =  
𝒍 𝝅

𝜹 𝝅
𝝅∈𝑷𝒏

𝑇𝑙 𝜋 (𝑓; 𝑔 𝑎 )  𝑇𝑖(𝑔; 𝑎)
𝜋𝑖

𝑛

𝑖=1

 

 

where 𝑃𝑛 is the set of partitions of n, 𝑙 𝜋  is the length of the 

partition 𝜋, and 𝜋𝑖 is the multiplicity of i as a part of 𝜋.   Here, 𝛿 𝜋  

is the set of multiplicities {𝜋𝑖} which is itself a partition of 𝑙 𝜋  (I call 

it the derived partition 𝛿 𝜋 ), and  
𝑙 𝜋
𝛿 𝜋

 is the associated 

multinomial coefficient    
𝑙 𝜋 !

𝜋1!𝜋2!…𝜋𝑛!
. 



Illustration – How to use this machine 
• Let 𝑓 𝑥 = 𝑒𝑥 and let 𝑥 = 𝑔 𝑡 = 𝑒𝑡 − 1 Set 𝑎 = 0 and 

observe 𝑔 𝑎 = 0. Then:  

 

   𝑇𝑚 𝑓; 𝑔 0 =
1

𝑚!
   for all m and similarly, 

   𝑇𝑖 𝑔; 0 =
1

𝑖!
 if 𝑖 ≥ 1.   The right side becomes:  

 

𝑛!

𝑛!
 
𝑙 𝜋

𝛿 𝜋
𝜋∈𝑃𝑛

1

𝑙(𝜋)!
 
1

𝑖!

𝜋𝑖𝑛

𝑖=1

 

1

𝑛!
 
1

𝛿 𝜋 !
𝜋∈𝑃𝑛

𝑛!

𝜋!
=
1

𝑛!
 𝑆𝜋
𝜋∈𝑃𝑛

=
𝑆𝑛
𝑛!

 

 

 



Illustrations, continued 

• But the left hand side is  𝑇𝑛 𝑓  ⃘𝑔; 0  for the 

composite function 

𝑓  ⃘𝑔(𝑡) = 𝑒 𝑒
𝑡−1  

 

   So we just proved this is the egf for the   

   sequence of Bell numbers 𝑆𝑛.   This is a very    

   short proof of a known (and famous) result.  

   Likewise, I can provide new proofs of many 

   combinatorial identities using this technique.  

   Can we discover new results with this machine?   

   Yes!  



Illustrations, continued 

Let 𝑓 𝑥 =
ln(1+𝑥)

𝑥
 and 𝑔 𝑡 = 𝑒𝑡 − 1.   Again if 𝑎 = 0 then 

𝑔 𝑎 = 𝑔 0 = 0.  Also we have 𝑓  ⃘𝑔 𝑡 =
𝑡

𝑒𝑡−1
   which is 

precisely the egf of the Bernoulli numbers.   In this case, our 

machine yields the formulas: 

           

       and: 

 

       
 

where S(n,m) is the number of ways of partitioning a set of size 

n into m nonempty subsets (a Stirling number of the 2nd kind.) 
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Illustrations, continued 
• This was published in my 2008 paper, along with similar 

formulas for Euler numbers. 

• These formulas can be generalized in at least two ways:  

1. Express the higher order Bernoulli numbers in terms of the 

usual Bernoulli numbers, since the egf for them is obviously 

a composite.   Similarly for the higher order Euler numbers.  

This result is still unpublished (but I spoke at HRUMC a 

couple of years ago about it.) 

2. Generalize my corollary of di Bruno’s formula to the 

multivariable case.  (The next talk is about this in the case of 

multivariable Bernoulli numbers!) 

 

• For the remainder of this talk, I’d like to focus on one case 

where the identity I obtain from my machine is not obviously 

useful (or is it?) 



Final Example: the Catalan numbers 
• Recall from an earlier slide the generating function (ogf) of the 

Catalan numbers: 

𝐶 𝑥 =  𝐶𝑛𝑥
𝑛 =
1 − 1 − 4𝑥

2𝑥
=

2

1 + 1 − 4𝑥

∞

𝑛=1

 

 

• This can be expressed as a composite generating function as 

follows:  Let 𝑓 𝑢 =
2

1+𝑢
 and let 𝑢 = 𝑔 𝑥 = 1 − 4𝑥.   Then  

𝐶 𝑥 = 𝑓 𝑔 𝑥 .  If 𝑎 = 0 then 𝑔 𝑎 = 1, so the derivatives and 

Taylor coefficients of 𝑓 𝑢  have to be evaluated at 𝑢 = 1. 

 

• It is easy to check by direct calculation that 𝑓 𝑚 1 =
(−1)𝑚𝑚!

2𝑚
 

and therefore 𝑇𝑚 𝑓; 1 =
𝑓 𝑚 1

𝑚!
= 
(−1)𝑚

2𝑚
.    



Catalan numbers, continued 
• To find 𝑇𝑖(𝑔; 0), we write the radical as a power and use 

Newton’s binomial series:  

 𝑔 𝑥 = 1 − 4𝑥
1
2 =  

1
2 
𝑘
−4 𝑘𝑥𝑘∞

𝑘=0 .     

It follows that 𝑇𝑖 𝑔; 0 =
1
2 
𝑖
−4 𝑖.    So our formula yields: 

𝐶𝑛 =  
𝑙 𝜋
𝛿 𝜋

𝜋∈𝑃𝑛

−1 𝑙(𝜋)

2𝑙(𝜋)
 
1
2 

𝑖
−4 𝑖

𝜋𝑖
𝑛

𝑖=1

 

 

   However, we can simplify this because 

 −4 𝑖
𝜋𝑖
= −4  𝑖𝜋𝑖 = −4 𝑛

𝑛

𝑖=1

 



Simplifications 

Thus,  

𝐶𝑛 = 4
𝑛  

𝑙 𝜋

𝛿 𝜋
𝜋∈𝑃𝑛

−1 𝑛+𝑙(𝜋)

2𝑙(𝜋)
 
1
2 

𝑖

𝜋𝑖𝑛

𝑖=1

 

    

Next, we rewrite the terms 

1
2 

𝑖

𝜋𝑖

=

1
2
1
2
− 1
1
2
− 2 …

1
2
− 𝑖 + 1

𝑖!

𝜋𝑖

 

    

When we take the product of these terms over i, the 

denominator becomes  𝑖! 𝜋𝑖𝑛
𝑖=1 , the product of the factorials of 

all the parts of 𝜋, which I abbreviate as 𝜋!.   Observe that  
1

𝜋!
= 𝑛!
𝑛

𝜋
 

Looking more carefully at the numerator, we obtain:   



Simplifications, continued 

1

2

1

2
− 1
1

2
− 2 …

1

2
− 𝑖 + 1

𝜋𝑖

=
1

2
−
1

2
−
3

2
… −
2𝑖 − 3

2

𝜋𝑖

 

 

 We can factor out a power of 2 in the denominator, namely 2𝑖
𝜋𝑖
= 2𝑖𝜋𝑖, 

and since every factor except the first is negative, we can also factor out a 

power of -1, namely (−1)𝑖−1
𝜋𝑖
= −1 𝑖𝜋𝑖−𝜋𝑖.  Now when we take the 

product over i, this means we factor out the following:  in the denominator,  

       2𝑖𝜋𝑖 = 2 𝑖𝜋𝑖 = 2𝑛  

(which cancels part of the 4𝑛 outside the sum), and in the numerator,  

   (−1)𝑖𝜋𝑖−𝜋𝑖 = (−1) 𝑖𝜋𝑖− 𝜋𝑖= (−1)𝑛−𝑙(𝜋).    

Combined with the (−1)𝑛+𝑙(𝜋) term in front of the product, this becomes 

(−1)2𝑛= 1.  In other words, all the negatives cancel out!   Finally, what 

remains in the square brackets is a product of odd integers, which we 

abbreviate with the double factorial notation (with the convention that  

(-1)!! = 1).   The entire thing simplifies to: 



New formula for the Catalan numbers! 
• We have proved: 

𝐶𝑛 =
2𝑛

𝑛!
 
𝑛

𝜋

𝑙 𝜋

𝛿 𝜋
𝜋∈𝑃𝑛

1

2𝑙(𝜋)
 2𝑖 − 3 ‼

𝜋𝑖

𝑛

𝑖=1

 

   

 Let’s illustrate this with n = 4.   We need the table: 

  𝝅 𝝅𝟏 𝝅𝟐 𝝅𝟑 𝝅𝟒 𝒍(𝝅) 𝜹(𝝅) 

[4] 0 0 0 1 1 [1] 

[3,1] 1 0 1 0 2 [12] 

[22] 0 2 0 0 2 [2] 

[2, 12] 2 1 0 0 3 [2,1] 

14  4 0 0 0 4 [4] 



Catalan example (n = 4) 

• Our formula becomes: 

 

𝐶4 =
24

4!
 
4

𝜋

𝑙 𝜋

𝛿 𝜋
𝜋∈𝑃4

1

2𝑙(𝜋)
 2𝑖 − 3 ‼

𝜋𝑖

4

𝑖=1

 

 

=
16

24

4

4

1

1

1

2
(5‼)1 + 

4

3 1

2

1 1

1

22
(3‼)1 + 

4

2 2

2

2

1

22
(1‼)2  

+
16

24

4

2 1 1

3

2 1

1

23
(1‼)1 + 

4

1 1 1 1

4

4

1

24
((−1)‼)4  

 

=
16

24
1 ∙ 1 ∙
1

2
∙ 5 ∙ 3 ∙ 1 + 4 ⋅ 2 ⋅

1

4
⋅ 3 ⋅ 1 + 6 ⋅ 1 ⋅

1

4
⋅ 12  

+
16

24
12 ∙ 3 ∙

1

8
⋅ 1 + 24 ⋅ 1 ⋅

1

16
⋅ 1  

 

 



Catalan example (n = 4) 

= 5 + 4 + 1 + 3 + 1 = 14 

This is the correct value as 

   𝐶4 =
1

5

8
4
= 14  

Of course it appears as if my formula is kind of 

useless since it is so inefficient!    

Or maybe not..... 

The Catalan numbers are known to count many 

things – maybe my formula gives some sort of 

refinement of this count? 

 

Speculation:  Dyck words? 



The 14 Dyck words of length 8 

AAAABBBB AABAABBB ABAAABBB 

AAABABBB AABABABB ABAABABB 

AAABBABB AABABBAB ABAABBAB 

AAABBBAB AABBAABB ABABAABB 

AABBABAB ABABABAB 

• I tried many ways to ‘naturally’ break these up into groups of sizes 5,4,1,3,1 

but always without success.    But then – what if we lump the terms together 

corresponding to partitions of the same length?  This leads to groups of size 

5,5,3,1 – and such groups DO appear naturally in the table.... 

 

I have some ideas on how to do this in general (no proof yet), but I believe that I 

can make the individual terms in my sum always correspond to such groups of 

Dyck words.   Hopefully this will lead to a bijective proof of my formula. 



 The 2008 paper, which has the explicit formulas 
for the ordinary Bernoulli & Euler numbers 
(but not the higher order ones), can be 
downloaded from this website: 

 

 http://www.integers-ejcnt.org/ 

 

 Just click on the 2008 volume.  My paper is the 
first one in the January issue. 

http://www.integers-ejcnt.org/
http://www.integers-ejcnt.org/
http://www.integers-ejcnt.org/


Appendix: My Bernoulli number formula 

• Let’s see how it works for n = 4: 

 
 

 

• Length 

 

• Derived 

 

 

• B4 = 

Partitions of 4 

[4] [3,1] [2,2] [2,1,1] [1,1,1,1] 

1 2 2 3 4 

[1] [1,1] [2] [1,2] [4] 

30

1

5

24
92

3

8

2

1
241

5

1
123

4

1
61

3

1

42
3

1

2

1

1,1,1,1

4

4

4

41

4
)1(
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3

31
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)1(
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Appendix: My second Bernoulli number formula 

• For example:  
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Appendix: My higher order  
Bernoulli number formula  

 (Vella, Feb., 2008 - unpublished): 

 

 

 

 

 
    which expresses the higher order Bernoulli numbers in 

terms of the ordinary ones.  Here, 𝑤(𝑚) is the falling 
factorial function 𝑤(𝑚) = 𝑤 𝑤 − 1 𝑤 − 2 …(𝑤 −𝑚 + 1) 
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Appendix: Example of Higher Order Bernoulli formula  

• For example, let’s compute B4
2.  There are 5 partitions of 4, 

but only three of them have length at most 2: [4], [3,1] and 

[2,2]:   

        
        
        

 

 

.
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6
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