A Theorem of Block and Thielman

Presented by Samuel Williams

Commuting Polynomials

- Certain polynomials, with coefficients in the real or complex numbers, commute under composition
- Two polynomials, f(x) and g(x), commute under composition if

$$(f \circ g)(x) = (g \circ f)(x)$$
or
$$f(g(x)) = g(f(x))$$

Similarity

 A polynomial f(x) is similar to a polynomial, g(x), if there exists a degree 1 polynomial λ(x) such that

$$g(x) = (\lambda^{-1} \circ f \circ \lambda)(x)$$

$$\lambda(x) = ax + b$$

$$\lambda^{-1}(x) = \frac{x - b}{a}$$

Similarity is an equivalence relation

Similarity Theorem

- ▶ Take two polynomials, f(x) and g(x)
- Assume f(x) commutes with g(x)
- Then $(\lambda^{-1} \circ f \circ \lambda)(x)$ commutes with $(\lambda^{-1} \circ g \circ \lambda)(x)$
- This is our first helper theorem

Degree 2 Theorem

- There is, at most, one polynomial of any degree (greater than 1) that commutes with a given degree 2 polynomial
- One may consult Rivlin for further information
- This is our second helper theorem

Chains

- A *chain* is a sequence of polynomials which
 - contains one polynomial of each positive degree
 - such that every polynomial commutes with any polynomial in the chain

Major Examples of Chains

- Power monomials
 - Given by $\{x^n, n = 1, 2, 3, ...\}$
- Chebyshev polynomials
 - Given by $\{T_n(x), n = 1, 2, 3, ...\}$
 - $T_n(x) = \cos n(\cos^{-1}(x))$
 - $T_n(x) = 2xT_{n-1}(x) T_{n-2}(x)$

$$T_1(x) = x$$

$$T_2(x) = 2x^2 - 1$$

$$T_3(x) = 4x^3 - 3x$$

Constructing New Chains Through Similarity

We can construct new chains from the two major chains

$$\lambda(x) = x + 1 \quad \lambda^{-1}(x) = x - 1$$

 $(\lambda^{-1} \circ (x^n) \circ \lambda)(x)$ is a chain

$$x \rightarrow x$$

$$x^{2} \rightarrow x^{2} + 2x$$

$$x^{3} \rightarrow x^{3} + 3x^{2} + 3x$$

$$x^{4} \rightarrow x^{4} + 4x^{3} + 6x^{2} + 4x$$

 $(\lambda^{-1} \circ (T_n) \circ \lambda)(x)$ is also a chain

Recall

- A polynomial f(x) is even if and only if f(-x)=f(x)
 - All odd degree coefficients in an even polynomial are 0
- A polynomial f(x) is odd if and only if f(-x)=-f(x)
 - All even degree coefficients in an odd polynomial are 0

Block Thielman Theorem

 All chains are similar to either the power monomials or the Chebyshev polynomials

The power monomials and the Chebyshev polynomials are the only two chains, up to similarity

Proof

- Let $\{p_n(x), n = 1, 2, 3, ...\}$ be a chain $p_2(x) = a_2x^2 + a_1x + a_0$
- Let $\{q_j(x), j = 1, 2, 3, ...\}$ be a chain similar to $\{p_n(x)\}$ via $\lambda(x) = \frac{x}{a_2} \frac{a_1}{2a_2}$
- $q_2(x) = x^2 + c$
- We know that $q_2(x)$ commutes with $q_3(x)$

Proof Continued

So, by definition

$$q_3(x^2 + c) = q_3^2(x) + c \tag{*}$$

We can see that

$$q_3(x^2+c)-c=q_3^2(x)+c-c=q_3^2(x)$$

Which means that

$$q_3^2(-x) = q_3((-x)^2 + c) - c$$

= $q_3(x^2 + c) - c$
= $q_3^2(x)$,

So

$$q_3(-x) = \pm q_3(x)$$

Proof Continued

- \mathbf{p} $\mathbf{q}_3(\mathbf{x})$ is a degree 3 polynomial
 - The degree 3 coefficient cannot be 0
 - Thus, $q_3(x)$ cannot be even
 - So $q_3(-x) = -q_3(x)$, and $q_3(x)$ is odd
- This implies that $q_3(x) = b_3x^3 + b_1x$
- Because $q_2(x)$ is monic, $q_3(x)$ is also monic $b_3=1$

Proof Continued

• We substitute $q_3(x)$ back into equation (*)

$$(x^{2} + c)^{3} + b_{1}(x^{2} + c) = (x^{3} + b_{1}x)^{2} + c$$

$$(x^{6} + 3cx^{4} + 3c^{2}x^{2} + c^{3}) + b_{1}(x^{2} + c) = x^{6} + 2b_{1}x^{4} + b_{1}^{2}x^{2} + c$$

$$x^{6} + 3cx^{4} + (3c^{2} + b_{1})x^{2} + c^{3} + b_{1}c = x^{6} + 2b_{1}x^{4} + b_{1}^{2}x^{2} + c$$

Compare Coefficients of x⁴

$$3c = 2b_1$$

So

$$b_1 = \frac{3}{2}c$$

Compare Coefficients of x²

$$3c^{2} + b_{1} = (b_{1})^{2}$$

$$3c^{2} + \frac{3}{2}c = (\frac{3}{2}c)^{2}$$

$$3c^{2} + \frac{3}{2}c = \frac{9}{4}c^{2}$$

$$\frac{3}{4}c^{2} + \frac{3}{2}c = 0$$

$$3c^{2} + 6c = 0$$

$$c^{2} + 2c = 0$$

$$c(c + 2) = 0$$

Compare Constants

$$c^{3} + \frac{3}{2}c^{2} = c$$

$$2c^{3} + 3c^{2} = 2c$$

$$2c^{3} + 3c^{2} - 2c = 0$$

$$(c+2)(2c^{2} - c) = 0$$

$$c(c+2)(2c-1) = 0.$$

▶ Thus, c=-2 or c=0

Case 1: c = 0

- Then $q_2(x) = x^2 + c = x^2$
- - The only polynomials that commute with x^2 are the power monomials by the second helper theorem
- $\{q_j(x), j = 1, 2, 3, ...\}$ must be the power monomials
- So $\{p_n(x), n = 1, 2, 3, ...\}$ is similar to the power monomials

Case 2: c = -2

- Then $q_2(x) = x^2 + c = x^2 2$
- Consider

$$\alpha(x) = 2x \qquad \alpha^{-1}(x) = \frac{1}{2}x$$

Then

$$(\alpha^{-1} \circ q_2 \circ \alpha)(x) = \alpha^{-1}((2x)^2 - 2)$$

$$= \alpha^{-1}(4x^2 - 2)$$

$$= \frac{1}{2}(4x^2 - 2)$$

$$= 2x^2 - 1$$

$$= T_2(x).$$

Case 2 Continued

We know that

```
\{(\alpha^{-1} \circ q_j \circ \alpha)(x), \quad j = 1, 2, 3, \ldots\} is a chain from our first helper theorem
```

- We know that this chain is actually the Chebyshev polynomials by our second helper theorem
- Thus, {p_n(x), n = 1, 2, 3, ...} is similar to the Chebyshev polynomials, as similarity is transitive

References

- H. D. Block and H. P. Thielman, Commutative polynomials, Quart. J. Math. Oxford Ser., (2), 2 (1951) 241-243.
- E. J. Jacobsthal, Über vertauschbare polynome, Math. Z., 63 (1955) 243-276.
- T. J. Rivlin, Chebyshev Polynomials, Wiley Interscience, 1971, pp 194.

Questions?

Thank you!