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All polynomials in this talk will have real number coefficients.

Definition 1
Let f (x) and g(x) be polynomials. Then f and g commute under
composition provided (f ◦ g)(x) = (g ◦ f )(x).

In other words, f (g(x)) = g(f (x)).
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Example

Let f be any polynomial. Then f commutes with itself. More
generally, let f n denote f composed with itself n-times.

Then f commutes with f n.

f ◦ f n = f ◦ (f ◦ f · · · ◦ f ) = (f ◦ f · · · ◦ f ) ◦ f = f n ◦ f

Recall that when we compose polynomials, we multiply the degrees.

Thus, if the degree of f is a, then the degree of f n is an.



Example

Let f be any polynomial. Then f commutes with itself. More
generally, let f n denote f composed with itself n-times.

Then f commutes with f n.

f ◦ f n =

f ◦ (f ◦ f · · · ◦ f ) = (f ◦ f · · · ◦ f ) ◦ f = f n ◦ f

Recall that when we compose polynomials, we multiply the degrees.

Thus, if the degree of f is a, then the degree of f n is an.



Example

Let f be any polynomial. Then f commutes with itself. More
generally, let f n denote f composed with itself n-times.

Then f commutes with f n.

f ◦ f n = f ◦ (f ◦ f · · · ◦ f ) =

(f ◦ f · · · ◦ f ) ◦ f = f n ◦ f

Recall that when we compose polynomials, we multiply the degrees.

Thus, if the degree of f is a, then the degree of f n is an.



Example

Let f be any polynomial. Then f commutes with itself. More
generally, let f n denote f composed with itself n-times.

Then f commutes with f n.

f ◦ f n = f ◦ (f ◦ f · · · ◦ f ) = (f ◦ f · · · ◦ f ) ◦ f =

f n ◦ f

Recall that when we compose polynomials, we multiply the degrees.

Thus, if the degree of f is a, then the degree of f n is an.



Example

Let f be any polynomial. Then f commutes with itself. More
generally, let f n denote f composed with itself n-times.

Then f commutes with f n.

f ◦ f n = f ◦ (f ◦ f · · · ◦ f ) = (f ◦ f · · · ◦ f ) ◦ f = f n ◦ f

Recall that when we compose polynomials, we multiply the degrees.

Thus, if the degree of f is a, then the degree of f n is an.



Example

Let f be any polynomial. Then f commutes with itself. More
generally, let f n denote f composed with itself n-times.

Then f commutes with f n.

f ◦ f n = f ◦ (f ◦ f · · · ◦ f ) = (f ◦ f · · · ◦ f ) ◦ f = f n ◦ f

Recall that when we compose polynomials, we multiply the degrees.

Thus, if the degree of f is a, then the degree of f n is an.



Example

Let f be any polynomial. Then f commutes with itself. More
generally, let f n denote f composed with itself n-times.

Then f commutes with f n.

f ◦ f n = f ◦ (f ◦ f · · · ◦ f ) = (f ◦ f · · · ◦ f ) ◦ f = f n ◦ f

Recall that when we compose polynomials, we multiply the degrees.

Thus, if the degree of f is a, then the degree of f n is an.



Definition 2
α ∈ C is a fixed point of f provided f (α) = α

Note that if deg f = n ≥ 2, the fixed points of f are the roots of
the polynomial g(x) = f (x)− x .

g(α) = 0 ⇐⇒ f (α)− α = 0 ⇐⇒ f (α) = α.

So since g(x) can have at most n roots, f can have at most n
fixed points.
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Lemma
Let f and h commute under composition and let α be a fixed point
of h. Then f (α) is a fixed point of h.

Proof: h(f (α)) = f (h(α)) = f (α). QED

Notation: Let Fh denote the set of fixed points of h.

Corollary

Let f commute with h. Then we have a function, f : Fh → Fh

given by α 7→ f (α).
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Example

If f commutes with g then f ◦ (f ◦ g) =

f ◦ (g ◦ f ) = (f ◦ g) ◦ f .

In other words, f commutes with f ◦ g .

By the corollary, letting h = f ◦ g , we have a function

f : Ff ◦g → Ff ◦g .
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Theorem
If f and g are polynomials that commute under composition then

f : Ff ◦g → Ff ◦g is a bijection.

Proof: f is invertible with inverse g .

Let α ∈ Ff ◦g . Then (f ◦ g)(α) = α = Id(α).

Since f ◦ g = g ◦ f , it’s clear that Ff ◦g = Fg◦f , so α ∈ Fg◦f .

Therefore (g ◦ f )(α) = α = Id(α). QED
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Setting

In the theorem, let g = f p−1 where p is a prime integer.

Then f ◦ g = f ◦ f p−1 = f p and f : Ff p → Ff p is a bijection.

Note 1
If the degree of f is a, then the degree of f p is ap. It follows that
f p has at most ap fixed points. In other words |Ff p | ≤ ap . We’ll
choose f so that |Ff p | = ap.

Note 2
Observe that Ff ⊆ Ff p . If f (α) = α then f (f (α)) = f (α) = α.
Continue ...
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Now, since f : Ff p → Ff p is a bijection of finite sets and

f maps any element of Ff to itself,

it follows that f must map the points that aren’t fixed by f to the
points that aren’t fixed by f .

Corollary

Let f be a polynomial. Then f : Ff p KFf → Ff p KFf is a bijection.



Now, since f : Ff p → Ff p is a bijection of finite sets and

f maps any element of Ff to itself,

it follows that f must map the points that aren’t fixed by f to the
points that aren’t fixed by f .

Corollary

Let f be a polynomial. Then f : Ff p KFf → Ff p KFf is a bijection.



Now, since f : Ff p → Ff p is a bijection of finite sets and

f maps any element of Ff to itself,

it follows that f must map the points that aren’t fixed by f to the
points that aren’t fixed by f .

Corollary

Let f be a polynomial. Then f : Ff p KFf → Ff p KFf is a bijection.



Now, since f : Ff p → Ff p is a bijection of finite sets and

f maps any element of Ff to itself,

it follows that f must map the points that aren’t fixed by f to the
points that aren’t fixed by f .

Corollary

Let f be a polynomial. Then f : Ff p KFf → Ff p KFf is a bijection.



Fermat’s Little Theorem
Let a, p ∈ Z with p a prime. Then ap ≡ a (mod p).

Proof: We want to show that p | ap − a for all a ∈ Z.

Let a ≥ 2 and let f be any polynomial of degree a such that f p has
ap distinct fixed points.

Let S = Ff p K Ff . Then |S | = ap − a and f : S → S is a
permutation.

Note that f p(α) = α for all α ∈ S since S ⊆ Ff p .
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It follows that f p = Id, in other words, the order of f is p.

But f can be written as a product of it’s disjoint cycles, say
f = ( )( ) . . . ( ) and the order of f is the lcm
of the lengths of these disjoint cycles.

But since the lcm of all the lengths is p, all cycles must be of
length 1 or p, ie, all are of length p.

If there are k such cycles, ap − a = kp, so p | ap − a.
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Probably the easiest polynomial of degree a ≥ 2 with pth iterate
having ap distinct roots is f (x) = xa.

In this case, f p(x) = xa
p

which has fixed points the roots of
xa

p − x .



Here are two papers using iteration of functions / fixed points to
prove Fermat’s Little Theorem.

1. “Fixed Points and Fermat: A Dynamical Systems Approach to
Number Theory,” by Michael Frame, Brenda Johnson, and Jim
Sauerberg, The American Mathematical Monthly, Volume 107, No.
5 (May 2000), pp 422 - 428.

2. “Fermat’s little theorem: a proof by function iteration,” Lionel
Levine, Mathematics Magazine 72, no 4 (1999), 308 - 309.
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