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Example
Let f be any polynomial. Then f commutes with itself. More
generally, let " denote f composed with itself n-times.

Then f commutes with .

foff=fo(fof---of)y=(fof---of)of=f"of

Recall that when we compose polynomials, we multiply the degrees.

n

Thus, if the degree of f is a, then the degree of f" is a".
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Definition 2
a € Cis a fixed point of f provided f(a) = «

Note that if deg f = n > 2, the fixed points of f are the roots of
the polynomial g(x) = f(x) — x.

gla)=0 < f(a)—a=0 <= f(a)=qa.

So since g(x) can have at most n roots, f can have at most n
fixed points.
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Lemma
Let f and h commute under composition and let a be a fixed point
of h. Then f(«) is a fixed point of h.

Proof: h(f(a)) = f(h(a)) = f(a). QED

Notation: Let F}, denote the set of fixed points of h.

Corollary
Let f commute with h. Then we have a function, f : 7 — Fp
given by o — ().
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Example
If f commutes with g then fo(fog)=fo(gof)=(fog)of.

In other words, f commutes with f o g.

By the corollary, letting h = f o g, we have a function

f: ./—"fog — ]'-fog.
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Theorem
If f and g are polynomials that commute under composition then

f: Frog — Frog is a bijection.

Proof: f is invertible with inverse g.
Let o € Frog. Then (f o g)(r) = o = Id().
Since fog = gof,it's clear that Frop = Fgor, SO @ € Fgor.

Therefore (g o f)(a) = o = Id(a). QED
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Setting
In the theorem, let g = fP~! where p is a prime integer.

Then fog = fofP~1 =fPand f: Frp — Fys is a bijection.

Note 1

If the degree of f is a, then the degree of fP is aP. It follows that
fP has at most aP fixed points. In other words |Fsp| < aP . We'll
choose f so that |Fge| = aP.

Note 2
Observe that Fr C Fyp. If f(a) = a then f(f(a)) = f(a) = .
Continue ...
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Now, since f : Frp — Fyp is a bijection of finite sets and
f maps any element of Fr to itself,

it follows that f must map the points that aren't fixed by f to the
points that aren't fixed by f.

Corollary
Let f be a polynomial. Then f : Fro \ Fr — Frr \ Fr is a bijection.
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Fermat's Little Theorem
Let a,p € Z with p a prime. Then a? = a (mod p).

Proof: We want to show that p|aP — a for all a € Z.

Let 2 > 2 and let f be any polynomial of degree a such that P has
aP distinct fixed points.

Let S=Fs \ Fr. Then |S|=aP —aand f:S— Sisa
permutation.

Note that fP(a)) = « for all @ € S since S C Fpo.
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It follows that fP = Id, in other words, the order of f is p.

But f can be written as a product of it's disjoint cycles, say
= )( ). ( ) and the order of f is the lcm
of the lengths of these disjoint cycles.

But since the Icm of all the lengths is p, all cycles must be of
length 1 or p, ie, all are of length p.

If there are k such cycles, a? — a = kp, so p|aP — a.



Probably the easiest polynomial of degree a > 2 with p® iterate
having aP distinct roots is f(x) = x?.

In this case, fP(x) = x* which has fixed points the roots of

P
x? — x.
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