

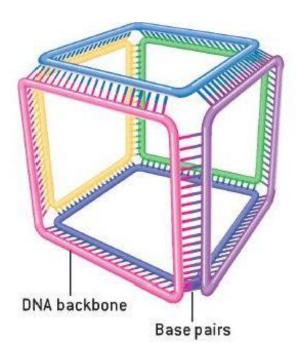
Graph Theoretical Optimization for Self-Assembling DNA Nanostructures

Brianne Conlon* and Rob Hammond

This research was supported by grant 10-GR150-514030-11 from the NSF.

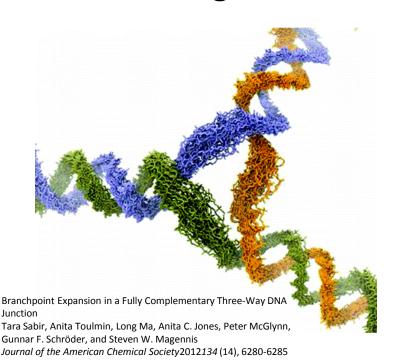
DNA Nanostructures and Their Uses

- Made of double stranded DNA
 - Utilize complimentary base pairing
- 2D and 3D geometric shape
- Applications
 - Pharmaceuticals
 - Biosensors
 - Biomolecular computing



Flexible Tiles: Building Blocks

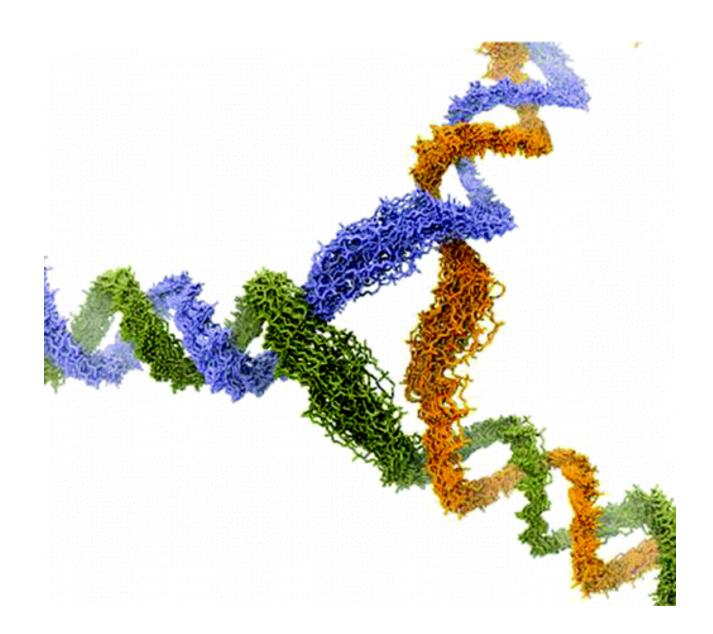
- K-armed branched junction DNA molecules
 - Each branch has a sticky end
 - Join together with complimentary base pairing

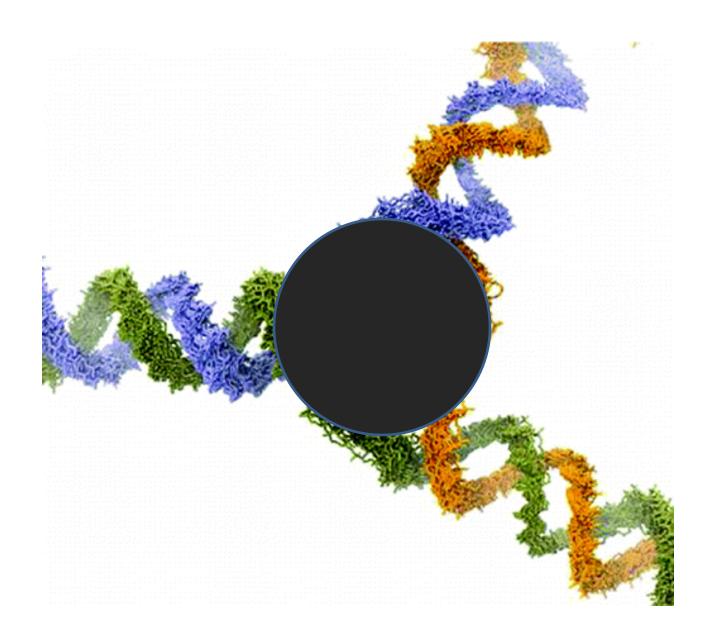


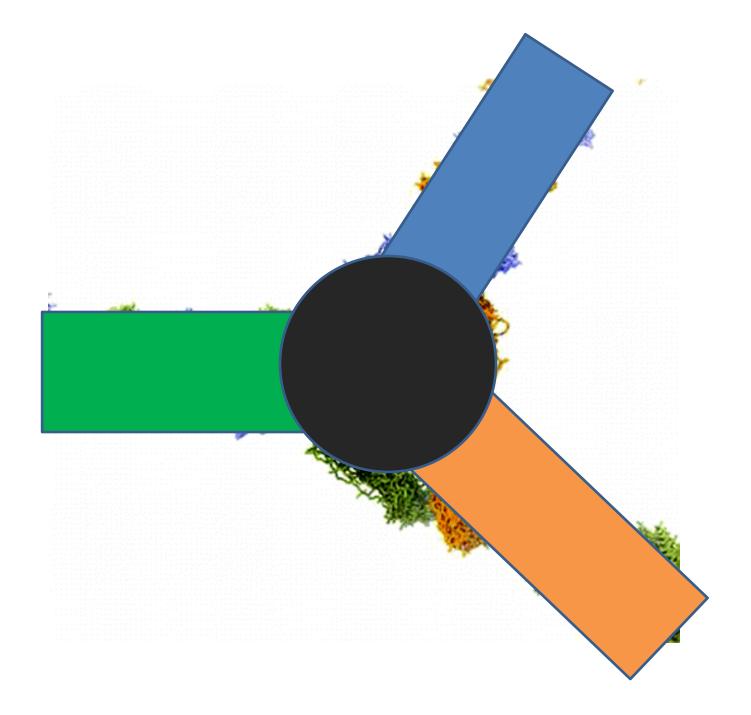
AATTCCGGAATTGGCCTTAAGGAATTCCGGTTTAA
TTAAGGCCTTAACCGGAATTCCTTAAGGCCAAATT

Figure 1: Joining two cohesive ends

https://sites.google.com/site/nanoselfassembly/branched-junction-molecule

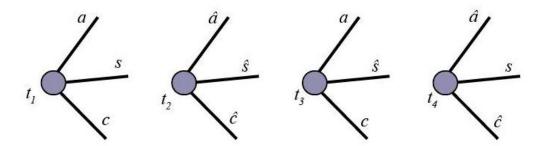






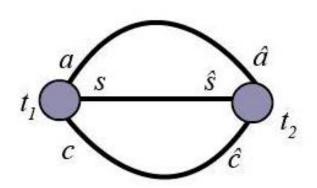
Graph Theoretical Definitions

- Tile: k-branched junction molecule with cohesive ends fit to a vertex with half edges
- Cohesive end types: z is complimentary to 2
- Bond-edge: a cohesive end together with its complementary cohesive end
- Pot: a collection of tiles

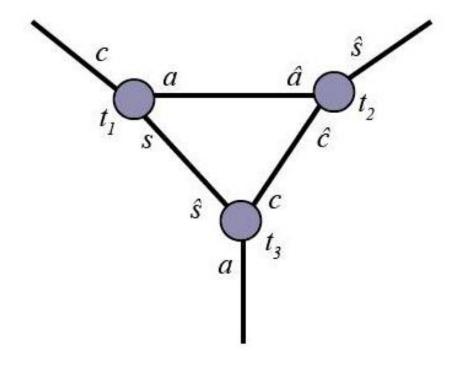


Graph Theoretical Definitions cont.

Complete complexes:



complete complex



incomplete complex

The Problem

Given a target graph, what is the smallest pot which can realize the target in a complete complex

Conditions

- **Scenario 1**: complexes with fewer vertices than the target graph may be formed
- Scenario 2: only complexes with the same number of vertices as the target graph may be formed
- Scenario 3: no complexes with less than or equal to the number of vertices in the target graph may be formed

Scenario 1

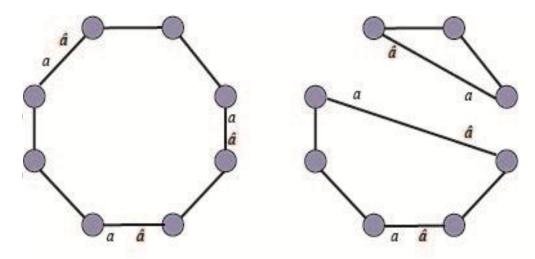


Fig. 5 Smaller graphs formed when there are three edges with the same bond-edge type.

Scenario 3

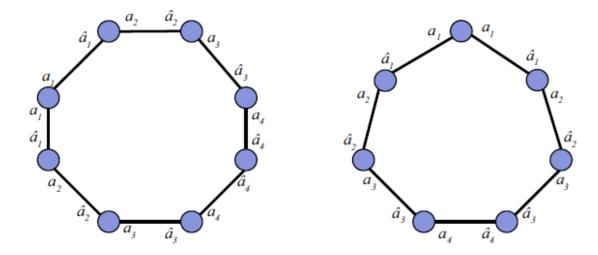
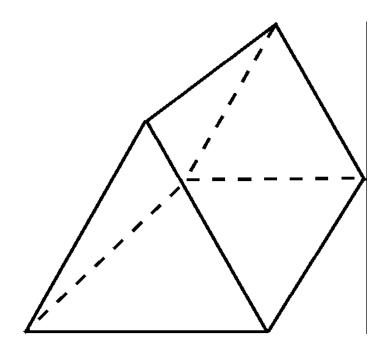


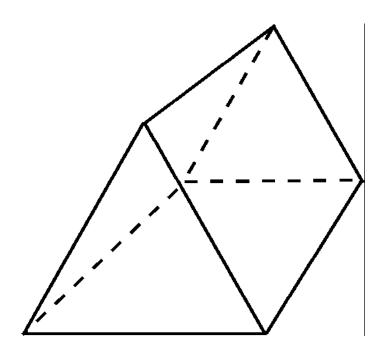
Fig. 6 Cycle constructions.

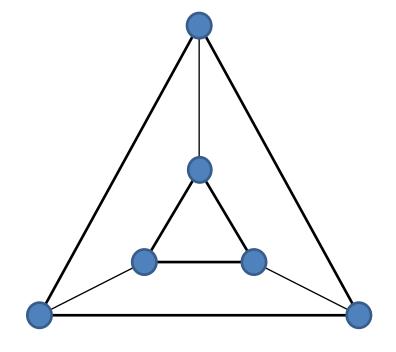
Goal: Find a pot with the minimum number of tiles for right prisms



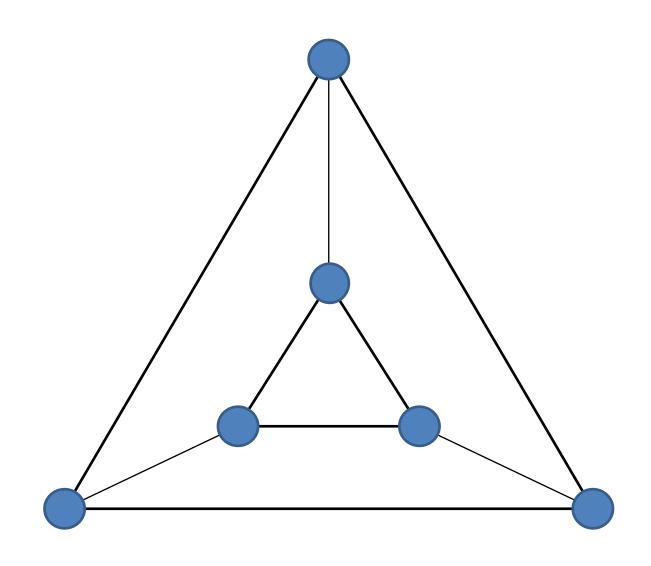
 $http://www.narragansett.k12.ri.us/resources/necap\%20support/gle_support/Math/resources_geometry/3d_shapes.htm$

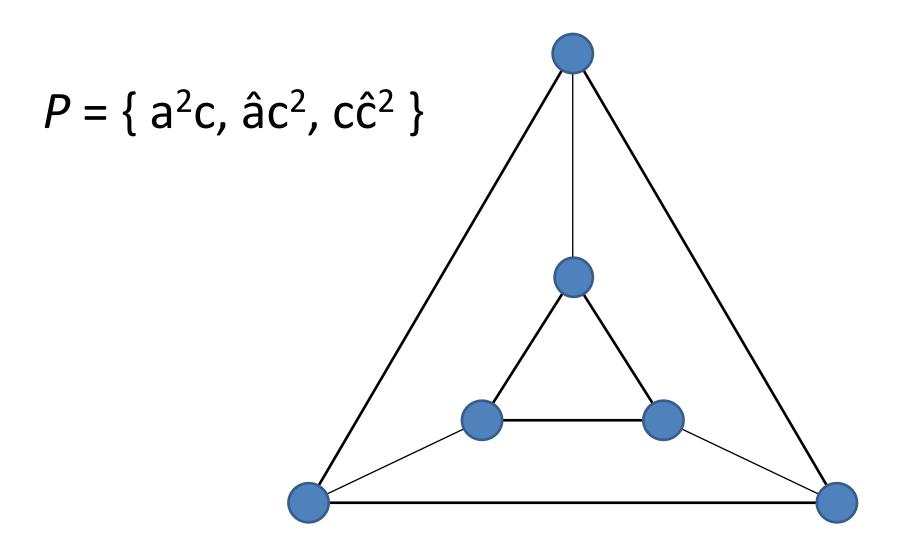
Goal: Find a pot with the minimum number of tiles for right prisms

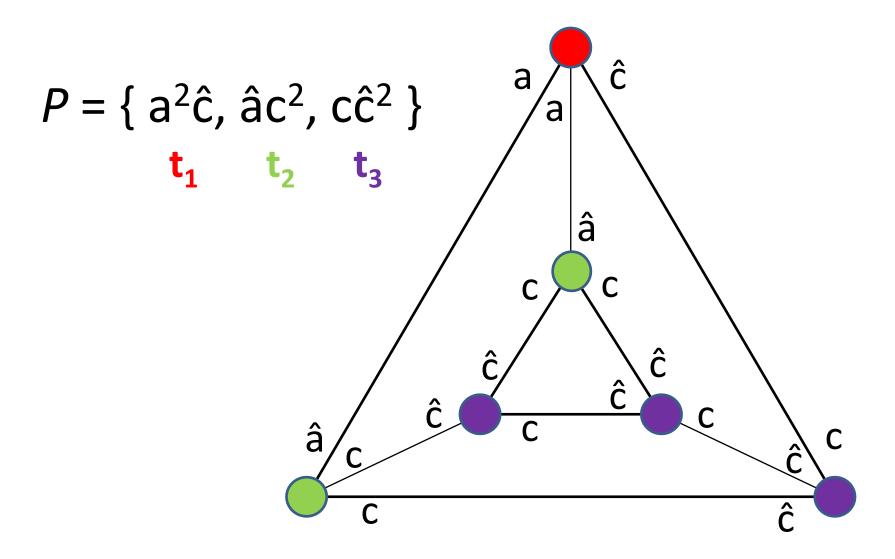




 $http://www.narragansett.k12.ri.us/resources/necap\%20support/gle_support/Math/resources_geometry/3d_shapes.htm$







Prove: P makes nothing smaller

$$P = \{ a^2\hat{c}, \hat{a}c^2, c\hat{c}^2 \}$$

$$2r_1-1r_2=0$$
 $-1r_1+2r_2-1r_3=0$
 $r_1+r_2+r_3=1$

Prove: P makes nothing smaller

$$P = \{ a^2\hat{c}, \hat{a}c^2, c\hat{c}^2 \}$$

$$2r_{1}-1r_{2}=0$$

$$-1r_{1}+2r_{2}-1r_{3}=0$$

$$r_{1}+r_{2}+r_{3}=1$$

$$2 -1 0 0$$

$$-1 2 -1 0$$

$$1 1 1 1$$

Prove: P makes nothing smaller

$$P = \{ a^2\hat{c}, \hat{a}c^2, c\hat{c}^2 \}$$

$$S(P) = \{ 1/6, 1/3, 1/2 \}$$

Prove: P makes nothing smaller

Proposition: smallest complete complex created from a pot is the LCM in the denominators of the spectrum

Prove: P makes nothing smaller

Proposition: smallest complete complex created from a pot is the LCM in the denominators of the spectrum

$$P = \{ a^2\hat{c}, \hat{a}c^2, c\hat{c}^2 \}$$

S $(P) = \{ 1/6, 1/3, 1/2 \}$

Prove: P makes nothing smaller

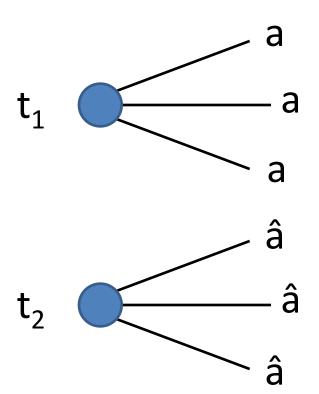
Proposition: smallest complete complex created from a pot is the LCM in the denominators of the spectrum

$$P = \{ a^2\hat{c}, \hat{a}c^2, c\hat{c}^2 \}$$

S $(P) = \{ 1/6, 1/3, 1/2 \}$
Need 6 vertices

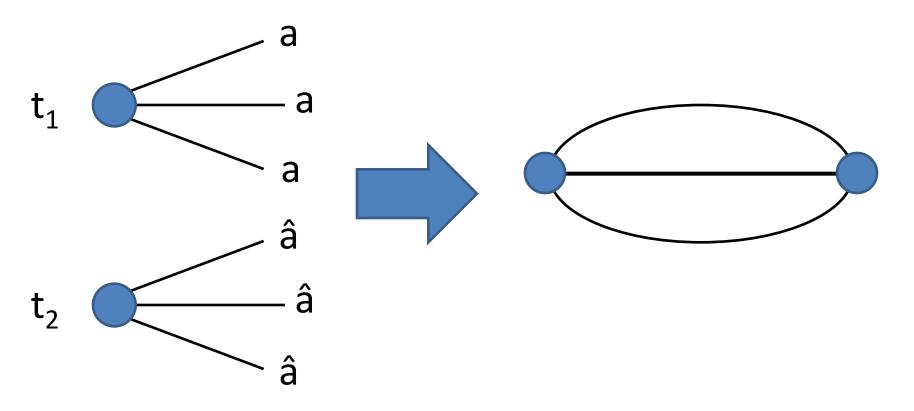
Prove: < 3 tiles won't work

Case: 1 bond edge type, 2 tile types



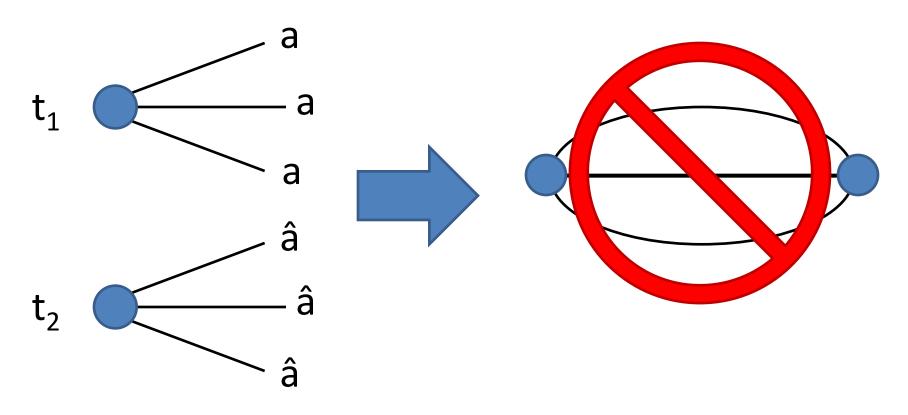
Prove: < 3 tiles won't work

Case: 1 bond edge type, 2 tile types



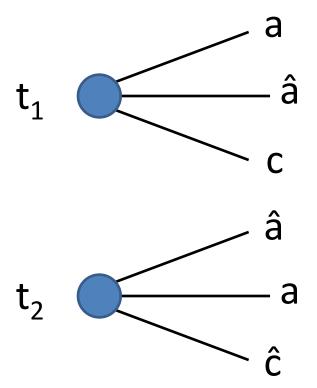
Prove: < 3 tiles won't work

Case: 1 bond edge type, 2 tile types



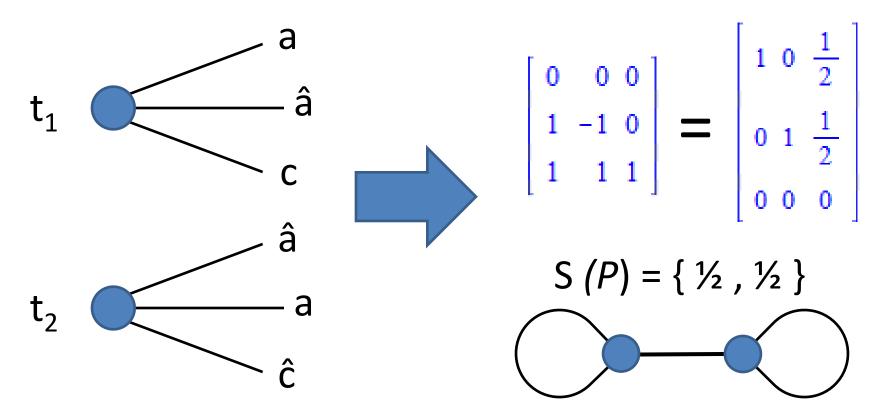
Prove: < 3 tiles won't work

Case: 2 bond edge types, 2 tile types



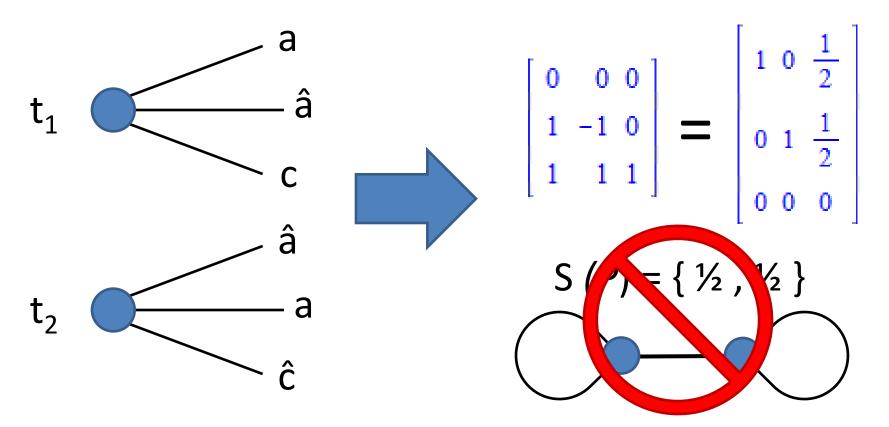
Prove: < 3 tiles won't work

Case: 2 bond edge types, 2 tile types



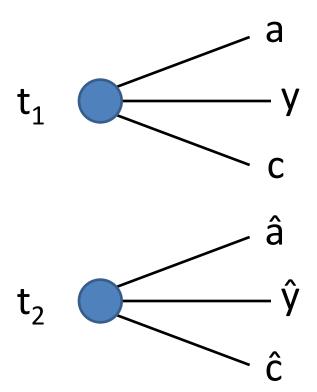
Prove: < 3 tiles won't work

Case: 2 bond edge types, 2 tile types



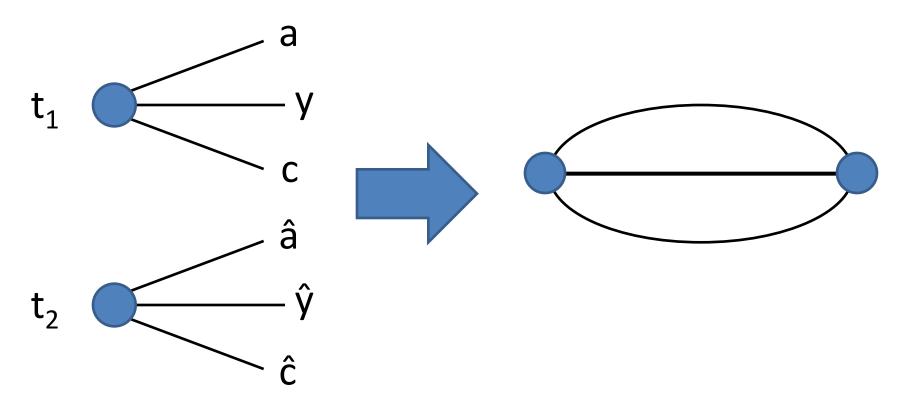
Prove: < 3 tiles won't work

Case: 3 bond edge types, 2 tile types



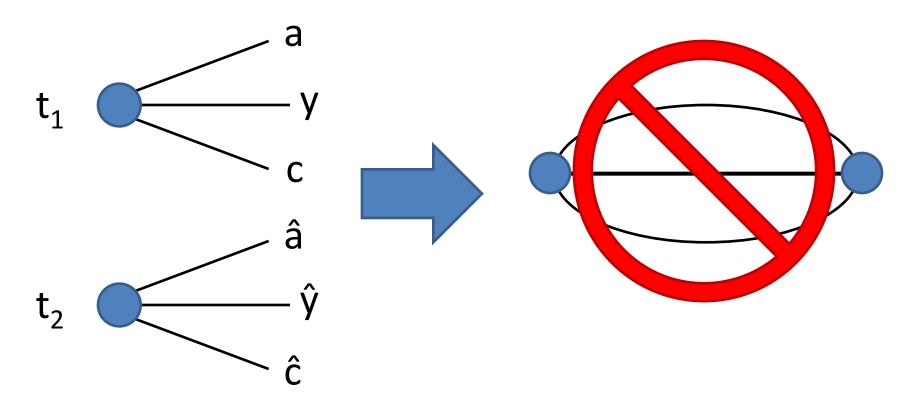
Prove: < 3 tiles won't work

Case: 3 bond edge types, 2 tile types



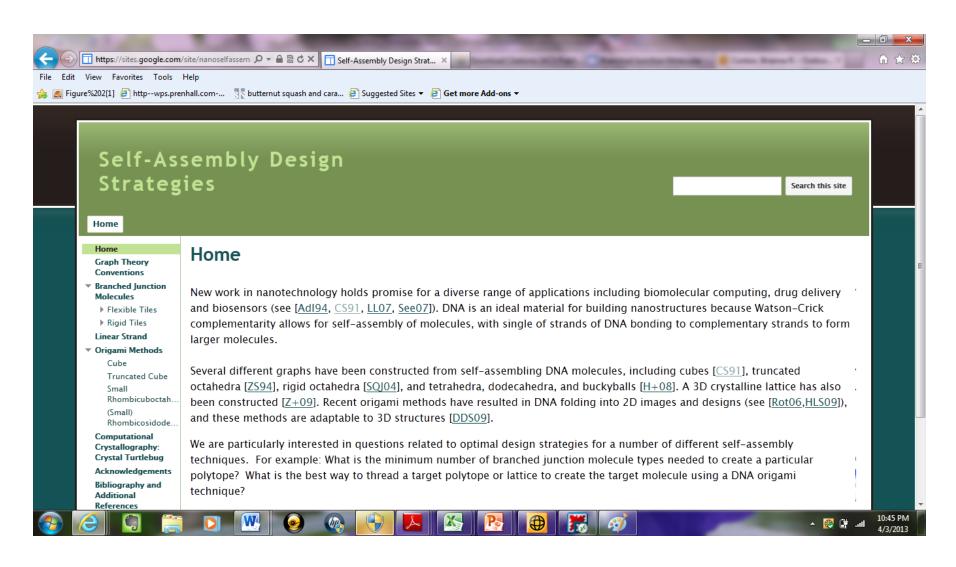
Prove: < 3 tiles won't work

Case: 3 bond edge types, 2 tile types



For triangular prisms: P = 3 tile types

Goal: extend to *n*-gon based prisms



https://sites.google.com/site/nanoselfassembly

Questions?