Galois Theory: Polynomials of Degree 5 and Up

Tokuei Higashino

Union College
Quadratic Formula

\[ax^2 + bx + c = 0 \]

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]
Cubic Formula

\[ax^3 + bx^2 + cx + d = 0 \]

\[x_1 = -\frac{b}{3a} \]
\[-\frac{1}{3a} \sqrt[3]{\frac{1}{2} \left[2b^3 - 9abc + 27a^2d + \sqrt{(2b^3 - 9abc + 27a^2d)^2 - 4(b^2 - 3ac)^3} \right]} \]
\[-\frac{1}{3a} \sqrt[3]{\frac{1}{2} \left[2b^3 - 9abc + 27a^2d - \sqrt{(2b^3 - 9abc + 27a^2d)^2 - 4(b^2 - 3ac)^3} \right]} \]

\[x_2 = -\frac{b}{3a} \]
\[+ \frac{1 + i\sqrt{3}}{6a} \sqrt[3]{\frac{1}{2} \left[2b^3 - 9abc + 27a^2d + \sqrt{(2b^3 - 9abc + 27a^2d)^2 - 4(b^2 - 3ac)^3} \right]} \]
\[+ \frac{1 - i\sqrt{3}}{6a} \sqrt[3]{\frac{1}{2} \left[2b^3 - 9abc + 27a^2d - \sqrt{(2b^3 - 9abc + 27a^2d)^2 - 4(b^2 - 3ac)^3} \right]} \]

\[x_3 = -\frac{b}{3a} \]
\[+ \frac{1 - i\sqrt{3}}{6a} \sqrt[3]{\frac{1}{2} \left[2b^3 - 9abc + 27a^2d + \sqrt{(2b^3 - 9abc + 27a^2d)^2 - 4(b^2 - 3ac)^3} \right]} \]
\[+ \frac{1 + i\sqrt{3}}{6a} \sqrt[3]{\frac{1}{2} \left[2b^3 - 9abc + 27a^2d - \sqrt{(2b^3 - 9abc + 27a^2d)^2 - 4(b^2 - 3ac)^3} \right]} \]
Question
Are there general solutions by radicals for polynomials of degree 5 and up?

Answer
No.

How do we prove this?

- translate into question about fields
- use Galois theory to translate into question about groups
Definition
A field is a set closed, associative, and commutative under $+$ and \cdot, contains 0, 1, negatives, and reciprocals, and satisfies the distributive laws of \cdot over $+$.

Example
\mathbb{Q}, \mathbb{R}, and \mathbb{C} are fields.

Definition
A field extension of a field K is a field L that contains K.

Example
\mathbb{R} is a field extension of \mathbb{Q}.

Example
$\mathbb{Q}(\sqrt{2})$ is a field extension of \mathbb{Q}.
Question

Given a polynomial $p(x)$ with coefficients in K and of degree 5 or up, is there a sequence of radical extensions $K \subseteq K_1 \subseteq K_2 \subseteq \cdots \subseteq K_n$ such that all of the roots of $p(x)$ are in K_n?

$$K_n = K_{n-1}(\sqrt[n]{a_n})$$
$$K_2 = K_1(\sqrt[2]{a_2})$$
$$K_1 = K_0(\sqrt[1]{a_1})$$

$K_0 = K$

$r_i \in \mathbb{N}$

$a_{i+1} \in K_i$
Definition
An algebraic extension \(L \) of \(K \) is a field extension such that for all \(a \in L \), there exists a polynomial \(p(x) \) with coefficients in \(K \) such that \(p(a) = 0 \).

Non-example
\(\mathbb{R} \) is not an algebraic extension of \(\mathbb{Q} \), since \(\pi \in \mathbb{R} \).

Example
\(\mathbb{Q}(\sqrt{3}) = \{ a + b\sqrt{3} \mid a, b \in \mathbb{Q} \} \) is an algebraic extension of \(\mathbb{Q} \), since \(a + b\sqrt{3} \) is a root of the polynomial \(x^2 - 2ax + a^2 - 3b^2 \).

All radical extensions are algebraic extensions.
Definition
A *normal extension* L of K is a field extension such that for every polynomial $p(x)$ with coefficients in K, if L contains one of its roots, then L contains all of its roots.

Example
\mathbb{C} is a normal extension of \mathbb{R}, which follows from the Fundamental Theorem of Algebra.

Non-example
$\mathbb{Q}(\sqrt[3]{2}) = \{a + b\sqrt[3]{2} + c\sqrt[3]{4} \mid a, b, c \in \mathbb{Q}\}$ is not a normal extension of \mathbb{Q}, since the complex roots of $x^3 - 2$ are not in $\mathbb{Q}(\sqrt[3]{2})$.
Theorem
L is a normal extension of K iff for some polynomial $p(x)$ with coefficients in K, L contains all of p’s roots.

Example
$\mathbb{Q}(\sqrt{6})$ contains $\sqrt{6}$ and $-\sqrt{6}$, which are roots of $x^2 - 6$, which is a polynomial with coefficients in \mathbb{Q}.
Definition
A *separable extension* L of K is a field extension such that for all $a \in L$, there exists an irreducible polynomial $m(x)$ with coefficients in K with distinct roots.

Example
Any algebraic extension of \mathbb{Q}, such as $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is a separable extension.
Definition
A Galois extension of K is a field extension that is algebraic, normal, and separable over K.

Definition
The Galois group of a field extension L over K is the set of automorphisms of L that preserve K. It is denoted $\text{Gal}(L/K)$.

Fundamental Theorem of Galois Theory
If L is a finite Galois extension of K, then there is a one-to-one correspondence between the field extensions of K that are contained in L and the subgroups of $\text{Gal}(L/K)$.
\[
p(x) = x^4 - 5x^2 + 6 = (x^2 - 2)(x^2 - 3)
\]

\[
Q(\sqrt{2}, \sqrt{3}) \\
\downarrow \\
Q(\sqrt{2}) \\
\downarrow \\
Q \\
\downarrow \\
\{id, \sigma\} \\
\downarrow \\
\{id\} \\
\downarrow \\
\{id\} \\
\downarrow \\
\{id\} \\
\downarrow \\
\{id\}
\]

\[
Q(\sqrt{3}) \\
\downarrow \\
Q(\sqrt{3}) \\
\downarrow \\
Q(\sqrt{6}) \\
\downarrow \\
\{id, \sigma, \tau, \sigma \tau\} \\
\downarrow \\
\{id, \sigma\} \\
\downarrow \\
\{id\} \\
\downarrow \\
\{id\}
\]

\[
\{id, \sigma, \tau, \sigma \tau\} \\
\downarrow \\
\{id, \sigma\} \\
\downarrow \\
\{id\} \\
\downarrow \\
\{id\}
\]

\[
\sigma = (\sqrt{3} - \sqrt{3}) \\
\tau = (\sqrt{2} - \sqrt{2})
\]

\[
\text{Gal}(Q(\sqrt{2}, \sqrt{3})/Q) = \{id, \sigma, \tau, \sigma \tau\}
\]
Definition
A polynomial $p(x)$ with coefficients in K is solvable by radicals if there exists a sequence of radical extensions $K \subseteq K_1 \subseteq K_2 \subseteq \cdots \subseteq K_n$ such that all the roots of $p(x)$ are in K_n.

Definition
A group G is solvable if there exists a sequence of subgroups \{id\} = $G_1 \subseteq G_2 \subseteq \cdots \subseteq G_m = G$, such that G_j is normal in G_{j+1} and $|G_{j+1}|/|G_j|$ is prime.

Theorem
$p(x)$ is solvable by radicals iff $\text{Gal}(K_n/K)$ is solvable.
Abel-Ruffini Theorem
There exist polynomials of every degree ≥ 5 which are not solvable by radicals.

Lemma
If $f(x)$ is an irreducible polynomial over \mathbb{Q}, of prime degree p, and if f has exactly $p - 2$ real roots, then its Galois group is S_p.

Lemma
If $n \geq 5$ and $\text{Gal}(L/K) = S_n$, then $\text{Gal}(L/K)$ is not solvable.
\[y = x^5 - 4x + 2 \]