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Quadratic Formula
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Cubic Formula
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Question

Are there general solutions by radicals for polynomials of degree 5
and up?

Answer
No.

How do we prove this?

» translate into question about fields

» use Galois theory to translate into question about groups



Definition

A field is a set closed, associative, and commutative under + and
-, contains 0, 1, negatives, and reciprocals, and satisfies the
distributive laws of - over +.

Example
Q, R, and C are fields.

Definition
A field extension of a field K is a field L that contains K.

Example
R is a field extension of Q.

Example
Q(v/2) is a field extension of Q.



Question

Given a polynomial p(x) with coefficients in K and of degree 5 or
up, is there a sequence of radical extensions
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Definition

An algebraic extension L of K is a field extension such that for all
a € L, there exists a polynomial p(x) with coefficients in K such
that p(a) = 0.

Non-example
R is not an algebraic extension of QQ, since m € R.

Example

Q(v3) = {a+ bV3 | a,b € Q} is an algebraic extension of Q,
since a + b\v/3 is a root of the polynomial x? — 2ax + a® — 3b%.

All radical extensions are algebraic extensions.



Definition

A normal extension L of K is a field extension such that for every
polynomial p(x) with coefficients in K, if L contains one of its
roots, then L contains all of its roots.

Example
C is a normal extension of R, which follows from the Fundamental
Theorem of Algebra.

Non-example

Q(v2) ={a+bvV2+cv4| ab,c € Q}isnot a normal extension
of @, since the complex roots of x3 — 2 are not in Q(v/2).



Theorem
L is a normal extension of K iff for some polynomial p(x) with
coefficients in K, L contains all of p's roots.

Example

Q(+/6) contains v/6 and —+/6, which are roots of x> — 6, which is
a polynomial with coefficients in Q.



Definition

A separable extension L of K is a field extension such that for all
a € L, there exists an irreducible polynomial m(x) with coefficients
in K with distinct roots.

Example

Any algebraic extension of Q, such as Q(\@, ﬁ) is a separable
extension.



Definition
A Galois extension of K is a field extension that is algebraic,
normal, and separable over K.

Definition
The Galois group of a field extension L over K is the set of
automorphisms of L that preserve K. It is denoted Gal(L/K).

Fundamental Theorem of Galois Theory

If L is a finite Galois extension of K, then there is a one-to-one
correspondence between the field extensions of K that are
contained in L and the subgroups of Gal(L/K).
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Definition

A polynomial p(x) with coefficients in K is solvable by radicals if
there exists a sequence of radical extensions

K C K1 C K, C--- C K, such that all the roots of p(x) are in K.

Definition

A group G is solvable if there exists a sequence of subgroups
{id} = G1 C Go C--- C Gy = G, such that G; is normal in Gj1;
and |Gjy1]/|Gjl is prime.

Theorem
p(x) is solvable by radicals iff Gal(K,/K) is solvable.



Abel-Ruffini Theorem

There exist polynomials of every degree > 5 which are not solvable
by radicals.

Lemma
If f(x) is an irreducible polynomial over Q, of prime degree p, and
if f has exactly p — 2 real roots, then its Galois group is Sp.

Lemma
If n>5 and Gal(L/K) = Sp, then Gal(L/K) is not solvable.






