Galois Theory: Polynomials of Degree 5 and Up

Tokuei Higashino

Union College

Quadratic Formula

$$
\begin{gathered}
a x^{2}+b x+c=0 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{gathered}
$$

Cubic Formula

$$
a x^{3}+b x^{2}+c x+d=0
$$

$$
\begin{aligned}
x_{1}= & -\frac{b}{3 a} \\
& -\frac{1}{3 a} \sqrt[3]{\frac{1}{2}\left[2 b^{3}-9 a b c+27 a^{2} d+\sqrt{\left(2 b^{3}-9 a b c+27 a^{2} d\right)^{2}-4\left(b^{2}-3 a c\right)^{3}}\right]} \\
& -\frac{1}{3 a} \sqrt[3]{\frac{1}{2}\left[2 b^{3}-9 a b c+27 a^{2} d-\sqrt{\left(2 b^{3}-9 a b c+27 a^{2} d\right)^{2}-4\left(b^{2}-3 a c\right)^{3}}\right]} \\
x_{2}= & -\frac{b}{3 a} \\
& +\frac{1+i \sqrt{3}}{6 a} \sqrt[3]{\frac{1}{2}\left[2 b^{3}-9 a b c+27 a^{2} d+\sqrt{\left(2 b^{3}-9 a b c+27 a^{2} d\right)^{2}-4\left(b^{2}-3 a c\right)^{3}}\right]} \\
& +\frac{1-i \sqrt{3}}{6 a} \sqrt[3]{\frac{1}{2}\left[2 b^{3}-9 a b c+27 a^{2} d-\sqrt{\left(2 b^{3}-9 a b c+27 a^{2} d\right)^{2}-4\left(b^{2}-3 a c\right)^{3}}\right]} \\
x_{3}= & -\frac{b}{3 a} \\
& +\frac{1-i \sqrt{3}}{6 a} \sqrt[3]{\frac{1}{2}\left[2 b^{3}-9 a b c+27 a^{2} d+\sqrt{\left(2 b^{3}-9 a b c+27 a^{2} d\right)^{2}-4\left(b^{2}-3 a c\right)^{3}}\right]} \\
& +\frac{1+i \sqrt{3}}{6 a} \sqrt[3]{\frac{1}{2}\left[2 b^{3}-9 a b c+27 a^{2} d-\sqrt{\left(2 b^{3}-9 a b c+27 a^{2} d\right)^{2}-4\left(b^{2}-3 a c\right)^{3}}\right]}
\end{aligned}
$$

Question

Are there general solutions by radicals for polynomials of degree 5 and up?

Answer No.

How do we prove this?

- translate into question about fields
- use Galois theory to translate into question about groups

Definition

A field is a set closed, associative, and commutative under + and \cdot, contains 0,1 , negatives, and reciprocals, and satisfies the distributive laws of . over + .

Example

\mathbb{Q}, \mathbb{R}, and \mathbb{C} are fields.
Definition
A field extension of a field K is a field L that contains K.

Example

\mathbb{R} is a field extension of \mathbb{Q}.
Example
$\mathbb{Q}(\sqrt{2})$ is a field extension of \mathbb{Q}.

Question

Given a polynomial $p(x)$ with coefficients in K and of degree 5 or up, is there a sequence of radical extensions
$K \subseteq K_{1} \subseteq K_{2} \subseteq \cdots \subseteq K_{n}$ such that all of the roots of $p(x)$ are in K_{n} ?

$$
\begin{array}{ll}
K_{n}=K_{n-1}\left(\sqrt[r n]{a_{n}}\right) & \\
\text { UI } & \\
\vdots & \\
\text { U। } & \\
K_{2}=K_{1}\left(\sqrt[n 2]{a_{2}}\right) & \\
\text { UI } & \\
K_{1}=K_{0}\left(\sqrt[n]{a_{1}}\right) & \\
\text { UI } & r_{i} \in \mathbb{N} \\
K_{0}=K & a_{i+1} \in K_{i}
\end{array}
$$

Definition

An algebraic extension L of K is a field extension such that for all $a \in L$, there exists a polynomial $p(x)$ with coefficients in K such that $p(a)=0$.

Non-example
\mathbb{R} is not an algebraic extension of \mathbb{Q}, since $\pi \in \mathbb{R}$.
Example
$\mathbb{Q}(\sqrt{3})=\{a+b \sqrt{3} \mid a, b \in \mathbb{Q}\}$ is an algebraic extension of \mathbb{Q}, since $a+b \sqrt{3}$ is a root of the polynomial $x^{2}-2 a x+a^{2}-3 b^{2}$.

All radical extensions are algebraic extensions.

Definition

A normal extension L of K is a field extension such that for every polynomial $p(x)$ with coefficients in K, if L contains one of its roots, then L contains all of its roots.

Example

\mathbb{C} is a normal extension of \mathbb{R}, which follows from the Fundamental Theorem of Algebra.

Non-example
$\mathbb{Q}(\sqrt[3]{2})=\{a+b \sqrt[3]{2}+c \sqrt[3]{4} \mid a, b, c \in \mathbb{Q}\}$ is not a normal extension of \mathbb{Q}, since the complex roots of $x^{3}-2$ are not in $\mathbb{Q}(\sqrt[3]{2})$.

Theorem
L is a normal extension of K iff for some polynomial $p(x)$ with coefficients in K, L contains all of p 's roots.

Example

$\mathbb{Q}(\sqrt{6})$ contains $\sqrt{6}$ and $-\sqrt{6}$, which are roots of $x^{2}-6$, which is a polynomial with coefficients in \mathbb{Q}.

Definition

A separable extension L of K is a field extension such that for all $a \in L$, there exists an irreducible polynomial $m(x)$ with coefficients in K with distinct roots.

Example

Any algebraic extension of \mathbb{Q}, such as $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is a separable extension.

Definition

A Galois extension of K is a field extension that is algebraic, normal, and separable over K.

Definition

The Galois group of a field extension L over K is the set of automorphisms of L that preserve K. It is denoted $\operatorname{Gal}(L / K)$.

Fundamental Theorem of Galois Theory
If L is a finite Galois extension of K, then there is a one-to-one correspondence between the field extensions of K that are contained in L and the subgroups of $\operatorname{Gal}(L / K)$.

$$
\begin{aligned}
p(x) & =x^{4}-5 x^{2}+6 \\
& =\left(x^{2}-2\right)\left(x^{2}-3\right)
\end{aligned}
$$

$\{$ id $, \sigma, \tau, \sigma \tau\}$
$\{i d, \sigma\}$

Definition

A polynomial $p(x)$ with coefficients in K is solvable by radicals if there exists a sequence of radical extensions
$K \subseteq K_{1} \subseteq K_{2} \subseteq \cdots \subseteq K_{n}$ such that all the roots of $p(x)$ are in K_{n}.
Definition
A group G is solvable if there exists a sequence of subgroups $\{i d\}=G_{1} \subseteq G_{2} \subseteq \cdots \subseteq G_{m}=G$, such that G_{j} is normal in G_{j+1} and $\left|G_{j+1}\right| /\left|G_{j}\right|$ is prime.

Theorem
$p(x)$ is solvable by radicals iff $\operatorname{Gal}\left(K_{n} / K\right)$ is solvable.

Abel-Ruffini Theorem

There exist polynomials of every degree ≥ 5 which are not solvable by radicals.

Lemma
If $f(x)$ is an irreducible polynomial over \mathbb{Q}, of prime degree p, and if f has exactly $p-2$ real roots, then its Galois group is S_{p}.

Lemma
If $n \geq 5$ and $\operatorname{Gal}(L / K)=S_{n}$, then $\operatorname{Gal}(L / K)$ is not solvable.

