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Exercise: Team A and Team B play a series of 2n+ 1 games. The first team

to win n+ 1 games wins the series. All games are independent, and Team A

wins any single game with some fixed probability p.

What is the probability that Team A wins the series?

A B

AA AB BA BB

ABB BAB BBA BBB

p 1−p

p 1−p p

p p

p2 + p2(1−p) + p2(1−p)
= 3p2 − 2p3

AAA AAB ABA BAA
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Exercise: Team A and Team B play a series of 2n+ 1 games. The first team
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= 3p2 − 2p3
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“Vertical” solution for 2n + 1 games:

P (A wins the series)

=

2n+1∑
k=n+1

P (A wins the series on the kth game)

=

2n+1∑
k=n+1

P (A wins n of the first k − 1 games) · P (A wins the kth game)

=

2n+1∑
k=n+1

(
k − 1

n

)
pn(1− p)k−1−n · p

= pn+1
2n+1∑
k=n+1

(
k − 1

n

)
(1− p)k−(n+1)
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“Horizontal” solution for 2n + 1 games:

P (A wins the series) =

2n+1∑
k=n+1

P (A wins k of the 2n + 1 games)

=

2n+1∑
k=n+1

(
2n + 1

k

)
pk(1− p)2n+1−k

A B

AA AB BA BB

AAA AAB ABA ABB BAA BAB BBA BBB
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The probability that Team A wins a (2n+1)-game series

pn+1
2n+1∑
k=n+1

(
k − 1
n

)
(1− p)k−(n+1)

2n+1∑
k=n+1

(
2n+ 1

k

)
pk(1− p)2n+1−k

p (n = 0) p

3p2 − 2p3 (n = 1) 3p2 − 2p3

10p3 − 15p4 + 6p5 (n = 2) 10p3 − 15p4 + 6p5

35p4 − 84p5 + 70p6 − 20p7 (n = 3) 35p4 − 84p5 + 70p6 − 20p7
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What are the coefficients? After some messy reindexing, we get

pn+1
2n+1∑
k=n+1

(
k − 1
n

)
(1− p)k−(n+1)

=
2n+1∑
r=n+1

[
(−1)r−(n+1)

2n+1∑
k=r

(
k − 1
n

)(
k − (n+ 1)
r − (n+ 1)

)]
pr

2n+1∑
k=n+1

(
2n+ 1

k

)
pk(1− p)2n+1−k

=
2n+1∑
r=n+1

[
r∑

k=n+1

(−1)r−k

(
2n+ 1

k

)(
2n+ 1− k

r − k

)]
pr

7



A Pascal’s triangle relation

Equating the coefficients of pr in the “vertical” and “horizontal” polynomials,

we get a two-parameter family of relations:

[
(−1)r−(n+1)

2n+1∑
k=r

(
k − 1

n

)(
k − (n + 1)

r − (n + 1)

)]

=[
r∑

k=n+1

(−1)r−k

(
2n + 1

k

)(
2n + 1− k

r − k

)]

for each n and for each r in {n + 1, n + 2, . . . , 2n + 1}.
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(−1)r−(n+1)

2n+1∑
k=r

(
k − 1
n

)(
k − (n+ 1)
r − (n+ 1)

)
=

r∑
k=n+1

(−1)r−k

(
2n+ 1

k

)(
2n+ 1− k

r − k

)

Example: n = 3, r = 4.

1

11

121

1331

14641

15101051

1615201561

172135352171

1

11

121

1331

14641

15101051

1615201561

172135352171(
3
3

)(
0
0

)
+

(
4
3

)(
1
0

)
+

(
5
3

)(
2
0

)
+

(
6
3

)(
3
0

)
= 35 =

(
7
4

)(
3
0

)
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(−1)r−(n+1)

2n+1∑
k=r

(
k − 1
n

)(
k − (n+ 1)
r − (n+ 1)

)
=

r∑
k=n+1

(−1)r−k

(
2n+ 1

k

)(
2n+ 1− k

r − k

)

Example: n = 3, r = 5.

1

11

121

1331

14641

15101051

1615201561

172135352171

1

11

121

1331

14641

15101051

1615201561

172135352171

−
(
4
3

)(
1
1

)
−

(
4
3

)(
2
1

)
−
(
6
3

)(
3
1

)
= −84 = −

(
7
4

)(
3
1

)
+

(
7
5

)(
2
0

)
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(−1)r−(n+1)

2n+1∑
k=r

(
k − 1
n

)(
k − (n+ 1)
r − (n+ 1)

)
=

r∑
k=n+1

(−1)r−k

(
2n+ 1

k

)(
2n+ 1− k

r − k

)

Example: n = 3, r = 6.

1

11

121

1331

14641

15101051

1615201561

172135352171

1

11

121

1331

14641

15101051

1615201561

172135352171(
5
3

)(
2
2

)
+

(
6
3

)(
3
2

)
= 70 =

(
7
4

)(
3
2

)
−
(
7
5

)(
2
1

)
+

(
7
6

)(
1
0

)
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(−1)r−(n+1)

2n+1∑
k=r

(
k − 1
n

)(
k − (n+ 1)
r − (n+ 1)

)
=

r∑
k=n+1

(−1)r−k

(
2n+ 1

k

)(
2n+ 1− k

r − k

)

Example: n = 3, r = 7.

1

11

121

1331

14641

15101051

1615201561

172135352171

1

11

121

1331

14641

15101051

1615201561

172135352171

−
(
6
3

)(
3
3

)
= −20 = −

(
7
4

)(
3
3

)
+

(
7
5

)(
2
2

)
−
(
7
6

)(
1
1

)
+

(
7
7

)(
0
0

)
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Remark: In the boundary case where r = n + 1, we get the

“hockey stick” relation.

1 7 21 35 35 21 7 1

1 6 15 20 15 6 1

1 5 10 10 5 1

1 4 6 4 1

1 3 3 1

1 2 1

1 1

1

+

+

+

=
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Remark: In the other boundary case where r = 2n + 1, we get an

alternating hockey stick.

1 7 21 35 35 21 7 1

1 6 15 20 15 6 1

1 5 10 10 5 1

1 4 6 4 1

1 3 3 1

1 2 1

1 1

1

− + −
=
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Back to the polynomials

We translate and scale the functions to

get a sequence of odd polynomials on

[−1, 1]
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-1.0 -0.5 0.5 1.0
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-0.5
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s0(x) = x

s1(x) =
3x− x3

2

s2(x) =
15x− 10x3 + 3x5

8
...
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Observation

This sequence converges pointwise and

monotonically to the signum function.
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Question

Can we make this sequence converge to

sgn(x) in some vector space of functions

on [−1, 1]? That is, can we find a system

{φ0, φ1, φ2, . . .}

of polynomials on [−1, 1] so that

• each φk is a polynomial of degree 2k + 1

• there is an inner product ⟨· , ·⟩ with ⟨φm, φn⟩ = δm,n

• sgn(x) =
∞∑
k=0

⟨sgn, φk⟩φk(x)

• our sn polynomials are the partial sums of this series: sn(x) =
n∑

k=0

⟨sgn, φk⟩φk(x)

?
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First attempt: Use the normalized Legendre polynomials.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

The partial sums converge to sgn(x), but they are not our sn polynomials.
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Second attempt: Use the normalized Chebyshev T polynomials.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Again, we do not get the monotonic convergence.
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Inconvenient Truth: Our polynomials sn
cannot be the partial sums of a series∑

⟨sgn, φk⟩φk.

Reason: In such a series, the difference

between two partial sums,

sn+1 − sn

is a scalar multiple of φn+1, so it must be

orthogonal to sn.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

But in our sequence, sn(x) and sn+1(x) − sn(x) always have the same sign,

so their inner product

⟨sn, sn+1 − sn⟩ =

∫ 1

−1

sn(x)[sn+1(x)− sn(x)]w(x) dx

cannot be zero.
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Question: Why does ⟨f, g⟩ have

the form∫ 1

−1

f(x)g(x)w(x) dx

where w is some non-negative

weight function?

In Rn, we can take ⟨x,y⟩ to be

[ xT ]
[

A

] [
y

]
for any symmetric, positive-definite

matrix A (not just a diagonal A).

So why not say

⟨f, g⟩ =

∫ 1

−1

∫ 1

−1

f(x)A(x, y)g(y) dy dx

where A is symmetric and positive definite?
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Try this on

s0(x) = x

s1(x)− s0(x) = 1
2x(1− x2)

s2(x)− s1(x) = 3
8x(1− x2)2

s3(x)− s2(x) = 5
16x(1− x2)3

s4(x)− s3(x) = 35
128x(1− x2)4

These functions are orthonormal with respect to the inner product

⟨f, g⟩ =

∫ 1

−1

∫ 1

−1

f(x)A(x, y)g(y) dx dy,

where A is the function graphed above.

22



Better news: The polynomial sn has

the following properties:

• sn is odd of degree 2n + 1

• sn(1) = 1

• s(r)n (1) = 0 for r = 1, 2, . . . , n

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
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Better news: The polynomial sn has

the following properties:

• sn is odd of degree 2n + 1

• sn(1) = 1

• s(r)n (1) = 0 for r = 1, 2, . . . , n

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Better still, these properties determine sn.

Example: Write s2(x) = a1x + a3x
3 + a5x

5. Then

1 = s2(1) = a1 + a3 + a5
0 = s′2(1) = a1 + 3a3 + 5a5
0 = s′′2(1) = 2 · 3a3 + 4 · 5a5

 ⇒


a1 = 15/8
a2 = −10/8
a3 = 3/8

24



Observation: This makes our sn poly-

nomials look a lot like power-series

convergents to the signum function.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Sort of:

An n-coefficient polynomial approximation to a function f is determined by

• values of f at 0 and 1;

• the right number of derivatives of f at 1; and

• being an odd polynomial.
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Something else to play with:

Here are some even polynomials

vn(x) determined by

• vn(0) = 0;

• vn(1) = 1;

• v′n(1) = 1 for n > 1;

• v(r)n = 0 for n > 1 and r ≥ 2.

-1.0 -0.5 0.5 1.0
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1.0

v1(x) = x2

v2(x) = 1
2(3x

2 − x4)

v3(x) = 1
8(15x

2 − 10x4 + 3x6)

v4(x) = 1
32(70x

2 − 70x4 + 42x6 − 10x8)
...
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Something else to play with:

Here are some even polynomials

vn(x) determined by

• vn(0) = 0;

• vn(1) = 1;

• v′n(1) = 1 for n > 1;

• v(r)n = 0 for n > 1 and r ≥ 2.
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v2(x) = 1
2(3x

2 − x4)

v3(x) = 1
8(15x

2 − 10x4 + 3x6)

v4(x) = 1
32(70x

2 − 70x4 + 42x6 − 10x8)
...

And here is an even function with

all those same properties.
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