The Probability of Winning a Series

Gregory Quenell




Exercise: Team A and Team B play a series of 2n + 1 games. The first team
to win n 4+ 1 games wins the series. All games are independent, and Team A

wins any single game with some fixed probability p.

What is the probability that Team A wins the series?
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“Vertical” solution for 2n + 1 games:
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“Horizontal” solution for 2n + 1 games:
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The probability that Team A wins a (2n—+1)-game series
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What are the coefficients? After some messy reindexing, we get

2n+1 L1
Pt Z ( - )(1_p)k—(n+1)

k=n+1
2n+1 2n+1
_ Z (_1)7'—(n+1) Z k—1 k — (n + 1) pr
r=n+1 fe=r n [ (n + 1)

_ 2&:“ [i (_1)r—k(2n2—1) <2n:_1kk>]pr

r=n+1 Lk=n-+1




A Pascal’s triangle relation

Equating the coefficients of p” in the “vertical” and “horizontal” polynomials,
we get a two-parameter family of relations:
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for each n and for each 7 in {n + 1,n +2,...,2n + 1}.
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Example: n =3, r = 4.
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Example: n =3, r = 6.

1
1 1 1
1 2 1 1 (2
13 3 1 13 3
1 46 4 1 1 4 6 /4
1 5 10 10 5 1 1 5 1010/ 5
1 6 15 20 15 6 1 1 6 15 20 15 6
1 7 21 3535 21 7 1 1 7 21 35 35 21 7

EEEE = 0 = ()G 6

e e s = T




2n+1 r
6 k—1 k—(n+1) vk [ 2n+1 2n+1—k
_1\r—(n+1) _ _1\r—k
(=1) Z( n >(7'—(n+1)> Z( 1 ( k )( r—k )
k=r k=n-+1
Example: n =3, r=7.
1
1 1 1
1 2 1 1 2
13 3 1 1 3 3
1 4 6 4 1 1 4 6 4
1 5 10 10 5 1 1 5 10 10 3
1 6 1520 15 6 1 1 6 15 20 15 6
1 7 21 3535 21 7 1 1 7 21 35135 21 7
6\(3 7\ (3 7T\ (2 7\ /(1 7
G = = OEEE)-G0) -6

— = = e e e

0
0

)

12




Remark: In the boundary case where r = n + 1, we get the
“hockey stick” relation.
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Remark: In the other boundary case where r = 2n + 1, we get an

alternating hockey stick.
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Back to the polynomials

We translate and scale the functions to

get a sequence of odd polynomials on
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Observation

This sequence converges pointwise and

monotonically to the signum function.
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Question

Can we make this sequence converge to
sgn(x) in some vector space of functions
n [—1, 1]7 That is, can we find a system

{@07 Y1, P2, - - }
of polynomials on [—1, 1] so that

e cach ;. is a polynomial of degree 2k + 1

e there is an inner product (-, -) with (¢, Yn) = Omn

oo
e sgn(z Z sgn, k) P ()
k=0

e our s, polynomials are the partial sums of this series: s,(x) =

?

k

0

(sgn, or) pr(T)
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First attempt: Use the normalized Legendre polynomials.

The partial sums converge to sgn(z), but they are not our s, polynomials.
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Second attempt: Use the normalized Chebyshev T polynomials.

Again, we do not get the monotonic convergence.
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Inconvenient Truth: Our polynomials s,

cannot be the partial sums of a series
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Reason: In such a series, the difference
between two partial sums,

Sn+1 — Sn

is a scalar multiple of ¢, 1, so it must be
orthogonal to s,,.
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But in our sequence, s,(x) and s,1(z) — s,(x) always have the same sign,

so their inner product

(Sny Sn1 = Sn) = /_ Sp(@)[sn11(x) — sp(@)|w(z) dx

1

cannot be zero.
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Question: ~ Why does (f, g) have In R" we can take (x,y) to be

<]

1
| sz ds
-1 for any symmetric, positive-definite

where w is some non-negative matrix A (not just a diagonal A).
weight function?

So why not say

(f.9) = /1 /1f($)z4(x,y)g(y) dy dx

where A is symmetric and positive definite?
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so(x) = x
si(z) — so(x) = %x(l — %)
so(x) — s1(x) = %x(l — z%)?
s3(x) — sa(x) = 1%95(1 — x2)3
sy(z) — s3(x) = %x(l %)t

These functions are orthonormal with respect to the inner product

(fog) = / | / F)Alz,p)g(y) do dy,

where A is the function graphed above.
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Better news: The polynomial s,, has

the following properties:

e s, is odd of degree 2n + 1
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Better news:  The polynomial s,, has Lor

the following properties: 7
05+

e s, is odd of degree 2n + 1

.Sn<1):1 -10 05 4+ 05

n

e s(1)=0forr=1,2,...,n o5

Better still, these properties determine s,,.

Example: Write so(z) = a1z + asx® + asx”. Then
1 = s9(1) = ay+az+as ap = 15/8
= 8/2(1) = a1 + 3as + das = as = —10/8
0 = s5(1) = 2-3a3+4-5as as = 3/8




Observation: This makes our s,, poly- 10f

nomials look a lot like power-series :

convergents to the signum function. 05t
—]‘..O‘ o ‘—(‘).5‘ T H o 0‘.5 | | 1‘.0

—0.5;

Sort of: —Hor

An n-coefficient polynomial approximation to a function f is determined by
e values of f at 0 and 1;
e the right number of derivatives of f at 1; and

e being an odd polynomial.
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Something else to play with:

Here are some even polynomials
vn(z) determined by

e v,(0) =0;
(1) =
ov;(l)—lforn>1

OU(T)—Oforn>1andr>2

n vi(z) =
vo(z) = (327 — )
vs(z) = L(152° — 102" + 329)
vy(x) = 3%(701'2 — 70" + 422% — 102%)




Something else to play with: 1of

Here are some even polynomials oal
vn(z) determined by

06

® Un<0) = 0; 04l
o v,(1)=1; ol
/ _ . i
° Un<1) o 1 for n > 17 —ZI‘..O‘ o ‘—(‘).5‘ o B 015 T 110
e v\ =0forn>1andr>2 n(z) = 22
vo(x) = %(3:152 — )
And here is an even fgnctlon with vy(@) = (1522 — 1020 + 329)
all those same properties.
vy(x) = 3%(701'2 — 70" + 422% — 102%)




