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About Me 

• Junior 

• Accelerated BS/MS Computer Science 
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Terminology 

• Pointer 

– Memory address 

– Positive integer less than architecture limit 
(typically) 

– (typically) in the range 0 − 2𝑛 



Linked List 

• Data structure for dynamic manipulation of 
lists of items 

• Commonly found as Doubly Linked Lists 



Special Case 

• XOR Linked List 

• Advantage: 

– Reduces space required to store list 

• Disadvantage: 

– Loss of some traversing abilities 



Goal/Possible Solution 

• Reduce the pointers to a single value while 
retaining traversing abilities 

• Use the Chinese Remainder Theorem to 
compress the pointers 



The problem 

• Problem Setup 

– 𝑎1, 𝑎2 ∈ ℤ+ 𝑎𝑛𝑑 𝑎1, 𝑎2 = 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠 𝑡𝑜 𝑏𝑒 𝑒𝑛𝑐𝑜𝑑𝑒𝑑 

– 𝑚1, 𝑚2, 𝑀, 𝑀1, 𝑀2, 𝑋 ∈ ℤ 

– 𝑥 ∈ 𝑍, 𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑤𝑒 𝑎𝑟𝑒 𝑙𝑜𝑜𝑘𝑖𝑛𝑔 𝑓𝑜𝑟 

– 𝑥 ≡ 𝑎1(𝑚𝑜𝑑 𝑚1) 

– 𝑥 ≡ 𝑎2(𝑚𝑜𝑑 𝑚2) 

– gcd  𝑚1, 𝑚2 =  𝑚1, 𝑚2 = 1 

– 𝑀 = 𝑚1 𝑚2 

– 𝑋 = 𝑎1𝑀1𝑦1 + 𝑎2𝑀2𝑦2 ≡ 𝑥(𝑚𝑜𝑑 𝑀) 

• x is guaranteed to be unique modulo M 



General Algorithm 

1. Compute M 

– Computing 𝑀𝑛is trivial 

2. Solve the congruencies (for 𝑦𝑛) 

– 𝑀1𝑦1 ≡ 1(𝑚𝑜𝑑 𝑚1) 

– 𝑀2𝑦2 ≡ 1 𝑚𝑜𝑑 𝑚2  

3. Compute the resulting equation 

– 𝑋 = 𝑎1𝑀1𝑦1 + 𝑎2𝑀2𝑦2 ≡ 𝑥(𝑚𝑜𝑑 𝑀) 



M 

• Compute  𝑀1 𝑎𝑛𝑑  𝑀2  

•  𝑀1=
𝑀

 𝑚1
= 𝑚2 

•  𝑀2=
𝑀

 𝑚2
= 𝑚1 

 



Solve Congruencies 

• Extended Euclidean Algorithm 

– Not going to go through this because I develop a 
better method for this specific application later on 



Optimizations/Simplifications 

• Assume 𝑚2 = 𝑚1 + 1 

• This is can be proven by many different ways 

• Bezout’s Theorem 
– gcd 𝑚1, 𝑚2 = 𝑎 ∗ 𝑚1 + 𝑏 ∗ 𝑚2 = 𝑎 ∗ 𝑚1 + 𝑏 ∗ (𝑚1 + 1) 

– = 𝑎 ∗ 𝑚1 + 𝑏 ∗ 𝑚1 + 𝑏 

– = 𝑚1 −1 + 1 𝑚2 + (1) 

– = −𝑚1 + 𝑚1 + 1 = 1 

 



Effects on Modular Inverse 

• Simplifies the calculation of 𝑦1immediately 
– 𝑀1𝑦

1
= 𝑚2𝑦

1
= 𝑚1 + 1 𝑦

1
≡ 1 ∗ 𝑦

1
≡ 1(𝑚𝑜𝑑 𝑚1) 

– 𝑦
1

= 1 

• Slightly more work is required to simplify the 
second congruency 

 



Second Congruency 

• 𝑀2𝑦
2

= 𝑚1𝑦
2

≡ 1(𝑚𝑜𝑑 𝑚2) 

– 𝑚1𝑦2 = 𝑛 ∗  𝑚2 + 1 

– => 𝑚1𝑦
2

− 𝑛 ∗  𝑚2 = 1 

– => 𝑚1𝑦2 − 𝑛 ∗  𝑚1 − 𝑛 = 1 

– Assuming 𝑦2 = −1 and  𝑛 = −1 

– => 𝑚1 −1 − −1 ∗ 𝑚1 − −1 = −𝑚1 +
𝑚1 + 1 = 0 + 1 = 1 



New Algorithm 

1. Compute M 

2. Compute the equation 

– 𝑋 = 1 ∗ 𝑎1 ∗ 𝑚2 + −1 ∗ 𝑎2 ∗ 𝑚1 ≡ 𝑥(𝑚𝑜𝑑 𝑀) 

 



My implementation specifics 

• let 𝑚1 = 2𝑛 such that 𝑚1 ≥  𝑎1, 𝑎2 

• Have to store n, although it can be stored as a 
single byte in my implementation and work 
for architectures 64 bits and less 

• Not completely solved… 



Example 

• Assume 𝑎1 = 3 𝑎𝑛𝑑 𝑎2 =5 

• 𝑚1 = 23 = 8, 𝑚2 = 9, 𝑀 = 72  

• 𝑋 = 1 ∗ 3 ∗ 9 − 5 ∗ 8 = −13 ≡ 59 𝑚𝑜𝑑 72  

• 59 𝑚𝑜𝑑 8 = 3, 59 𝑚𝑜𝑑 9 = 5 



Problems 

• Architecture limitations 

– Computer can’t handle that large of an integer 

• Efficiency 

– Not as large a problem as the prior (depending on 
who you are) 



More Realistic Example 

• Assume 𝑎1 = 233𝑎𝑛𝑑 𝑎2 = 232 

• On a 64 bit system (i.e. max integer = 264) 

• 𝑀 = 234 234 + 1 = 268 + 234 
• 𝑋 = 1 ∗ 233 ∗ 234 + 1 + −1 232 234 = 267 + 233 − 236 

• 𝑋 = 267 + 233 − 266 ≡
73786976303428141056(𝑚𝑜𝑑 𝑀) 



Hope 

• Can possibly be used reduce storage 
requirements in the average case 

• The average computer won’t exceed 64gb of 
ram (without difficulty) 

• Most hover around 4gb-8gb range 

• Can possibly save a few bytes everywhere it is 
used (but the operating system may not allow 
this) 

 


