Chinese Remainder List



About Me

* Junior
* Accelerated BS/MS Computer Science
* Applied Mathematics



Terminology

* Pointer
— Memory address

— Positive integer less than architecture limit

(typically)
— (typically) in the range 0 — 2™



Linked List

e Data structure for dynamic manipulation of
lists of items

e Commonly found as Doubly Linked Lists

head | e—l_ forward traversal

backward traversal



Special Case

 XOR Linked List
* Advantage:
— Reduces space required to store list

* Disadvantage:

— Loss of some traversing abilities

0®B AsC EaD Ce0




Goal/Possible Solution

* Reduce the pointers to a single value while
retaining traversing abilities

e Use the Chinese Remainder Theorem to
compress the pointers



The problem

* Problem Setup
— aq,ay € Z' and aq, a, = addresses to be encoded
—mqy,my, M,M{,M,, X € Z
— X € Z,x is the solution we are looking for
— x = aq(mod my)
— X = ap;(mod my)
— ged(my, my) = (mq, my) =1
- M=mym,
- X =a;Myy, + a;Myy, = x(mod M)

e X is guaranteed to be uniqgue modulo M



General Algorithm

1. Compute M
— Computing M ,is trivial
2. Solve the congruencies (for y,,)
— My, = 1(mod my)
- My, = 1(mod m;)
3. Compute the resulting equation
—X =a;My, + a;Mpy, = x(mod M)



VI

e Compute M, and M,

M

" = = m;

m
M

mp

¢ Mo= — my



Solve Congruencies

* Extended Euclidean Algorithm

— Not going to go through this because | develop a
better method for this specific application later on



Optimizations/Simplifications

e Assumem, =mq + 1
* This is can be proven by many different ways
* Bezout’s Theorem

— gcd(my,my) =ax*xm;+b*my=a*my+bx*x(my+1)
—=a*xmy+b*my+b

==my(=1) + (1)m, + (1)
—=—m1+m1+1=1



Effects on Modular Inverse

* Simplifies the calculation of y,;immediately
- My, =mpy, = (my + Dy, = 1+y, =1(mod my)
-y, =1

e Slightly more work is required to simplify the
second congruency



Second Congruency

* My, = myy, = 1(mod m,)
—myy, =nx* my+1
F= Y =
S M T Rl 5 el
— Assumingy, = —land n = —1

-=>m(-1) - (-)*m —(-1)=-m +
P g e (e i



New Algorithm

1. Compute M

2. Compute the equation
—X=1*xay*my,+ (—1) *xa, *my = x(mod M)



My implementation specifics

e letmy = 2" such thatm; = a4, a,

* Have to store n, although it can be stored as a
single byte in my implementation and work
for architectures 64 bits and less

* Not completely solved...



Example

Assume a; = 3 and a, =5

M=l = 8nis=19:M = 7
X=(1)*3%x9—(5)*8=—13 =59(mod 72)
59 mod 8 = 3,59 mod 9 =5



Problems

e Architecture limitations
— Computer can’t handle that large of an integer
e Efficiency

— Not as large a problem as the prior (depending on
who you are)



More Realistic Example

Assume a; = 233and a, = 23°
On a 64 bit system (i.e. max integer = 2°%)

M = (234)(234 i 1) i 268 3 234

e X =1« 233 h (234 + 1) + (_1)(232)(234) el 267 + 233 ik 236

¥ = 967 4 933 _ 566 —
73786976303428141056(mod M)




Hope

Can possibly be used reduce storage
requirements in the average case

The average computer won’t exceed 64gb of
ram (without difficulty)

Most hover around 4gb-8gb range

Can possibly save a few bytes everywhere it is

used (but the operating system may not allow
this)



