
Chinese Remainder List

Joseph Stanton

State University of New York

Institute of Technology

About Me

• Junior

• Accelerated BS/MS Computer Science

• Applied Mathematics

Terminology

• Pointer

– Memory address

– Positive integer less than architecture limit
(typically)

– (typically) in the range 0 − 2𝑛

Linked List

• Data structure for dynamic manipulation of
lists of items

• Commonly found as Doubly Linked Lists

Special Case

• XOR Linked List

• Advantage:

– Reduces space required to store list

• Disadvantage:

– Loss of some traversing abilities

Goal/Possible Solution

• Reduce the pointers to a single value while
retaining traversing abilities

• Use the Chinese Remainder Theorem to
compress the pointers

The problem

• Problem Setup

– 𝑎1, 𝑎2 ∈ ℤ+ 𝑎𝑛𝑑 𝑎1, 𝑎2 = 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠 𝑡𝑜 𝑏𝑒 𝑒𝑛𝑐𝑜𝑑𝑒𝑑

– 𝑚1, 𝑚2, 𝑀, 𝑀1, 𝑀2, 𝑋 ∈ ℤ

– 𝑥 ∈ 𝑍, 𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑤𝑒 𝑎𝑟𝑒 𝑙𝑜𝑜𝑘𝑖𝑛𝑔 𝑓𝑜𝑟

– 𝑥 ≡ 𝑎1(𝑚𝑜𝑑 𝑚1)

– 𝑥 ≡ 𝑎2(𝑚𝑜𝑑 𝑚2)

– gcd 𝑚1, 𝑚2 = 𝑚1, 𝑚2 = 1

– 𝑀 = 𝑚1 𝑚2

– 𝑋 = 𝑎1𝑀1𝑦1 + 𝑎2𝑀2𝑦2 ≡ 𝑥(𝑚𝑜𝑑 𝑀)

• x is guaranteed to be unique modulo M

General Algorithm

1. Compute M

– Computing 𝑀𝑛is trivial

2. Solve the congruencies (for 𝑦𝑛)

– 𝑀1𝑦1 ≡ 1(𝑚𝑜𝑑 𝑚1)

– 𝑀2𝑦2 ≡ 1 𝑚𝑜𝑑 𝑚2

3. Compute the resulting equation

– 𝑋 = 𝑎1𝑀1𝑦1 + 𝑎2𝑀2𝑦2 ≡ 𝑥(𝑚𝑜𝑑 𝑀)

M

• Compute 𝑀1 𝑎𝑛𝑑 𝑀2

• 𝑀1=
𝑀

 𝑚1
= 𝑚2

• 𝑀2=
𝑀

 𝑚2
= 𝑚1

Solve Congruencies

• Extended Euclidean Algorithm

– Not going to go through this because I develop a
better method for this specific application later on

Optimizations/Simplifications

• Assume 𝑚2 = 𝑚1 + 1

• This is can be proven by many different ways

• Bezout’s Theorem
– gcd 𝑚1, 𝑚2 = 𝑎 ∗ 𝑚1 + 𝑏 ∗ 𝑚2 = 𝑎 ∗ 𝑚1 + 𝑏 ∗ (𝑚1 + 1)

– = 𝑎 ∗ 𝑚1 + 𝑏 ∗ 𝑚1 + 𝑏

– = 𝑚1 −1 + 1 𝑚2 + (1)

– = −𝑚1 + 𝑚1 + 1 = 1

Effects on Modular Inverse

• Simplifies the calculation of 𝑦1immediately
– 𝑀1𝑦

1
= 𝑚2𝑦

1
= 𝑚1 + 1 𝑦

1
≡ 1 ∗ 𝑦

1
≡ 1(𝑚𝑜𝑑 𝑚1)

– 𝑦
1

= 1

• Slightly more work is required to simplify the
second congruency

Second Congruency

• 𝑀2𝑦
2

= 𝑚1𝑦
2

≡ 1(𝑚𝑜𝑑 𝑚2)

– 𝑚1𝑦2 = 𝑛 ∗ 𝑚2 + 1

– => 𝑚1𝑦
2

− 𝑛 ∗ 𝑚2 = 1

– => 𝑚1𝑦2 − 𝑛 ∗ 𝑚1 − 𝑛 = 1

– Assuming 𝑦2 = −1 and 𝑛 = −1

– => 𝑚1 −1 − −1 ∗ 𝑚1 − −1 = −𝑚1 +
𝑚1 + 1 = 0 + 1 = 1

New Algorithm

1. Compute M

2. Compute the equation

– 𝑋 = 1 ∗ 𝑎1 ∗ 𝑚2 + −1 ∗ 𝑎2 ∗ 𝑚1 ≡ 𝑥(𝑚𝑜𝑑 𝑀)

My implementation specifics

• let 𝑚1 = 2𝑛 such that 𝑚1 ≥ 𝑎1, 𝑎2

• Have to store n, although it can be stored as a
single byte in my implementation and work
for architectures 64 bits and less

• Not completely solved…

Example

• Assume 𝑎1 = 3 𝑎𝑛𝑑 𝑎2 =5

• 𝑚1 = 23 = 8, 𝑚2 = 9, 𝑀 = 72

• 𝑋 = 1 ∗ 3 ∗ 9 − 5 ∗ 8 = −13 ≡ 59 𝑚𝑜𝑑 72

• 59 𝑚𝑜𝑑 8 = 3, 59 𝑚𝑜𝑑 9 = 5

Problems

• Architecture limitations

– Computer can’t handle that large of an integer

• Efficiency

– Not as large a problem as the prior (depending on
who you are)

More Realistic Example

• Assume 𝑎1 = 233𝑎𝑛𝑑 𝑎2 = 232

• On a 64 bit system (i.e. max integer = 264)

• 𝑀 = 234 234 + 1 = 268 + 234
• 𝑋 = 1 ∗ 233 ∗ 234 + 1 + −1 232 234 = 267 + 233 − 236

• 𝑋 = 267 + 233 − 266 ≡
73786976303428141056(𝑚𝑜𝑑 𝑀)

Hope

• Can possibly be used reduce storage
requirements in the average case

• The average computer won’t exceed 64gb of
ram (without difficulty)

• Most hover around 4gb-8gb range

• Can possibly save a few bytes everywhere it is
used (but the operating system may not allow
this)

