Chinese Remainder List

Joseph Stanton
State University of New York
Institute of Technology

About Me

- Junior
- Accelerated BS/MS Computer Science
- Applied Mathematics

Terminology

- Pointer
 - Memory address
 - Positive integer less than architecture limit (typically)
 - (typically) in the range $0-2^n$

Linked List

- Data structure for dynamic manipulation of lists of items
- Commonly found as Doubly Linked Lists

Special Case

- XOR Linked List
- Advantage:
 - Reduces space required to store list
- Disadvantage:
 - Loss of some traversing abilities

Goal/Possible Solution

- Reduce the pointers to a single value while retaining traversing abilities
- Use the Chinese Remainder Theorem to compress the pointers

The problem

- Problem Setup
 - $-a_1, a_2 \in \mathbb{Z}^+$ and $a_1, a_2 = addresses$ to be encoded
 - $-m_1, m_2, M, M_1, M_2, X \in \mathbb{Z}$
 - $-x \in Z$, x is the solution we are looking for
 - $-x \equiv a_1 \pmod{m_1}$
 - $-x \equiv a_2 \pmod{m_2}$
 - $-\gcd(m_1,m_2)=(m_1,m_2)=1$
 - $-M=m_1\,m_2$
 - $-X = a_1 M_1 y_1 + a_2 M_2 y_2 \equiv x \pmod{M}$
- x is guaranteed to be unique modulo M

General Algorithm

- 1. Compute M
 - Computing M_n is trivial
- 2. Solve the congruencies (for y_n)
 - $-M_1y_1 \equiv 1 \pmod{m_1}$
 - $-M_2y_2 \equiv 1 \pmod{m_2}$
- 3. Compute the resulting equation

$$-X = a_1 M_1 y_1 + a_2 M_2 y_2 \equiv x \pmod{M}$$

M

• Compute M_1 and M_2

$$M_1 = \frac{M}{m_1} = m_2$$

$$M_2 = \frac{M}{m_2} = m_1$$

Solve Congruencies

- Extended Euclidean Algorithm
 - Not going to go through this because I develop a better method for this specific application later on

Optimizations/Simplifications

- Assume $m_2 = m_1 + 1$
- This is can be proven by many different ways
- Bezout's Theorem

```
-\gcd(m_1, m_2) = a * m_1 + b * m_2 = a * m_1 + b * (m_1 + 1)
-= a * m_1 + b * m_1 + b
-= m_1(-1) + (1)m_2 + (1)
-= -m_1 + m_1 + 1 = 1
```

Effects on Modular Inverse

• Simplifies the calculation of y_1 immediately

$$-M_1 y_1 = m_2 y_1 = (m_1 + 1) y_1 \equiv 1 * y_1 \equiv 1 \pmod{m_1}$$
$$-y_1 = 1$$

Slightly more work is required to simplify the second congruency

Second Congruency

•
$$M_2 y_2 = m_1 y_2 \equiv 1 \pmod{m_2}$$

 $-m_1 y_2 = n * m_2 + 1$
 $-=> m_1 y_2 - n * m_2 = 1$
 $-=> m_1 y_2 - n * m_1 - n = 1$
 $-$ Assuming $y_2 = -1$ and $n = -1$
 $-=> m_1 (-1) - (-1) * m_1 - (-1) = -m_1 + m_1 + 1 = 0 + 1 = 1$

New Algorithm

- 1. Compute M
- 2. Compute the equation

$$-X = 1 * a_1 * m_2 + (-1) * a_2 * m_1 \equiv x \pmod{M}$$

My implementation specifics

- let $m_1 = 2^n$ such that $m_1 \ge a_1, a_2$
- Have to store n, although it can be stored as a single byte in my implementation and work for architectures 64 bits and less
- Not completely solved...

Example

- Assume $a_1 = 3$ and $a_2 = 5$
- $m_1 = 2^3 = 8, m_2 = 9, M = 72$
- $X = (1) * 3 * 9 (5) * 8 = -13 \equiv 59 \pmod{72}$
- $59 \mod 8 = 3,59 \mod 9 = 5$

Problems

- Architecture limitations
 - Computer can't handle that large of an integer
- Efficiency
 - Not as large a problem as the prior (depending on who you are)

More Realistic Example

- Assume $a_1 = 2^{33}$ and $a_2 = 2^{32}$
- On a 64 bit system (i.e. max integer = 2^{64})
- $M = (2^{34})(2^{34} + 1) = 2^{68} + 2^{34}$
- $X = 1 * 2^{33} * (2^{34} + 1) + (-1)(2^{32})(2^{34}) = 2^{67} + 2^{33} 2^{36}$
- $X = 2^{67} + 2^{33} 2^{66} \equiv$ 73786976303428141056(mod M)

Hope

- Can possibly be used reduce storage requirements in the average case
- The average computer won't exceed 64gb of ram (without difficulty)
- Most hover around 4gb-8gb range
- Can possibly save a few bytes everywhere it is used (but the operating system may not allow this)